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Abstract. In this paper, we handle the problem of conformance testing
for data-flow critical systems with time constraints. We present a formal
model (Variable Driven Timed Automata) adapted for such systems in-
spired from timed automata using variables as inputs and outputs, and
clocks. In this model we consider urgency and the possibility to fire sev-
eral transitions instantaneously. We present a conformance relation for
this model and we propose a test generation method using a test purpose
approach. This method is illustrated with an example on a ”Bi-manual
command”.

1 Introduction

Testing is one of the most popular techniques used to increase the quality of a
software. Since systems are getting more and more complex, formal approaches
permit to obtain efficient and rigorous testing frameworks. Testing is a large
domain since many characteristics may be focused, such as conformance, per-
formance, interoperability or robustness... In this paper we consider formal con-
formance testing, i.e. checking if the observable behaviour of an implementation
conforms to its specification described in a formal model.

Testing techniques may be very different depending on the kind of systems
we intend to validate (e.g. embedded systems, communication protocols, etc...).
In this work, we handle testing for critical data-flow reactive systems with time
constraints. Such systems are widely used in the industrial automation domain.
Data-flow reactive systems are characterized by the fact that they interact with
their environment in a continuous way by means of continuous input and output
set of events (taking their values in (possibly) infinite domains), while obeying
some timing constraints. In this framework, continuous means that the values
of the inputs events can be updated at anytime, while the value of the outputs
events can always be observed. Their particularity makes that models used in
testing methods (e.g. Labelled Transition Systems with inputs, outputs and/or



time) are not well adapted to describe such systems as they do not include
data-flow synchronous aspects with dense time.

Related work. Timed automata [1] have been a reference model for many testing
approaches for Real-time systems. [4] and [14] propose methods based on char-
acterization of states inspired from Finite State Machines (FSM) theory applied
on extensions of timed automata with inputs and outputs. [6] and [14] use the
region graph ([1]) as a basis for test case generation.

The LTS/ioco theory ([15]) has also inspired many testing approaches for
timed systems. [11] defines new conformance relations on Timed Extended Finite
State Machines (TEFSM), a timed extension of FSM. Using the LTS semantics,
[7] proposes a timed extension of the ioco relation (tioco) which includes delays in
the set of observable outputs. They propose two kinds of tests : one with analog-
clock (dense time) and one with digital-clock using a special “tick” action in
the model. The Uppaal project ([9]) uses timed automata with variables and
urgency to model the systems and uses a symbolic extension of ioco to generate
test cases. As the previously mentioned methods, it uses an event based semantics
not adapted for data-flow synchronous systems.

Many testing methods have also been proposed for data-flow synchronous
systems ([3], [12], [8]). Lutess ([3], [13]) is a testing environment based on Lustre
([5]) using a “Lustre-like” model of the environment to lead test data generation.
The recent version of Lutess uses Constraint Logic Programming. The Lurette
environment ([12]) is similar to Lutess but uses ad-hoc notations to describe
the environment. The Gatel tool ([8]) generates test cases with a white box
approach : it translates the program and its environment specification into a
system of constraints description and uses it to generate test data according
to a test objective. All these synchronous approaches are widely used in the
industry. However they do not permit to handle dense time. Timed Automata
with urgent transitions, as studied in [2], allow shorter and clear specifications
and it has been proved that from a language theoretic point of view, addition of
urgency does not improve the expressive power of timed automata. But model in
[2] is (discrete) event-based and it is not adequate for data-flow systems. To our
knowledge, no approach has been proposed in the literature combining data-flow
synchronous aspects and dense time.
Contributions. In this paper, we introduce the Variable Driven Timed Automata
(VDTA) model, a variant of timed automata [1] with variables, which permits
to describe data-flow systems with dense time. As in [9], transitions are urgent
but our model permits to fire several transitions instantaneously as long as the
guard is satisfied. The inputs and the outputs of the system are variables : the
tester can assign new values to the input variables and observes the output ones.
In the semantics of VDTA, we consider two kinds of transitions :

– delay transitions for time elapsing
– discrete transitions including urgent transitions when the guard is satisfied,

and input-update transitions when the value of an input variable changes but
the guard is still not satisfied.

From a testing point of view, we assume that the specification of the system
under test is modeled by a VDTA. Our aim is then to derive a tester allowing to



check whether an implementation (that could also be modeled by an unknown
VDTA) conforms with its specification. Roughly, an implementation conforms
to its specification whenever after an observable sequence of input updates and
delays, the values of the output variables of the implementation are the same as
the ones of the specification after the same sequence.

In order to limit the number of test cases, we propose a generation method
based on a selection by a test purpose allowing to target some particular behav-
iors of the specification that we want to test on the implementation. We define
test purposes as VDTAs equipped with a set of accepting locations playing the
role of a non intrusive observer. It amounts to perform a product between the
specification and the test purpose and to select the behavior leading to some
particular configurations of this synchronous product (the ones that reach the
accepting states of the TP). The last point is achieved by performing a core-
achability analysis on a variant of the region graph derived from the VDTA and
adding new constraints on the guards.

Organization of the paper. The structure of the document is as follows : Section
2 presents some definitions and notations concerning the VDTA model and its
semantics. In Section 3, we introduce the notion of Time Abstract Graph and
we outline the problem of reachability analysis on VDTA. Section 4 presents the
conformance relation called tvco, as well as the synchronous product between
two VDTAs that will be used to combine the specification and the test purpose
and finally describes the symbolic test case generation methodology.

2 Model and notations

In this section, we present Variable Driven Timed Automata (VDTA), a vari-
ant of timed automata extended with data, urgency and synchronous data-flow
aspects : the model gives the possibility to fire several transitions (in case of
successive true guards) in null delay. We also give the corresponding semantics.

2.1 Variable driven timed automata definition

Variables, Assignments, Constraints. Let N, Q+ and R+ denote the sets of
natural, non-negative rationals and real numbers, respectively. Let V = {V1, · · · , Vn}
be a set of variables; each variable Vi ∈ V ranges over a (possibly infinite) domain
Dom(Vi) in N, Q+ or R+. We define Dom(V ) = Πi∈[1..n]Dom(Vi), the domain
of V . In the sequel, vi denotes a valuation of the variable Vi and v the tuple
of valuations of the set of variables V . A variable assignment for V is a tuple
Πi∈[1..n]({Vi} × (Dom(Vi) ∪ {⊥})) and we denote by A(V ) the set of variable
assignments for V . Given a valuation v = (v1, · · · , vn) of V and a variable assign-
ment A ∈ A(V ), we define the tuple of valuations v[A] as v[A](Vi) = c if (Vi, c) is
an element of A and c 6= ⊥, and v[A](Vi) = vi otherwise. Intuitively, an element
(Vi, c) of variable assignment A, requires to assign c to the variable Vi if c is a
constant fromDom(Vi); otherwise c is equal to ⊥ and no access to the variable Vi
should be done. V ar(A) denotes the set of variables of V that are updated by A.
We denote IdV the identity variable assignment that let unchanged all the vari-
ables of V . We denote by G(V ) the set of variable constraints defined as boolean



combinations of simple constraints of the form Vi ⊲⊳ c with Vi ∈ V , c ∈ Dom(Vi)
and ⊲⊳∈ {<,≤,=,≥, >}. Given G ∈ G(V ) and a valuation v ∈ Dom(V ), we
write v |= G when G(v) ≡ true. We denote ProjVi(G) ∈ G(V \ {Vi}) the con-
straint such that (v1, · · · , vi−1, vi+1, · · · , vn) |= ProjVi(G) if and only if there
exists vi ∈ Dom(Vi) such that (v1, · · · , vn) |= G. We extend in a natural way
this projection to a subset V ′ of V and we denote it ProjV ′(G).

LetX = {X1, · · · , Xk} be a set of clocks. A clock valuation forX is a function
from X to R+. Given X , the set of valuations is denoted RX+ . Given a valuation
x = (x1, · · · , xk) ∈ RX+ and t ∈ R+, x+ t stands for (x+ t)(Xi) = xi + t for any
Xi ∈ X . Let X ′ ⊆ X , x[X ′ ← 0] is the valuation defined by x[X ′ ← 0](Xi) = 0
for any Xi ∈ X ′ and x[X ′ ← 0](Xi) = xi otherwise. We denote by G(X) the set
of clock constraints defined as boolean combinations of simple constraints of the
form Xi ⊲⊳ c with Xi ∈ X , c ∈ N and ⊲⊳∈ {<,≤,=,≥, >}. Given GX ∈ G(X)
and x ∈ RX+ , we write x |= GX when G(x) ≡ true.

VDTA and Semantics. Variable Driven Timed Automata (VDTA) is a variant
of timed automata. The main difference with timed automata with variable is
that actions are assignments of variables and constraints are defined over clocks
and variables. The particularity of this model is that all transitions are urgent,
meaning that they must be fired as soon as guards are satisfied.

Definition 1 (VDTA). A Variable Driven Timed Automaton (VDTA) is a
tuple A = 〈L,X, I,O, l0, G0, ∆A〉, where

– L is a finite set of locations, l0 ∈ L is the initial location,
– X = {X1, X2, . . . , Xk} is a finite set of clocks,
– I = {I1, I2, . . . , In} is a finite set of input variables,
– O = {O1, O2, . . . , Om} is a finite set of output variables,
– G0 ∈ G(I,O) is the initial condition, a constraint with variables in I ∪O.
– ∆A ⊆ L× G(I,O,X)×A(O) × 2X × L is the transition relation:
〈l, G,A,X , l′〉 ∈ ∆A is a transition such that

• l and l′ are the source and the target locations of the transition.
• G is a is a boolean combination of elements of G(I), G(O) and G(X).
• An output assignment A ∈ A(O).
• X ∈ 2X is a set of clocks that are reset when triggering the transition.

In the sequel, we write l
G,A,X
−−−−→ l′ when 〈l, G,A,X , l′〉 ∈ ∆A and GA(l) = {G ∈

G(I,O,X) | ∃l′ ∈ L, l
G,A,X
−−−−→ l′}. The environment of a system modeled by

a VDTA observes all the variables. The set I of input variables represents the
variables to which the environment (e.g. the tester) can assign a value whereas
the set O of output variables represents the variables for which the values are up-
dated by the system while triggering a transition. Furthermore, we assume that
all the transitions are urgent, meaning that as soon as the guard of a transition is
satisfied, the transition is triggered. We also assume that the assignment of new
values to the input variables is performed instantaneously. Finally, note that in
each location the environment can choose any value for the input variables.



Remark 1. One can also add invariants w.r.t. the input variables in locations in
order to model some environment constraints.

Example 1. We illustrate the previous definition with the following example de-
scribing the behavior of a Bi-manual command system [10]. Consider the control
program of a device designed to start some machine when two buttons (L and R
for left and right buttons) are pushed within 1 time unit. If only one button is
pushed (then L or R is true) and a delay of 1 time unit is performed (time-out
has occurred), then the whole process must be started again. After the machine
has started (s=1), it stops as soon as one button is released, and it can start
again only after both buttons have been released (L and R are both false).

l0 l1 l2 l3

L = 0 ∧R = 0

L = 1 ∨R = 1;
t := 0

L = 0 ∧R = 0
∧t < 1

L = 1 ∧R = 1 ∧ t ≤ 1;
s := 1

L = 0 ∨R = 0;
s := 0

t ≥ 1

Fig. 1. The ”Bi-manual command” Example

Figure 1 represents the VDTA model of this system. The model has two boolean
input variables (L, R), one boolean output variable (s) and a clock (t). Let us
present two important use cases of the model:

1. From the initial location l0, if L and R are both set to 1, the system must
go instantaneously to l2 after starting the machine (s := 1). This is done by
taking in urgency and successively two transitions.

2. If the system reaches l1 with L = 0 and R = 1, then in order to reach
l2 or l0, it must leave l1 strictly before 1 time unit, otherwise, the system
moves instantaneously to the location l3. This is possible since transitions
are urgent.

These two use cases illustrate the utility of this new formalism : such behaviours
are not natural to describe in usual event based models, even with Uppaal ([9]).
Our attempts to model this system with UPPAAL 4.0 failed as invariants are
bounded constraints and timing constraints are not allowed on urgent transitions
which does not ease to model the urgency that can happen in l1.

Definition 2 (deterministic VDTA). A VDTA A = 〈L,X, I,O, l0, G0, ∆A〉
is deterministic if

– the initial condition G0 is satisfied by at most one valuation (i0, o0), and
– for all l ∈ L, for all G,G′ ∈ GA(l) s.t. G 6= G′, G ∩G′ is unsatisfiable.

In the reminder of this paper, we shall only consider deterministic VDTAs.

The semantics of a VDTA is presented in terms of timed transition systems
(TTS).

Definition 3. The semantics of a VDTA A = 〈L,X, I,O, l0, G0, ∆A〉, is a TTS
defined by the tuple [[A]] = 〈S, s0, Σ,→〉 where



– S = L×Dom(I)×Dom(O) × RX+ is the (infinite) set of states,
– s0 = (l0, i0, o0, x0) is the initial configuration where x0 is the clock valuation

that maps every clock to 0 and (i0, o0) is the only solution of G0,
– Σ = A(I) ∪A(O) ∪ RX+ is the (infinite) set of actions, and
– → is the transition relation with the following three types of transitions:

T1 (l, i, o, x)
A
−→ (l′, i, o[A], x[X ← 0]) if there exists (l, G,A,X , l′) ∈ ∆A

such that (i, o, x) |= G,

T2 (l, i, o, x)
A
−→ (l, i[A], o, x) with A ∈ A(I) if ∀(l, G,A′,X , l′) ∈ ∆A, (i, o, x) 6|= G.

T3 (l, i, o, x)
δ
−→ (l, i, o, x+δ) with δ > 0 if for every δ′ < δ, for every symbolic

transition (l, G,X ′, l′) ∈ ∆A, we have (i, o, x+ δ′) 6|= G.

The semantics considers two kinds of transitions: discrete transitions (T1 and
T2) and delay transitions (T3). They concern the update of either input or out-
put variables. There are two sorts of discrete transitions: urgent transitions (T1)
and input-update transitions (T2). Delay transitions (T3) represent the elapse of
time. Urgent transitions (T1) are fired as soon as constraints are satisfied by the
current configuration of the system. Input-update transitions (T2) only allow
to change the values of input variables; they are fired when the environment
chooses to update them and when the guards are not satisfied. Input-update
transitions and delay transitions are fired only when no urgent transition can
be fired. Compared with the model in [2], in our model, events (input-update)
from the environment are not explicitly specified. This make VDTA specification
shorter and clearer.

Notations. When necessary, we denote −→Ti for transitions of type Ti, i = 1...3.
Given a state s = (l, i, o, x) ∈ S, Out(s) = o gives access to the output value

of [[A]] in state s. We write s
a
−→ when there exists s′ such that s

a
−→ s′. For a

sequence σ = a1.a2. . . . .ak−1.ak of Σ∗, s
σ
−→ s′ if there exists {si}i=1..k−1 such

that s
a1−→ s1

a2−→ . . . . .
ak−1
−−−→ sk−1

ak−→ s′ and we write s
σ
−→ if there exists s′

such that s
σ
−→ s′. Given a state s of [[A]], a run is a sequence of alternating

states and actions s = s0a1s1 · · ·ansn in S.(Σ.S)∗ such that ∀i ≥ 0, si
ai+1
−→ si+1.

Run(s, [[A]]) denotes the set of runs that can be executed in [[A]] starting in state s
and we let Run([[A]]) = Run(s0, [[A]]). The trace ρ(r) of a run r = s0a1s1 · · · ansn
is given by the sequence ρ(r) = ProjS(r) = a1 · · ·an ∈ Σ∗. Tr([[A]]) = {ρ(r)|r ∈
Run([[A]])} is the set of traces generated by A.

Example 2. Back to Example 1, some possible runs derived from [[A]] are

– (l0, (0, 0, 0, 0))
L:=1
−−−→ (l0, (1, 0, 0, 0))

IdO−−→ (l1, (1, 0, 0, 0))
0.3
−−→ (l1, (1, 0, 0, 0.3))

– (l0, (0, 0, 0, 0))
L:=1,R:=1
−−−−−−−→ (l0, (1, 1, 0, 0))

IdO−−→ (l1, (1, 1, 0, 0))
s:=1
−−−→ (l2, (1, 1, 1, 0))

We now define the classic Pred operator of a set of states Q: Pred(Q) = {s ∈

S | ∃s′ ∈ Q, a ∈ Σ, s
a
−→ s′}. Note that Pred : 2S → 2S is monotonic. We also

define Pre0(Q) = Q and for i ≥ 0, Predi+1(Q) = Pred(Predi(Q)). We consider
the CoReach()̇ operation allowing to compute the states from which a state in
Q can be reached: CoReach(Q) = µX.Q ∪ pre(X). Following [?], we have that
CoReach(Q) =

⋃

i≥0 Pred
i(Q).



Stable VDTA and Observed runs. In a VDTA, all transitions are urgent and
several transitions can be triggered in null delay. We then consider stable states
that are states from which no urgent transition can be fired. Formally a state s

of [[A]] is stable whenever for every A ∈ A(O), s 6
A
−→. A stable run is a run that

ends in a stable state. To leave this state, either the input values need to be
updated or we need to let the time elapse. A VDTA A is stable if there is no
loop of unstable states in [[A]].

In the context of VDTA, a test activity consists in executing on the im-
plementation a sequence in (A(I) ∪ A(O) ∪ R+)∗, and in checking whether the
output values of the implementation coincide with those in the last state of the
specification after the sequence being executed. It is worth noticing that on the
implementation (seen as a VDTA) many variations on outputs can occur in zero
time unit and these output changes can not be observed. Thus in our testing
framework, we will assume that outputs are observed only when the implemen-
tation is in stable states. Given a stable state s, we will thus be interested in
the next stable state (recall that VDTA are deterministic) the implementation
can reach from s after the execution of an input-update Ai ∈ A(I) followed by
a sequence in (A(O) ∪ R+)∗. This leads us to introduce the notion of observed
runs. Given two stable states s, s′ ∈ S, we write:

– s
Ai=⇒ s′ if there exists a sequence σ = σ1 · · ·σn ∈ (A(O) ∪ {0})∗ such that

s
Ai−→ s”

σ
−→ s′, i.e. s′ is the unique stable state that can be reached from s

after updating the input variables with Ai, only triggering urgent transitions
in zero time unit.

– s
δ

=⇒ s′ if there exists a sequence σ = σ1 · · ·σn ∈ ({IdO} ∪ R+)∗ such that

s
σ
−→ s′ and δ =

∑

δi∈ProjO(σ) δi, i.e. s′ is the stable state that can be reached
by letting the time elapse during δ units of time with no output update.

Let us denote by Obs(A) = (S, s0, A(I) ∪ R+,=⇒) the TTS inductively gen-
erated from [[A]] starting from s0 (that is supposed to be stable) using the
two previous rules. The set of observed runs of A is then given by the set
ObsRun(A) = Run(Obs(A)), whereas the set of observed traces is given by

ObsTr(A) = Tr(Obs(A)). Finally, we define s Safter α = {s′ | s
α

=⇒ s′}3 and
A Safter α = s0 Safter α.

3 Time-Abstract Graph and reachability analysis

The reachability analysis amounts to checking whether, from the initial state,
we can reach a target state (or location). We provide a symbolic backward
reachability analysis for VDTA. The algorithm iteratively computes (urgent,
input-update, time-elapsing) predecessors of states using a new representation
of VDTA called time abstract graph. A Time abstract graph decomposes the
clock constraints into atomic clock constraints simplifying the computation of
time-elapsing predecessors as transitions are urgent.
3 Safter stands for “after stabilization”.



3.1 Time-Abstract graph construction

From a VDTA, one can build a time abstract graph whose transitions are of
two sorts: urgent transitions (U1) and time-elapsing urgent transitions (U2).
Time-elapsing urgent transitions correspond to atomic timing context changing
and urgent transitions allow to change the contents of output variables. Time-
elapsing transitions are labelled with the special action IdO that let unchange the
value of the output variables. The construction of time-abstract graphs is based
on the standard notion of region [1] introduced for the reachability analysis of
timed automata. We assume the reader is familiar with the region construction
of [1] for timed automata. For the sake of completeness, we recall here the main
definitions and properties we will use further.

Let X = {X1, X2, . . .} be a finite set of clocks. Recall that the value of each
clock Xi ∈ X is denoted by xi. For xi ∈ R+, ⌊xi⌋ and 〈xi〉 denote the integer
part and the fractional part of xi, respectively.

Definition 4 (Clock Region). We consider a constant K ∈ N. A clock re-
gion is an equivalence class of the relation ≃K over clock valuations. For two
valuations x, x′ ∈ RX+ , we have x ≃K x′ iff the following conditions hold:

1. ∀Xi ∈ X,xi ≤ K ⇔ x′i ≤ K,
2. ∀Xi ∈ X,xi ≤ K ⇒ (⌊xi⌋ = ⌊x′i⌋ and 〈xi〉 = 0⇔ 〈x′i〉 = 0),
3. ∀Xi, Xj ∈ X,xi ≤ K and xj ≤ K ⇒ (〈xi〉 ≤ 〈xj〉)⇔ 〈x′i〉 ≤ 〈x

′
j〉.

We let RegK(X) be the set of clock regions for a constant K. We recall that the
size of RegK(X) is in 2O(m. logKm) where m = |X | (see [1]). When the constant
K is clear from the context, we denote by [x] the clock region that contains
x, and by [[r]] the set of clock valuations whose clock region is equal to r. We
say that a region r′ is a successor of r and we write r′ ∈ Succ(r) if there are
v ∈ [[r]], v′ ∈ [[r′]] and δ ∈ R+ such that v′ = v + δ. A region r′ is the immediate
successor of r, and we write r′ = I Succ(r), if r′ ∈ Succ(r) \ {r} and there is
no region r” ∈ Succ(r) \ {r, r′} such that r′ ∈ Succ(r”). Note that a region can
be represented by a diagonal clock constraint that involves comparisons of two
clocks. If r is a region, then Gr denotes the unique clock constraint such that
r ⊆ [[Gr]]. States of time-abstract graphs are pairs of a location and a region.

Given a state (l, r), GdsA(ℓ, r) = {G | ℓ
G,A,X
−−−−→ ℓ′ and [[r]] ⊆ [[ProjI∪O(G)]]} is

the set of constraints whose timing part is satisfied by the region r. So, in (l, r),
we only need to change values of input variables in order to satisfy a constraint
of GdsA(ℓ, r).

Definition 5 (Time-abstract graph). The time-abstract graph (TAG) of a
VDTA A = 〈L,X, I,O, l0, G0, ∆A〉 for a constant K is the VDTA RGK(A) =
〈RegK(A), X, I, O, (ℓ0, r0), G0, ∆RG〉 where

– RegK(A) = L×RegK(X) is the set of states of RGK(A)
– The initial state is (ℓ0, r0) where r0 = {0̄}
– The transition relation, ∆RG ⊆ RegK(A) × G(I,O,X) × A(O) × RegK(A)

is such that:



U1 (ℓ, r)
ProjX (G)∧Gr,A,X
−−−−−−−−−−−−→ (ℓ′, r′) iff ∃ℓ

G,A,X
−−−−→ ℓ′ in A s.t. [[r]] ⊆ [[ProjI∪O(G)]]

and r′ = r[X ← 0]

U2 (ℓ, r)
G′∧Gr′ ,IdO,IdX−−−−−−−−−−−→ (ℓ, r′) with G′ = ¬(∨G∈GdsA(ℓ,r)ProjX (G)) and

r′ = I Succ(r)

In a TAG, the timing information is also encoded in the states. We move from
one state to its time-successor whenever the clocks contrainst (corresponding
to the region of the time-successor) is satisfied and when the input and output
constraints of the outgoing urgent transitions are not satisfied. The values of
input variables can change when no urgent transition can be fired.

Proposition 1. For every VDTA A, for every natural K larger than the largest
integer constant in the clock constraints of A, ObsTr(RGK(A)) = ObsTr(A).

We observe that for every natural K larger than the largest integer constant
in the clock constraints of A, for every σ ∈ ObsTr(A), Out(A Safter σ) =
Out(RGK(A) Safter σ). In the sequel, we shall only consider such K.

Example 3. Figure 2 represents the time-abstract graph of the VDTA in Exam-
ple 1. In the figure, we have sometimes omitted to represent timing constraints
on time-elapsing transitions for clarity reasons

l0, t = 0 l0, 0 < t < 1 l0, t = 1 l0, t > 1

l1, t = 0 l1, 0 < t < 1 l1, t = 1

l2, t = 0 l2, 0 < t < 1 l2, t = 1 l2, t > 1

l3, t = 0 l3, 0 < t < 1 l3, t = 1 l3, t > 1

L ∨ R

∧t = 0
t := 0

L ∧ R

∧t = 0
s := 1

L ∨R ∧ t = 0
s := 0

L ∧ R

∧t = 0

L ∧ R

∧t = 0

L ∨R

∧0 < t < 1
t := 0

L ∧R

∧0 < t < 1

L ∧ R

∧0 < t < 1
s := 1

L ∨R

∧0 < t < 1
s := 0

L ∨ R

∧t = 1
t := 0

L ∨ R

∧t > 1
t := 0

L ∧ R

∧t = 1

L ∧R

∧0 < t < 1

L ∨ R

∧t = 1
s := 0

L ∧R ∧ t > 1

L ∨ R

∧t > 1
s := 0

t = 1

L ∧R

∧0 < t < 1
L ∧ R

∧t = 1 L ∧R

L xor R L xor R

L ∨R

L ∧ R L ∧ R L ∧R

L ∨R

L ∨R

Fig. 2. The TGA of the VDTA of Example 1

3.2 Backward Reachability Analysis

The simple backward control algorithm could work on [[A]]. It starts in the set
of target states. Then it computes predecessors from which we can reach the
target state within 1 step, 2 steps, etc... until an initial state is reached or until
the computation terminates. But such a simple algorithm could not terminate



because [[A]] is infinite. We consider a symbolic algorithm that works on TAG
representations instead of VDTA. We define abstract predecessors for configura-
tions of TAG. A configuration of a TAG is a couple of the form (q,G) where
q is a state of RGK(A) and G is a constraint of G(I,O). We consider urgent
abstract predecessors (aPredu), time-elapsing abstract predecessor (aPredδ) and
input-update abstract predecessors (aPrede) defined over as follows:

aPredu(q,G) = {(q′, P rojX(G′) ∧ ProjV ar(a)(G) | q′
G′,a,Y
−−−−→U1 q

∧ ProjI∪X(G′)[a] ⊆ ProjI(G)}

aPredδ(q,G) = {(q′, P rojX(G′) ∧G | q′
G′,IdO,IdX
−−−−−−−−→U2 q}

aPrede(q,G) = (q, (¬
∨

G′∈GdsA(q) ProjX (G′)) ∧ ProjI(G))

For a set of configuration Q and θ ∈ {u, i, δ}, we define the monotonic oper-
ators aPredθ(Q,G) =

⋃

q∈Q aPredθ(q,G). We define the abstract predecessor
aPred(q,G) = aPredu(q,G) ∪ aPredδ(q,G) ∪ aPrede(q,G). For a set of con-
figurations Q, aPred(Q) =

⋃

q∈Q aPred(q). Finally, CoReach(Q) = µX.Q ∪
aPre(X) We can show the following proposition that allows to use CoReacha
instead of Coreach during the reachability analysis.

Proposition 2. Given q = (l, [x]) and G ∈ G(I,O), CoReacha(q,G) = µX.(q,G)∪
aPred(X)) is effectively computable.

CoReacha is the least fixpoint of the function λX.X ∪ aPred(X) and aPred :
2Q → 2Q is a monotonic function where Q = L × RegK(X) × CM (I,O) and
CM (I,O) denotes the set of constraints on input/outputs the maximal constant
occuring in them is lower or equal to M . Q is finite. Using fixpoint computation
results in [?], we get the termination of the computation of CoReach. Moreover,
we can show that

Proposition 3. Let G′ ∈ G(I,O) be a constraints over input and output vari-
ables. It holds that

(l, i, o, x) ∈ Coreach(l′, G′ ∧ [x′]) iff ((l, [x]), i, o) ∈ Coreacha((l
′, [x′]), G′)

4 Automatic test generation

4.1 Principle

Conformance testing consists in checking that an implementation exhibits an
observable behavior consistent with its specification. We consider conformance
testing of critical timed systems modelled with VDTA. We define a conformance
relation to ensure that an implementation under test (Imp) conforms to its
specification. The main idea of this relation is that all behaviours of the imple-
mentation have to be allowed by the specification. Especially:
1. Imp is not allowed to update a variable in a time (too late or too early)

when it is not allowed by the specification.
2. Imp is not allowed to omit to change a memory-variable at the time it is

required by the specification.



The conformance relation. We assume that Imp and A are both modeled by
compatible VDTA (i.e. they share the same input and output variables). More-
over, we assume that the tester can observe all output variables of the implemen-
tation. The tester can only update the input variables of the implementation or
let the time elapse. As previously mentioned, the tester can observe the change
of the output variables of the implementation only when this one has reached a
stable state. As in the ioco theory [15], some states may stay infinitely blocked,
but at the moment we do not consider this point in our conformance relation.

Roughly, an implementation conforms with a specification whenever it pro-
duces the same outputs as the ones of the specification at the same instants.

Definition 6. Imp conforms to A (Imp tvco A) whenever

∀σ ∈ ObsTr(A),Out(Imp Safter σ) ⊆ Out(A Safter σ)

where Out(.) gives access to the values of the ouput variables.

In this relation, we intend to check if the values of output variables of the imple-
mentation are correct after any sequence of inputs. These inputs may be of two
kinds : assignment of input variables or time elapsing. Since our model permits
to fire several transitions in zero time, we decided that the implementation has
to reach a stable state before checking correctness of its outputs. For example, if
we consider an input followed by several assignments of the same output variable
in zero time (e.g. L := 1 followed s := 3 and s := 2), our conformance relation
only considers the last value (s := 2). Note that it would have been possible to
define another relation, similar to tioco [7], permitting to consider all kinds of
assignments for conformance. The tester who knows the specification plays in
the following way:

– either the tester updates the input variables and then observes how the
implementation reacts once the implementation is stabilized. In case of non
conformance (i.e. if the outputs of the implementation differ from the one of
the specification), the tester returns a fail verdict;

– or the tester chooses to let the time elapse for a while; doing so, it observes
possible output changes from the implementation. In case such changes are
not allowed by the specification at the time a new output observation is
performed, the tester returns a fail verdict since the implementation does
not conform to the specification;

– or the tester can choose to stop the game and in that case, it returns a pass
verdict meaning that, up to this point, no fault occurred.

The tester observes behaviours of the implementation through the values of
the output variables in stable states. If their content changes, the tester checks
whether the new values are expected by the specification.

4.2 Test purpose

The test selection algorithm we propose is based on the notion of Test Purpose
(TP). In practice, a test purpose allows to select some behaviors of the specifi-
cation that we want to test. A test purpose is modeled by a VDTA as follows:



Definition 7. A test purpose TP of a specification A = 〈L,X, I,O, l0, G0, ∆A〉
is a deterministic VDTA 〈S,X ∪X ′, I, O, s0, G0, ∆TP 〉 such that

– S is a finite set of locations with a special trap location AcceptTP ∈ S, s0 is
the initial location;

– I, O and X are respectively the input, output and clock variables of the
specification; TP is thus allowed to observe the configurations of A;

– G0 ∈ G(I,O) is the initial condition (the same as the one of A);

– X ′ is the set of private clocks of TP , with X ′ ∩X = ∅
– ∆TP ⊆ S × G(I,O,X,X ′)× IdO × 2X

′

× S is the transition relation4.

Note that TP is non intrusive with respect to the specification. Indeed, according
to Definition 7, it does not reset clocks of the specification S and does not
assign new values to the output variables. Moreover, we remark that all the test
purposes are complete, meaning that whatever is the observation of variables or
clocks either a transition is taken or the current location does not change.

Example 4. Some test purposes for the VDTA A in Fig.1 are presented below.

s0

L == 1 ∧R == 1

s1

s == 1

Accept

(a)

s0

L == 1 ∧R == 1 ∧ S == 1

Accept

(b)

s0

x ≥ 2

s == 1 ∧ x < 2

Reject

Accept

(c)

Fig. 3. Test purposes

Test purposes in figures Fig.4(a) and Fig.4(b) observe variables of the VDTA
and they only specify which behaviours of the implementation are interesting for
the test. The test purpose in Fig.4(c) has its own clock variable x; it also specifies
which behaviour of the implementation should be tested, but also the behaviour
of the implementation that should not be tested (from the location Reject, the
location Accept, cannot be reached anymore).

– The test purpose in Fig.4(a) requires that s will be eventually set to 1 after
the first time at which L and R are equal to 1. Between the first time in
which L and R are simultaneously equal to 1 and the time in which s is set
to 1, the test purpose allows, in s1, the changing of values L, R and s. The
test purpose in Fig.4(b) requires to have s equal to 1 in the same time that
L and R are equal to 1.

– With the test purpose described in Fig.4(c), we are only interested in testing
behaviours of the implementation for which s is set to 1 at most 2 time units
after the beginning of the session. ⋄

4 As for the specification, we assume that the guards are given by a boolean combi-
nation of elements of G(I), G(O), G(X) and G(X ′)



4.3 Building the symbolic test case

Given a specification A and a test purpose TP , we now describe how to derive
test cases that target the behaviour of the test purpose while checking for the
conformance of the implementation with respect to the specification. It consists
in three steps:

Step 1. We first perform the synchronous product between the specification
A and the test purpose in order to characterize in A the sequences that are
accepted by the test purpose TP .

Definition 8 (Synchronous product). Given A = 〈L,X, I,O, l0, G0, ∆A〉 a
specification and a test purpose TP = 〈S,X ′ ∪ X, I,O, s0, G0, ∆TP 〉, the syn-
chronous product of A and TP is the VDTA A×TP = 〈L×S,X∪X ′, I, O, (l0, s0),
G0, ∆A×TP 〉 where ∆A×TP is defined by the following rules (R1, R2, R3):

l
G,A,X
−−−−→ l′ ∈ L s ∈ S Gs =

∧

G′∈GTP (s) ¬G
′

(l, s)
G∧Gs,A,X
−−−−−−−→ (l′, s)

(R1)

l ∈ L s
G,IdO,X

′

−−−−−−→ s′ Gl =
∧

G′∈GA(l) ¬G
′

(l, s)
Gl∧G′,IdO,X ′−−−−−−−−−→ (l, s′)

(R2)

l
G,A,X
−−−−→ l′ s

G′,IdO,X
′

−−−−−−−→ s′

(l, s)
G∧G′,A,X∪X ′
−−−−−−−−−→ (l′, s′)

(R3)

Evolutions (transition firing) in the test purpose and the specification depend on
clock values and variable values. An urgent transition can be fired in the speci-
fication (and not in the test purpose) when the clocks values and the variables
values satisfy no constraint on transitions from the current location in the test
purpose; this situation is described by the rule R1. Conversely, an urgent transi-
tion can be fired in the test purpose (and not in the specification) when no urgent
transition is firable in the specification; this situation is described by the rule
R2. They both trigger an urgent transition whenever the values of the variables
satisfy the guards of the specification and test purpose transitions. Recall that
the test purpose and the specification are deterministic; in consequence when a
transition in the specification is firable, there is at most one firable transition in
the test purpose and reciprocally. This situation is described by the rule R3.

Given a specification A and a test purpose TP , we denote ATP = A× TP .
Note that A is the master of this composition in the sense that it is the only one
able to change the values of the input and output variables. Due to rule R1 and
R3, there is no imposed restriction with respect to the behaviour of A. In other
words,the definition of ATP = A× TP does restrict the constraints that allow,
in A, to execute some output updates. Since input-update and delay can only be
performed when the constraints that allow an output update are unsatisfiable, we
can show that Tr(A) = Tr(ATP ) and ObsTr(A) = ObsTr(ATP ). In the sequel,
we shall denote Accept the set of states of ATP of the form (l, AcceptTP ).



Remark 2. ATP has at most |L|×|S| locations and
∑

(l,s)∈L×S((|GA(l)|×|GTP (s)|)+

2) transitions.

Step 2: Test Selection. From ATP , we build the corresponding region graph
to abstract away the time: RG(ATP ) = 〈Q,X, I,O, q0, G0, ∆RG〉. We denote
by Pass the set of locations of the form (Accept, r) ∈ Q. From the test gen-
eration point of view, our aim is to generate test cases that allow to reach the
Accept location. We thus consider the set of constrained configurations QPass =
{(q, true) | q ∈ Pass} and we compute the set of coreachable corresponding con-
straints. It is given by CoReacha(QPass) = ∪P∈QPassCoReacha(P ). Intuitively,
during the computation of CoReacha(QPass), if we encounter a symbolic state
(q,G) of RGK(ATP ) with G as constraint on the input/output variables, then
there will exist a path giving a way to move from q to Pass by letting the
time elapse or by changing inputs conveniently in encountered locations along
the path. Note that when computing CoReacha(q,G) for a given symbolic state
(q,G) of RGK(ATP ), we can tag visited locations q of RGK(ATP ) with ade-
quate constraints on the input/output variables. We call a symbolic test case, a
path from the initial location of RGK(ATP ) to a Pass location.

4.4 Test case execution

We assume that we have selected a symbolic test case that is a path inRGK(ATP )
that ends in a location of the form (Accept, r) of Pass for some region r.
Let TC = p0.p1 . . . pn be such a symbolic test case where in each position
pk = ((lk, rk), Ik) with k = 1..n, lk denotes a location of the specification, with
ln = AcceptTP , rk denotes a region and Ik denotes a constraints (invariant)
over input/output variables computed w.r.t. CoReacha(Qpass). We provide an
on-the-fly testing algorithm for TC. The algorithm works as follows:

Let j be the position in the symbolic test case that contains the current
stable state stj = ((lj , rj), ij , oj , xj) and Otrj = σ1 · · ·σj ∈ (A(I) ∪R+)∗ be the
sequence played on the implementation so far.

Begin loop
(a) If (lj , rj) ∈ Pass and Out(Imp Safter Otrj) = oj then exit loop and

return the verdict “pass”.
(b) Choose either to delay, or to perform an input-update

The decision is to perform an input-update.
i. Select an assignment Aj such that (ij[AJ ], oj , xj) satisfies the

constraint on the transition, in TC, starting from ((lj , sj), rj)
and compute stj+1 = stj Safter Aj

ii. update the inputs of the implementation according to Aj
iii. If Out(Imp Safter Otrj .AJ ) 6= oj+1 exit loop and return the

verdict “fail”; else stj becomes stj+1.
The decision is to delay

i. Pickup δ ∈ R+ such that (ij , oj , xj + δ) satisfies the constraint
on the transition, in TC, starting from (lj , rj).



ii. If an output update occurs on Imp within δ′ ≤ δ time units then
compute stj+1 = stj Safter δ′

iii. If Out(Imp Safter Otrj .δ
′) 6= oj+1 exit loop and return the

verdict “fail”; else stj becomes stj+1.

End loop

5 Conclusion

In this work, we have been interested in the automatic test generation for data-
flow systems. In order to model such systems, we have presented the Variable
Driven Timed Automata model (VDTA) : a variant of timed automata with
continuous variables partitioned into two sets : input variables and output ones.
Input variables permit to control the system and output variables are considered
as the observable outputs. Transitions are urgent and it is possible to fire several
transitions in zero time in a synchronous way. We have also proposed a new
conformance relation adapted to our model, and a test generation method with
a selection based on a test purposes.

An interesting extension of this work would be to handle blocking states
in the conformance relation. Besides, we also intend to consider assignments of
variables with operations depending on other variable values (e.g. x := y + 3).
Since reachability and coreachability problems become undecidable, we propose
to use abstract interpretation and approximation techniques.
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6 Appendix: Proof of Proposition 1

Proposition 1 is a corollary of Lemma 7 and Lemma 6
Proposition 1 Let A be a VDTA, for every K greater or equal to the maximal
constants clocks in A are compared to, we have that:

ObsTr(RGK(A)) = ObsTr(A)

Property 1 (Time Additivity in Obs(A)). Let δ′, δ” ∈ R+. It holds that:

(l, i, o, x)
δ′

=⇒ (l′, i′, o′, x′) and (l′, i′, o′, x′)
δ′′

=⇒ (l′′, i′′, o′′, x′′) if and only if

(l, i, o, x)
δ′+δ′′

=⇒ (l′′, i′′, o′′, x′′)



Lemma 1. (l, i, o, x) is stable if and only if ((l, [x]), i, o, x) is stable.

Proof. (if) Part: Assume that (l, i, o, x) is stable, then by definition, for every

A ∈ A(O), (l, i, o, x) 6
A
−→, or equivalently for all G ∈ GA(l), for every trG =

(l
G,A,X
−−−−→ l′) either (1) (i, o) 6|= ProjX(G) or (2) x 6|= ProjI∪O(G). Consider

now the location (l, [x]), urgent transitions starting from this location are of the
form:

– t = ((l, [x])
G∧G[x],A,X
−−−−−−−−→U1 (l′, [x′])), with [x′] = [x][X ← 0]. For this transi-

tion, trG can not be triggered inA because of (1) or (2). If (i, o) 6|= ProjX(G),
then obviously t can not be triggered. If x 6|= ProjI∪O(G), then as G[x] =
ProjI∪O(G), it is not possible to trigger t.

– t = ((l, [x])
G′∧G[x′],IdO,∅
−−−−−−−−−−→U2 (l′, [x′])), with [x′] = I Succ([x]) and G′ =

G[x′] ∧ (¬
∨

G∈GdsA(l,[x]) ProjX(G)). As [[G[x′] ∧ G[x]]] = ∅, we get that x 6|=
G[x′] and t can not be triggered.

(only if) Part: Assume that ((l, [x]), i, o, x) is stable, then for every a ∈ A(O),

it holds that ((l, [x]), i, o, x) 6
A
−→; or equivalently, for every trG = ((l, [x])

G,A,X
−−−−→

(l′, [x′])), either (i, o) 6|= ProjX(G) or x 6|= ProjI∪O(G). We show that no urgent
transition (of type T1) can be fired from (l, i, o, x). By contradiction, if a transi-
tion of type T1 can be fired from (l, i, o, x), then there would exist a transition

tr = l
G′,A′,X ′

−−−−−−→ l′ such that (i, o) |= ProjX(G′) and x |= ProjI∪O(G′). Using
a dual argument to the proof of the if part, we get that there is a transition of
type T1 from ((l, [x]), i, o, x), meaning that the latter state is not stable. This is
a contradiction.

Lemma 2. Given A ∈ A(O) \ {IdO},

(l, i, o, x)
A
−→ (l′, i′, o′, x′) iff ((l, [x]), i, o, x)

A
−→ ((l′, [x′]), i′, o′, x′)

Proof. First note that if (l, i, o, x)
A
−→ (l′, i′, o′, x′) then (l, i, o, x) is not stable

and, according to Lemma 1, ((l, [x]), i, o, x) is not stable.

(if) Part: Consider A ∈ A(O) \ {IdO}. Assume that (l, i, o, x)
A
−→ (l′, i′, o′, x′),

then there exists tr = (l
G,A,X
−−−−→ l′) such that (i, o) |= ProjX(G), x |= ProjI∪O(G),

i′ = i, o′ = o[A] and x′ = x[X ← 0]. By definition, there exists in RGK(A) a

transition (l, [x])
G′,A,X
−−−−−→ (l′, [x][X ← 0]) with G′ = ProjXG ∧ G[x]. As G[x] is

the unique atomic clock constraint that contains [x], we have that x |= G[x] and

then the transition ((l, [x]), i, o, x)
A
−→ ((l′, [x′]), i′, o′, x′) exists.

(only if) Part: Conversely, assume that ((l, [x]), i, o, x)
A
−→ ((l′, [x′]), i′, o′, x′).

Then there exists inRGK(A) a transition tr = (((l, [x]), i, o, x)
G,A,X
−−−−→ ((l′, [x′]), i′, o′, x′))

such that (i, o) |= ProjX(G), x |= ProjI∪O(G), i′ = i, o′ = o[A] and [x′] =

[x][X ← 0]. But tr is construted using some transition l
G′,A,X
−−−−−→ l′ such that



ProjX(G) = ProjX(G′), ProjI∪O(G) = G[x] and [[ProjI∪O(G)]] ⊆ [[ProjI∪O(G′)]].
As (i, o) |= ProjX(G), x |= ProjI∪O(G) we have that x |= ProjI∪O(G′) and

then the transition (l, i, o, x)
A
−→ (l′, i′, o′, x′) exists.

Remark 3. For every state q of RGK(A), it holds that
∨

G∈GRGK(A)(q) ProjX(G)

is a tautology.

Lemma 3. Let δ ∈ R+. Then,

((l, [x]), i, o, x)
δ
−→ ((l′, r), i, o, x′) implies (l, i, o, x)

δ
−→ (l, i, o, x′)

Proof. Assume that ((l, [x]), i, o, x)
δ
−→ ((l, r), i, o, x′). Then, by definition x′ =

x+δ and for every transition ((l, [x])
G,A,X
−−−−→ (l′, r′), for every δ′ < δ, ProjI∪O(G) =

G[x] and either (i, o) 6|= ProjXG or x + δ′ 6|= ProjI∪OG. Assume now that

(l, i, o, x) 6
δ
−→, then there exists δ′ < δ and A ∈ A(0) such that (l, i, o, x)

δ′

−→

(l, i, o, x+δ′) and (l, i, o, x+δ′)
A
−→ (l′, i, o′, x”). Thus there exists tr = l

G′,A,X ′

−−−−−→ l′

such that (i, o) |= ProjX(G′), x+δ′ |= ProjI∪O(G′), o′ = o[A], and x” = x[X ′ ←
0]. Note that by definition, x + δ′ ∈ [x]. Moreover, as tr is a transition of A,

there exists a transition (l, [x])
ProjX (G′)∧G[x],A,X

′

−−−−−−−−−−−−−−→ (l′, [x”]) in RGK(A). Clearly,
(i, o) |= ProjX(G′) and x+ δ′ |= G[x] involving that there is a urgent transition
of type T1 from ((l, [x]), i, o, x) when we delay for δ′. As urgent transition of

type T1 are taken prior to delay transition of type T3, we get ((l, [x]), i, o, x) 6
δ
−→

and this is a contradiction with the hypothesis.

Lemma 4. Let x and x′ such that [x′] = I Succ([x]) and let δ ∈ R+. (l, i, o, x)
δ
−→

(l, i, o, x′) if and only if ((l, [x]), i, o, x)
δ.IdO−−−→ ((l′, [x′]), i, o, x′)

Proof. (if) Part: Assume that (l, i, o, x)
δ
−→ (l, i, o, x′), then x′ = x + δ and by

definition, for every l
G,A,X
−−−−→ l′ and for every δ′ < δ either (i, o) 6|= ProjX(G)

or x + δ′ 6|= ProjI∪O(G). By definition, there exists in RGK(A) a transition

(l, [x])
G′∧G[x′],IdO,∅
−−−−−−−−−−→ (l′, [x′]) such that [[G[x′]]] ⊆ [[ProjI∪0(G′)]] and for every

G” ∈ GdsA(l, [x]), it holds that [[ProjI∪0(G′)]] ∩ [[ProjI∪0(G”)]] = ∅. As x 6|=
G[x′], and (i, o) |= ProjX (G′), a delay transition of amount δ can be fired from

((l, [x]), i, o, x), meaning that the transition ((l, [x]), i, o, x)
δ
−→ ((l, [x]), i, o, x+ δ)

exists. Additionnaly, as x′ = x + δ and x′ |= G[x′], we get the existence of the

urgent transition (of type T1) ((l, [x]), i, o, x+δ)
IdO−−→ ((l, [x′]), i, o, x′) with x′ =

x + δ. In conclusion we have shown that ((l, [x]), i, o, x)
δ
−→ ((l, [x]), i, o, x′)

IdO−−→
((l, [x′]), i, o, x′).

(only if) part: if ((l, [x]), i, o, x)
δ.IdO−−−→ ((l′, [x′]), i, o, x′) then we have ((l, [x]), i, o, x)

δ
−→

((l, [x]), i, o, x′)
IdO−−→ ((l, [x′]), i, o, x′) with x′ = x+δ. Using lemma 3, we get that

(l, i, o, x)
δ
−→ (l, i, o, x′).



Corollary 1. Let δ ∈ R+. Then, (l, i, o, x)
δ
−→ (l′, i′, o′, x′) if and only if it exists

in [[RGK(A)]] a sequence of transitions

((l, [x]), i, o, x)
δ1.IdO−−−−→ ((l′1, [x

′
1]), i′1, o

′
1, x
′
1)
δ2.IdO−−−−→ . . .

δn.IdO−−−−→ ((l′, [x′]), i′, o′, x′)

with δ =
∑n
i=1 δi.

Proof. The proof relies on Lemma 4

Lemma 5. Let A ∈ A(I). Then, (l, i, o, x)
A
−→ (l, i′, o, x) if and only if ((l, [x]), i, o, x)

A
−→

((l′, [x]), i′, o, x)

Proof. (if) Part: Assume that (l, i, o, x)
A
−→ (l′, i′, o, x) with i′ = i[A] can be

triggered in [[A]], then no transition of type T1 can be triggered from (l, i, o, x).

Thus, for every tG = (l
G,A,X
−−−−→ l′), it holds that (i, o) 6|= ProjX (G) or x 6|=

ProjI∪O(G). For contradiction, assume that ((l, [x]), i, o, x) 6
A
−→. In that case,

there exists in RGK(A) an urgent transition tr = (l, [x])
G′,A′,X ′

−−−−−−→ (l”, r) such
that (i, o) |= ProjXG′, ProjI∪O(G′) = G[x] and x |= ProjI∪O(G′). In turns, this

implies the existence of a transition l
G”,A′,X ′

−−−−−−→ l” with ProjX(G′′) = ProjXG
′

and [[ProjI∪O(G′)]] ⊆ ProjI∪O(G”). It entails that there exists a transition

(l, i, o, x)
A′

−→ (l”, i, o[A′], x[X ′ ← 0]) in [[A]] which discards the existence of the

input update transition (l, i, o, x)
A
−→ (l′, i′, o′, x′). So the contradiction.

(only if) Part: Similar to the (if) part

Lemma 6. Let (l, i, o, x) and (l′, i′, o′, x′) be two stable states, then

(l, i, o, x)
AI=⇒ (l′, i′, o′, x′) if and only if ((l, [x]), i, o, x)

AI=⇒ ((l′, [x′]), i′, o′, x′)

Proof. (if) Part: Assume that (l, i, o, x)
AI−−→ (l′, i′, o′, x′), then there exist a set

{Ak | k = 1..n} ⊆ A(O) ∪ {0} and a sequence of transitions in [[A]] such that

(l, i, o, x)
AI−−→ (l0, i0, o0, x0)

A1−−→ . . .
An−−→ (ln, in, on, xn)

W.L.O.G, assume that everyAk belongs⊆ A(O); then there is a set of transitions

{lk−1
Gk,Ak,Xk−−−−−−→ lk | k = 1..n} such that:

– i0 = i[AI ], o0 = o, x0 = x and for every 1 ≤ k ≤ n, ik = io
– for every 0 ≤ k ≤ n− 1, (ik, ok, xk) |= Gk
– for every 1 ≤ k ≤ n, ok = ok−1[Ak] and xk = xk−1[Xk ← 0]
– (ln, in, on, xn) = (l′, i′, o′, x′)

Applying Lemma 5 and Lemma 2 we get the existence of the sequence of tran-

sitions ((l, [x]), i, o, x)
AI−−→ (l0, [x0]), i0, o0, x0)

A1−−→ . . .
An−−→ (ln, [xn]), in, on, xn)

where (ln, [xn]), in, on, xn) = (l′, [x′]), i′, o′, x′). Moreover, according to Lemma 1,
both (l, [x]), i, o, x) and (l′, [x′]), i′, o′, x′) are stable states and finally,

(l, [x]), i, o, x)
AI=⇒ (l′, [x′]), i′, o′, x′).

(only if) Part: Similar to the (if) Part.



Lemma 7. It holds that
(l, i, o, x)

δ
=⇒ (l′, i′, o′, x′) if and only if ((l, [x]), i, o, x)

δ
=⇒ ((l′, [x′]), i′, o′, x′).

Proof. This is a direct consequence of Lemmas 4 and 2 using a construction
similar to the one of the previous lemma.

7 Appendix: Proof of Proposition 3

We give a proof of Proposition 3 that establishes the link between CoReach and
CoReacha. The proposition show that we can use CoReacha instead of CoReach
during the reachability analysis.
Proposition 3 Let G′ ∈ G(I,O) be a constraints over input and outputs vari-
ables. It holds that

(l, i, o, x) ∈ CoReach(l′, G′ ∧ [x′]) iff ((l, [x]), i, o) ∈ CoReacha((l
′, [x′]), G′)

Note that CoReach and CoReacha are least fixpoint of the monotonic opera-
tors Pred and aPred. Then using Lemma 8, Lemma 9, Lemma 10 all presented
below, we will show in Lemma 11 that aPred can be used instead of Pred
when computing predecessors of states. First of all let us make more precise the
computation of predecessors of states of VDTA.

7.1 Predecessors

The semanctics [[A]] of a VDTA A is a Σ − LTS with three kind of transitions.
Then, for each state s = (l, i, o, x) we consider three sorts of predecessors:

– the urgent predecessor Predu is defined by

Predu(l
′, i′, o′, x′) = { (l, i, o, x) | ∃a ∈ A(O) s.t (l, i, o, x)

A
−→T1 (l′, i′, o′, x′)}

– the input-update predecessor Prede is defined by

Prede(l
′, i′, o′, x′) = { (l, i, o, x) | ∃a ∈ A(I)(l, i, o, x)

A
−→T2 (l′, i′, o′, x′)}

Note that by definition (l, i, o, x) ∈ Prede(l
′, i′, o′, x′) iff l = l′, o = o′,∃a ∈

A(I) s.t i′ = i[A] and (l, i, o, x) 6→T1

– the time elapsing predecessor Predδ is defined by

Predδ(l
′, i′, o′, x′) = { (l, i, o, x) | ∃ δ ∈ R+ s.t (l, i, o, x)

δ
−→T3 (l′, i′, o′, x′)}

Note that by definition (l, i, o, x) ∈ Predδ(l′, i′, o′, x′) iff l = l′, i = i′, o = o′,
and ∀0 ≤ δ′ < δ, (l, i, o, x+ δ′) 6→T1

Finally we define

Pred(l, i, o, x) = Predu(l, i, o, x) ∪ Prede(l, i, o, x) ∪ Predδ(l, i, o, x)

For θ ∈ {u, i, δ}, and a set of state Q, we define Predθ(Q) =
⋃

s∈Q Predθ(s).

Note that Predθ : 2S → 2S is monotonic and then Pred : 2S → 2S defined by
Pred(Q) =

⋃

s∈Q Pred(s) is also monotonic. For a constraint G ∈ G(I,O,X)
and a location l, the configuration (l, G) denotes a set of states and it is defined
by (l, G) = {(l, i, o, x) | (i, o, x) |= G}.



7.2 Relation between Pred and aPred

Let G′ ∈ G(I,O) be a constraints over input and outputs variables. We provide
proofs to following lemmas. The proofs use results in Lemma 1, Lemma 2, and
Lemma 5.

Lemma 8.

(l, i, o, x) ∈ Predu(l
′, G′ ∧ [x′]) if and only if ((l, [x]), i, o) ∈ aPredu(l

′, [x′]), G′).

Proof. (if) Part: We assume that (l, i, o, x) ∈ Predu(l′, G′ ∧ [x′]) and we show
(l, [x]), i, o) ∈ aPredu((l′, [x′]), G′). If (l, i, o, x) ∈ Predu(l′, G′ ∧ [x′]) then there

exists A ∈ A(O) and (l′, i′, o,′ , x′) ∈ (l′, G′ ∧ [x′]) such that (l, i, o, x)
A
−→

(l′, i′, o,′ , x′) and by Lemma 2 we have that that (l, [x]), i, o)
A
−→ (l′, [x′]), i′, o′).

It remains to show that there is a symbolic state in Z ∈ aPred(l′, [x′]), G′) such
that (l, [x]), i, o) ∈ Z. By definition,

aPredu((l
′, [x′]), G′) = {(q, ProjX(G′) ∧ ProjV ar(a)(G) | q

G,A,Y
−−−−→U1 (l′, [x′])

∧ProjI∪X(G)[A] ⊆ ProjI(G
′)}

If (l, i, o, x)
A
−→ (l′, i′, o,′ , x′), then there exists tr = l

Gl,A,X−−−−−→ l′ such that (i, o) |=
ProjX(Gl), x |= ProjI∪O(Gl), i

′ = i, o′ = o[A], x′ = x[X ← 0]. As tr exists,

we have that (l, [x])
ProjX (Gl)∧G[x],A,X
−−−−−−−−−−−−−−→ (l′, [x′]). Let Z = ((l, [x]), P rojX (Gl) ∧

Projvar(a)(G
′)), we have that Z ∈ aPred(l′, [x′]), G′). It is not difficult to con-

vince that ((l, [x]), i, o) ∈ Z. As we already have that (i, o) |= ProjX (Gl), it
remains to establish that (i, o) |= Projvar(a)(G

′). This is true as, by hypothesis
we have that (i′, o′) |= G′, (i, o) |= ProjX(Gl), ProjI∪X(Gl)[A] ⊆ ProjI(G′),
i′ = i and o′ = o[A].
(only if) Part: Similar to the (if) Part.

Lemma 9.

(l, i, o, x) ∈ Prede(l
′, G′ ∧ [x′]) if and only if ((l, [x]), i, o) ∈ aPrede((l

′, [x′]), G′)

Proof. (if) Part: We assume that (l, i, o, x) ∈ Prede(l′, G′ ∧ [x′]) and we show
that ((l, [x]), i, o) ∈ aPrede((l′, [x′]), G′). By definition (l, i, o, x) ∈ Prede(l′, G′∧
[x′]) implies that there exists A ∈ A(I), (l′, i′, o′, x′) ∈ (l′, G′ ∧ [x′]) such that

(l, i, o, x)
A
−→ (l′, i′, o′, x′) with l′ = l, i′ = i[A], o′ = o, x′ = x and by Lemma 5

we have that ((l, [x]), i, o)
A
−→ ((l, [x]), i′, o). Now we show that ((l, [x]), i, o) ∈

aPrede((l, [x]), G
′) where

aPrede((l, [x]), G
′) =



(l, [x]),



¬
∨

G∈GdsA(l,[x])

projX (G)



 ∧ ProjI(G
′)





and it is equivalent to show that

(i, o) |= (¬
∨

G∈GdsA(l,[x])

projX(G)) ∧ ProjI (G
′)



Obviously, we have that (i, o) |= ProjI(G′) because (i′, o′) |= G′ and o′ = o. Now
it remains to show that (i, o) |= (¬

∨

G∈GdsA(l,[x]) projX(G)). Observe that for

everyG such that a transition (l, [x])
G,A,∅
−−−−→U1 (l′′, r′′) exists in RGK(A), it holds

that [x] ⊆ ProjI∪O(G) and there is a symbolic transition in A tr = l
Gl,A,Y−−−−−→ l′

such that ProjX(Gl) = ProjX (G). Since (l, i, o, x)
A
−→ (l′, i′, o′, x′), then for

every l
Gl,A,X−−−−−→ l′ it is true that (i, o) 6|= ProjX(Gl) or x 6|= ProjI∪O(Gl). In

particular, for every constraint Gl in the set C = {Gl | l
Gl,A,X−−−−−→ l′ ∧ x |=

ProjI∪O(Gl)} we will have that (i, o) 6|= ProjX(Gl) or equivalently (i, o) 6|=
∧

Gl∈C
ProjX(Gl) that in turn is equivalent to (i, o) |= ¬

∨

Gl∈C
ProjX(Gl). Note

that C = GdsA(l, [x]) and then we get that (i, o) |= (¬
∨

G∈GdsA(l,[x]) projX(G)).

(only if) Part: Similar to the (if) Part.

Lemma 10.

(l, i, o, x) ∈ Predδ(l
′, G ∧ [x′]) if and only if there exists k > 1 such that

((l, [x]), i, o) ∈ aPredkδ ((l
′, [x′]), G′)

Proof. (if) Part: We assume that (l, i, o, x) ∈ Predδ(l′, G′ ∧ [x′]) and we show
that ((l, [x]), i, o) ∈ aPredδ((l′, [x′]), G′). By definition (l, i, o, x) ∈ Predδ(l′, G′∧
[x′]) implies that there exists δ ∈ R+, (l′, i′, o′, x′) ∈ (l′, G′ ∧ [x′]) such that

(l, i, o, x)
δ
−→ (l′, i′, o′, x′) with l′ = l, i′ = i, o′ = o, x′ = x + δ. Let k denote the

distance (or the number of distinct regions) from [x] to [x′]. Then there are δ1,

δ2, . . ., δk in R+ and regions r0, r1,r2, . . ., rk such that δ =
∑k

l=1 δl, r0 = [x],

rk = [x′], rj = [x+
∑j
l=1] and rj = I Succ(rj−1) with j ∈ {1..k}. Now we show

that ((l, [x]), i, o) ∈ aPredkδ ((l, [x]), G
′) where

aPredδ((l, [x
′]), G′) = {((l, [x′]), G′)} ∪ {(q′, P rojX(Gq) ∧G

′) | q′
Gq,IdO,∅
−−−−−−→U2 (l, [x])}

We consider the two cases:

– If k = 1 then [x] = [x′] and we need to show that (l, [x]), i, o) ∈ ((l, [x′]), G′)

or equivalently we show that (i, o) |= G′. Because (l, i, o, x)
δ
−→ (l′, i′, o′, x′)

with l′ = l, i′ = i, o′ = o and [x] = [x′] we have that ((l, [x]), i, o)
δ
−→

((l′, [x′]), i′, o′) meaning that ((l, [x]), i, o) ∈ aPred1δ((l
′, [x′]), i′, o′) and by

hypothesis (i′, o′) |= G′ and i′ = i, o′ = o.
– If k > 1 then by Lemma 4 there exists a sequence of transitions

((l, r0), i0, o0, x0)
δ1,IdO
−−−−→ ((l, r1), i1, o1, x1)

δ2,IdO
−−−−→ . . .

δk,IdO−−−−→ ((l, rk), ik, ok, xk)

and that sequence is such that x0 = x, xk = x′, xl = xl−1 + δl =ij−1 =
ij = i = i′ and oj−1 = oj = o = o′ for every j ∈ {1..k}. This is because the
time-elapsing operation does not change inputs and outputs. As (i′, o′) |= G′

we get that (ij , oj) |= G
′ for every j ∈ {1..k}. Additionnaly each transition

((l, rj−1), ij−1, oj−1, xj−1)
δj ,IdO
−−−−→ ((l, rj), ij , oj , xj) implies that (ij , oj) |=



ProjX(Gl) where Gj is the constraint on the transition (l, rj−1)
Gj ,IdO
−−−−−→

(l, rj) that must exist.

(only if) Part: Similar to the (if) Part.

Lemma 11.

(l, i, o, x) ∈ Pred(l′, G ∧ [x′]) if and only if ((l, [x]), i, o) ∈ aPred((l′, [x′]), G′)

Proof. This is a direct consequence of Lemmas 8, 9 and 10.


