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Geometric Feature Extraction by a Multi-Marked
Point Process

Florent Lafarge, Georgy Gimel’farb and Xavier Descombes

Abstract —This paper presents a new stochastic marked point process for describing images in terms of a finite library of geometric
objects. Image analysis based on conventional marked point processes has already produced convincing results but at the expense
of easy parameter tuning, short computing time, and unspecific models. Our more general multi-marked point process has simpler
parametric setting, yields notably shorter computing times and can be applied to a variety of applications. Both linear and areal
primitives extracted from a library of geometric objects are matched to a given image using a probabilistic Gibbs model, and a Jump-
Diffusion process is performed to search for the optimal object configuration. Experiments with remotely sensed images and natural
textures show the proposed approach has good potential. We conclude with a discussion about the insertion of more complex object
interactions in the model by studying the compromise between model complexity and efficiency.

Index Terms —Object extraction, remote sensing, texture analysis, Stochastic models, Monte Carlo simulations.

✦

1 INTRODUCTION

Probabilistic methods are now widespread in image
analysis. They have proved to be powerful tools to solve
inverse optical problems such as image segmentation or
image restoration [1], [2]. Since the mid-nineties, many
works have extended the initial pixel based approaches
to the concept of object in order to deal with feature
recognition problems. In particular, stochastic models
have shown good potentialities in extracting rectilinear
shapes. Generally, configurations of geometric objects are
sampled from probability distributions defined in config-
uration space, Markov Chain Monte Carlo (MCMC) [3],
[4] being one of the most popular families of samplers. In
various application domains, from 3D reconstruction [5],
[6] to texture modeling [7], [8], [9], the MCMC samplers
are efficient for object extraction in large configuration
spaces from any type of probability distributions.
Stochastic models based on marked point processes
are among the most efficient approaches and have al-
ready led to convincing experimental results in vari-
ous image analysis applications such as extraction of
buildings [11], road markings [13], vascular trees [14],
road networks [12], tree crowns [10] or populations of
birds [15]. The marked point processes, detailed in [16],
exploit random variables whose realizations are con-
figurations of geometrical objects, e.g. rectangles [11],
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Fig. 1. Results of marked point process based models
c©INRIA. Extraction of (from left to right) tree crowns [10],
building footprints [11], and road networks [12].

[13], segments [12], [14], or ellipses [10], [15]. After a
probability distribution measuring the quality of each
object configuration is specified, the maximum density
estimator is searched for by an MCMC technique based
on the birth-and-death sampler [17] coupled with the
conventional simulated annealing [18]. Such processes
allow the description of complex spatial interactions
between the objects. As exemplified in Figure 1, image
representations produced by these stochastic models are
particularly suitable for solving object recognition prob-
lems. However, these models have the following three
drawbacks:

• Lack of generality: Each model is associated with only
a specific application (in all the above mentioned
works, a marked point process is limited to a sin-
gle type of objects with simple geometric shape).
Moreover, the complexity of interactions between
the objects defined in the model makes it impos-
sible to generalize each particular model to another
application.

• Lengthy computational time: Although proposition
kernels are developed to speed up the process, the
birth-and-death sampler remains very slow, espe-
cially at low temperatures. For example, the result
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presented in Figure 1-center has been obtained in
more than three hours on a 3 GHz processor.

• Trial-and-error parameter tuning: Many parameters
(up to ten in most cases) are to be used to define the
interactions. They are tuned by trial and error since
parameter estimation techniques do not efficiently
work with such large configuration spaces. This
procedure is long and complex since a Monte Carlo
simulation has to be used at each iteration of the
tuning.

This paper proposes a new generalized marked point
process called by extension a multi-marked point process.
It provides results that approach by accuracy those
obtained with models based on the conventional marked
point processes [10], [11], [12], [13], [14], [15], but pro-
duces these results in a shorter time and can be applied
to a large range of applications without changing the un-
derlying model. Our proposal modifies the conventional
marked point processes as follows:

• Joint sampling of multiple objects: The process must
jointly sample different types of geometric objects
(e.g. linear and areal objects such as segments and
polygons) in order to extend the level of generality.

• Constrained object interactions: The interactions be-
tween the objects must be simplified and reduced
to only the essential ones in order to (i) significantly
decrease the number of tuning parameters, (ii) ex-
tend the level of generality by avoiding specific
interactions, and (iii) use gradient descent based
sampling.

• Introducing diffusion dynamics: Diffusion dynamics
would allow a significant acceleration of the con-
vergence. The conventional marked point process
based models cannot use such a dynamics because
the complexity of their probability distributions
(usually gradients of their Gibbs energy (see section
2.2) do not satisfy the Lipschitz continuity condi-
tion [19]). The Jump-Diffusion processes introduced
by Grenander et al. [20] represent a class of ran-
dom samplers which efficiently combine both Monte
Carlo techniques and diffusion dynamics.

This paper extends the work we presented in [21] by
detailing both the multi-marked point process model
and the optimization technique, as well as presenting
new results and comments on various remote sensing
applications and texture descriptions. The paper is orga-
nized as follows. Section 2 overviews the marked point
processes and proposes their extension to the multi-
marked ones that deal with the different object types.
Section 3 introduces a Gibbs energy model adapted to
different types of geometric objects specified by a chosen
mark library. The model is sampled by a Jump-Diffusion
process detailed in Section 4. Experimental results for
remote sensing and texture description problems are
given in Section 5. Section 6 proposes a discussion about
the insertion of more complex object interactions in
the model by studying the compromise between model

complexity and efficiency. Basic conclusions are outlined
in Section 7.

2 POINT PROCESSES AND MARKS

The marked point processes have been introduced in
image processing by Baddeley and Van Lieshout [22],
and developed and extended further in [16], [23], [24].
These stochastic models can be considered as an exten-
sion of conventional Markov random fields [25] such that
random variables are associated not with pixel values
but with geometrical shapes describing the image. An
overview of marked point processes is provided below.

2.1 Point processes

Let X be a point process living in a continuous bounded
set K = [0, Xmax]× [0, Ymax] supporting an image. X is a
measurable mapping from an abstract probability space
(Ω,A, P) to the set of configurations of points of K:

∀ω ∈ Ω, xi ∈ K,X(ω) = {x1, ..., xn(ω)} (1)

where n(ω) represents the number of points associated
with the event ω. The homogeneous Poisson process is the
reference point process. Let ν(.) be a positive measure
on K. A Poisson process X with intensity ν(.) verifies
the two following properties:

• For every Borel set B ∈ K, the random variable
NX(B) defining the number of points of X in the
Borel set B follows a discrete Poisson distribu-
tion with the mean ν(B), i.e. P (NX(B) = n) =
ν(B)n

n! e−ν(B).
• For every finite sequence of non intersecting
Borelian sets B1, ..., Bl, the random variables
NX(B1), ..., NX(Bl) are independent.

The Poisson process induces a complete spatial random-
ness, given by the fact that the positions are uniformly
and independently distributed. Its role is analogous to
Lebesgue measures on R

d.

2.2 Density and Gibbs energy

Complex point processes introducing both consistent
measurements with data and interactions between points
can be defined by specifying a density with respect to
the distribution of a reference Poisson process. Let us
consider an homogeneous Poisson process with intensity
measure ν(.), and let h(.) be a non-negative function on
the configuration space C. Then, the measure µ(.) having
a density h(.) with respect to ν(.) is defined by:

∀B ∈ B(C), µ(B) =

∫

B

h(x)ν(dx) (2)

A point process can be specified through a Gibbs energy
U(x). The density h(x) of a configuration x is formulated
using the Gibbs equation:

h(x) =
exp−U(x)

Z
(3)
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where Z is a normalizing constant: Z =
∫

x∈C
exp−U(x).

Generally, a Monte Carlo Markov Chain (MCMC) sam-
pler coupled with a simulated annealing is used to find
the maximum density estimator x̂ = arg max h(.) (this
estimator also corresponds to the configuration minimiz-
ing the Gibbs energy U(.), i.e. x̂ = arg min U(.) ). This
optimization technique is particularly interesting since
the density h(.) does not need to be normalized, and the
complex computation of the normalizing constant Z is
then avoided.

2.3 Marked and Multi-marked point processes

In order to model images in terms of geometrical fea-
tures, it is possible to extend a point process by adding
specific marks that associate a parametric object to each
point. In many cases, the point corresponds to the center
of mass of the object. A marked point process in S = K×M

is a point process in K where each point is associated
with a mark from a bounded set M , for example, a set
of radius values in case of disks.
The conventional marked point processes [10], [11], [12],
[13], [14], [15] suffer from a lack of generality: they are
limited to a single type of objects since the dimension
of the mark space M is fixed (e.g. rectangles [11], [13],
segments [12], [14], or ellipses [10], [15]). Ortner et al.
[26] proposed to overcome this drawback by consider-
ing two marked point processes each using a different
type of objects (rectangles and segments). The two pro-
cesses are sampled jointly by a Markov Chain Monte
Carlo algorithm. However, in this approach, both energy
formulations and simulated annealing tunings become
too complex to manage since cooperative interactions
between both processes must be taken into account. This
model cannot be adapted in practice to deal with a large
number of object types.

Fig. 2. Realizations of (from left to right) a point process,
a marked point process of rectangles, and a multi-marked
point process of rectangles/segments/circles.

We propose to generalize the conventional marked point
process framework in order to jointly sample various
types of geometric objects. To do so, we consider a
finite library of marks allowing the definition of linear
and areal features. The mark space M associated with
this library is then specified as a finite union of mark
bounded subsets Mq:

M =

Ns⋃

q=1

Mq (4)

where each subset Mq corresponds to one of the Ns

specific shape types. In other words, the associated
marked point process is able to deal with objects having
different numbers of control parameters. Such a process,
that we can call by extension a multi-marked point process,
implies significant changes with respect to the conven-
tional approach such as restrictions on the data term
(e.g. the measurement must be independent of the object
type), the setting up of general interactions between
the various object types, or the introduction of new
propositional functions to switch the object type during
the sampling.

3 PROBABILISTIC GIBBS MODEL

3.1 Mark library

The library of marks allows the representation of seven
simple geometric patterns shown in Figure 3. Segments,
lines, and line ends are specific to linear structures
whereas rectangles, bands, band ends, and circles corre-
spond to areal descriptors. All the objects have between
three and five control parameters, including positional
coordinates (cx, cy) of the object’s center that are speci-
fied by the point process in K. The other parameters,
detailed in Table 1, represent the marks of the object
types (e.g. the radius for circles; the length, width, and
orientation for bands and rectangles). The parameters
are defined in continuous domains, except for the object
orientation defined in a discrete domain. The chosen
set includes all basic objects used in the conventional
marked point process based models. Thus, it is sufficient
to produce detailed representations of a large range of
scenes in terms of their linear and areal components.

Fig. 3. The library of marks.

TABLE 1
Parameter definition of the marks: s-the length; θ-the

orientation angle; r-the radius; L, l-the height and width
respectively.

object type marks definition domains

segment s, θ [smin, smax] × [0, π]
line s, θ [smin, smax] × [0, π]

line end s, θ [smin, smax] × [0, 2π]
circle r [rmin, rmax]
rectangle L, l, θ [Lmin, Lmax] × [lmin, lmax] × [0, π]
band L, l, θ [Lmin, Lmax] × [lmin, lmax] × [0, π]

band end L, l, θ [Lmin, Lmax] × [lmin, lmax] × [0, 2π]

3.2 Gibbs energy

Because the number of objects in any particular scene
is unknown, and the objects have different numbers of
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parameters, the configuration space C of our problem
is defined as an union of subspaces Ck, each subspace
containing fixed numbers of objects of each type. A
probability distribution P on the configuration space C is
defined as a mixture of Pk distributions on the subspaces
Ck. We assume that unnormalized distributions Pk on Ck

have Gibbs densities of the form e−Uk(x) where Uk is a
Gibbs energy associated with the configuration subspace
Ck (see Section 2.2).
The energy Uk(x) takes into account both the consistency
Dk(x) between the objects and the image data and the
regularization constraint Rk(x) for the positioning of the
objects with no overlaps:

Uk(x) = Dk(x) + Rk(x); x ∈ Ck (5)

3.2.1 The data coherence term

Dk(x) accumulates the local energy associated with each
object xi of the configuration x:

Dk(x) =
∑

i

d(xi) (6)

where d(xi) is a measure of coherence of the object xi

with respect to the data (i.e. an image). This measure d(.)
must satisfy two important conditions:

• Independence of the object type: In particular, the
object area must be taken into account in order to
not favor linear or areal object types.

• Selection of ”attractive” objects: i.e. the well-fitted
objects must have a negative local energy (this
feature is very important in the models using birth-
and-death processes since it partly defines the object
density in the scene).

In addition, d(.) must be differentiable and quickly
computable in order to use diffusion dynamics during
the optimization. We propose a function that is derived
from the Mahalanobis distance and includes a threshold
θattr > 0 that makes some objects attractive if the
function is negative:

d(xi) =

{ √
σ2
in+σ2

out+ǫ

S(min−mout)2
− θattr if min 6= mout

∞ otherwise
(7)

Here, (min, σin) and (mout, σout) represent the mean pixel
intensities and standard deviations inside and outside
the object, respectively (i.e. the blue and red areas on
Figure 4). The width of the outside domain is fixed to
2 pixels in practice. S is the whole inside and outside
area, and ǫ > 0 is an infinitesimal value allowing d(.)
to be differentiable. The threshold θattr, being the only
parameter of the model, allows to select the attractive
objects and tune the sensitiveness of the data fitting. This
measure of coherence is based on signal homogeneity
criteria inside and outside the object (See Figure 4).
It could be improved by taking into account specific
information such as contour accuracy or noise modeling.
Nonetheless, this measure produces good experimental
results as we can see on Figure 5, and the introduction

Fig. 4. Coherence measure between the object and the
image data.

of additional criteria would strongly increase the com-
puting time.
In addition, two variants of this measure are proposed
in order to introduce radiometric information on target
objects. By taking min > mout (respectively min < mout)
instead of min 6= mout in the definition domain of d(.)
(see Eq. 7), we can modify the measure in order to favor
bright (respectively dark) objects with respect to the
background. This variant of d(.) will be called dbright(.)
(respectively ddark(.)) and used for various experiments
in order to obtain a more specific extraction of target
objects. Figure 5 shows two sets of signal responses with
disks from the d, dbright and ddark measures. The first
set corresponds to an ideal signal simulation. The black
disk responses are slightly stronger than the white ones
since the uniform bright grey background is closer to the
white color than the black one. The second set shows the
robustness of these measures with respect to noise and
blur.

dbright(xi) =

{ √
σ2
in+σ2

out+ǫ

S(min−mout)2
− θattr if min > mout

∞ otherwise
(8)

ddark(xi) =

{ √
σ2
in+σ2

out+ǫ

S(min−mout)2
− θattr if min < mout

∞ otherwise
(9)

Fig. 5. Responses of (from left to right) d, dbright and ddark

measures for a disk object on (top) exact and (bottom)
noise and blur corrupted simulations.

3.2.2 The regularization constraint

Rk(x) introduces prior knowledge on the object layouts
by taking into account pairwise interactions between the
objects. The conventional marked point processes use
strong structural information by defining complex and
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specific interactions such as inter-connections or mutual
alignments of the objects [11], [12], [13], [14]. These com-
plex interactions result in the above-mentioned critical
problems (Section 1), such as trial-and-error tuning of
many parameters. More generally, the introduction of
such structural information in stochastic models requires
special learning techniques such as the linear junction
model presented in [27] or advanced thresholding meth-
ods such as a contrario approaches [28].
To avoid these problems, we limit the interactions to the
essential ones for developing a general model of the non-
overlapping objects. Strong structural information can
then be introduced in a subsequent analysis by develop-
ing post-processing in order to connect the objects found.
This term is expressed as follows:

Rk(x) =
∑

xi,xj∈x

(eκg(xi,xj) − 1) (10)

where g(xi, xj) taking values in [0, 1] quantifies the rela-
tive mutual overlap between the objects xi and xj , and
κ is a big positive real value (κ = 100) which strongly
penalizes large overlaps. Under small overlaps between
two objects, this prior will weakly penalize the global
energy. But if the overlapping is high, this prior will act
as a hardcore (i.e. a hard constraint: the prior energy
takes a very high value), and the configuration will be
practically banned.

4 OPTIMIZATION BY JUMP-DIFFUSION

The search for an optimal configuration of objects is
performed using the Jump-Diffusion process introduced
by Grenander et al. [20], and used successfully in var-
ious applications such as target tracking [29], [30] and
image segmentation [31]. This process combines the
conventional Markov Chain Monte Carlo (MCMC) al-
gorithms [4] and the Langevin equations [19]. Both
dynamics play different roles in the Jump-Diffusion
process: the former performs reversible jumps between
the different subspaces Ck, whereas the latter conducts
stochastic diffusion within each continuous subspace.
The global process is controlled by a relaxation tem-
perature T depending on time t and approaching zero
as t tends to infinity. The estimation of the simulated
annealing parameters are detailed in Section 4.3. The
diffusions are interrupted by jumps following a discrete
time step ∆t (in our experiments, ∆t = 50). At the
very low temperature, the diffusion process plays a more
important role: the time step is increased (∆t = 100) to
speed up the convergence.

4.1 Jump dynamic

Reversible jumps between the different subspaces are
performed according to families of moves called propo-
sition kernels and denoted by Qm where m represents
the family of moves. The jump process performs a move
from an object configuration x ∈ Ck to y ∈ Ck′ according

to a density Qm(x → y). Then the move is accepted with
the following probability:

min

(
1,

Qm(y → x)

Qm(x → y)
e−

(U
k′ (y)−Uk(x))

T

)
(11)

We use two different families of moves in order to jump
between the subspaces.

• Birth-and-death kernel QBD allows for adding or re-
moving an object from a current object configura-
tion. These transformations corresponding to jumps
into the spaces of higher (birth) and lower (death)
dimension are theoretically sufficient to visit the
whole configuration space [16], [17]. In practice,
we choose to add or remove an object following
a Poisson distribution. If an object is added, its
type is randomly chosen and its parameters are
chosen according to uniform distributions over the
parameter domains.

• Switching kernel QS allows us to switch the type
of an object (e.g. a circle by a rectangle). Contrary
to the previous kernel, this move does not change
the number of objects in the configuration. How-
ever, the number of parameters can be different
(e.g. three parameters for a circle are substituted by
five parameters for a rectangle). This kernel creates
bijections between the different types of objects [4].

The computation of both the kernels is detailed in Ap-
pendix. Usually the jump processes [6], [10], [11], [12],
[13], [14], [15] use a perturbation kernel that allows
the exploration of each subspace by modifying only
parameters of the objects. In our case, this kernel is
substituted by a diffusion dynamic which is clearly faster
since the exploration of the subspace is directed by the
energy gradient.

4.2 Diffusion dynamic

The diffusion process between jumps controls the dy-
namics of the object configuration in their respective
subspaces. Stochastic diffusion (or Langevin) equations
driven by Brownian motions depending on the relax-
ation temperature T are used to explore the subspaces
Ck. If x(t) denotes the variables at time t, then

dx(t) = −
dUk(x)

dx
dt +

√
2T (t)dwt (12)

where dwt ∼ N(0, dt2). At high temperature (T >> 0),
the Brownian motion is useful in avoiding local pits. At
low temperature (T << 1), the role of the Brownian
motion becomes negligible and the diffusion dynamics
acts as a gradient descent. Details concerning the energy
gradient computation are given in Appendix.

4.3 Simulated annealing setting

Simulated annealing theoretically ensures convergence
to the global optimum from any initial configuration
using a logarithmic decrease of the temperature [32]. In
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practice, we use a faster geometric decrease which gives
an approximate solution close to the optimum [33]:

Tt = To.α
t (13)

where α and T0 are, respectively, the decrease coefficient
and the initial temperature. The decrease coefficient α

can vary and be adapted according to the variation of the
energy [34][35]. However, the time savings are usually
relatively minor in practice. That is why we prefer using
a constant decrease coefficient. (in our experiments, α ∈
[0.9999, 0.99999]). T0 is estimated through the variation of
the energy U on random configurations. More precisely,
T0 is chosen as twice the standard deviation of U at
infinite temperature [36]:

T0 = 2.σ(UT=∞) = 2.
√

〈U2
T=∞

〉 − 〈UT=∞〉2 (14)

where 〈U〉 is the means of the energy of the samples
(several thousands of samples are necessary to obtain
a good estimation - it is negligible with respect to the
number of iterations of the optimization process).

5 EXPERIMENTS

The proposed model has been tested on three different
types of problems: population counting (tree crown and
bird detection from aerial images), structure reconstruc-
tion (road network and building extraction from aerial
data), and natural texture representation. The remotely
sensed images in the two first sets of experiments are the
same as in the conventional marked point process based
methods [10], [11], [12], [15]. Although the presented
results are generally slightly less accurate than those
obtained by the specialized marked point processes, the
proposed general model allows us to deal uniformly
with various problems and in much shorter time.

5.1 Population counting

Figure 6 presents a result of the tree crown extraction
by our multi-marked point process model. The main
goal in this application is to count trees in large forest
scenes for extracting statistics on the density of the
stem. Although the shapes of trees are only roughly
approximated by circles and rectangles, the trees are
accurately detected. Even if no ground truth is available
for this application, the accuracy of the tree locations
is practically the same as obtained by [10] with elliptical
objects to represent the trees. This new model allows the
reduction of computational time by almost a factor three
compared to [10] (77sec vs 212sec for the 240× 350 pixel
image in Figure 6).
The evolution of the object configuration during the
jump-diffusion process is shown in Figure 7. At the
beginning of the algorithm, i.e. when the temperature
is high (red), the process explores the subspaces. Step by
step, the configurations with a low energy are favored.
At this exploration stage, the jump dynamic plays an
important role by specifying both the number and the

Fig. 6. Tree crown extraction. (the upper row, from left to
right) The original aerial image c©IFN, our result, and the
result by [10]; (the bottom row) the associated crops.

Fig. 7. Optimization process. (the upper row) Evolution of
the object configuration from the initial temperature (red)
to the final one (blue); (the bottom row) graphs of energy
and number of objects in function of the iterations during
jump-diffusion process.

type of objects. At low temperature (blue), the object
configuration belongs to a subspace being close to the
optimal one, and the number of objects in the scene does
not evolve very much. The diffusion dynamic is useful
at this stage mainly to perform a detailed adjustment
of the object parameters. This dynamic is clearly faster
than a single jump process with a perturbation kernel
since the exploration is directed by the gradient of the
energy (and not by a random search). Graphs in Figure
7 describe how the energy and the number of objects
change in function of the number of iterations.
The bird detection problem is similar to the tree crown
extraction: counting Flamingos in large colonies during
the breeding season from large aerial images. Figure
8 presents results on a dense bird population which
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Fig. 8. Bird detection. (the upper row, from left to right)
The original aerial image c©Tour du Valat, our result, and
ground truth; (the bottom row) the associated crops.

are qualitatively close to those obtained in [15] using a
specialized marked point process with elliptical objects.
The missed bird rate 3.7%, in Table 2, is comparable to
the rate 2.1% obtained by the specialized bird detection
model [15]. The missed birds mainly correspond to cases
where a proposed object overlaps two close birds as
we can see on the cropped result presented in Figure
8. The over-detection rate is quite low (< 3%) in both
the models. Our model allows us to gain 25% in terms
of computational time compared to [15] that uses an
improved Birth-and-Death algorithm specially designed
for the population counting problems.
The efficiency of the diffusion dynamics in our model
is confirmed by experiments that substitute the diffu-
sion stage by a uniform perturbation kernel added to
our jump dynamics. Results in Table 2 underline that
the diffusion dynamics is clearly both faster and more
accurate than the use of a uniform perturbation kernel.

TABLE 2
Bird extraction evaluation in terms of detection rates and

computing time (image size: 560 × 496 pixels).

missed over-detected computing
time

model with 3.7% 2.9% 290 sec
Jump-Diffusion
model with 6.2% 4.4% 840 sec
Jump

specialized bird 2.1% 2.0% 380 sec
detection model[15]

5.2 Structure extraction

Figures 9 and 10 present results of line network and
building extractions from aerial images. The obtained
structures are globally slightly less accurate than those
obtained by the specialized marked point processes. The
road network extraction results cannot be considered
as a final representation since the detected objects are
not connected (contrary to [12] where special complex
interactions had been defined to link the segments).

However, the detected objects are mainly lines and bands
which are well fitted to roads or rivers. These objects
provide a rough pattern of the network and are suf-
ficiently informative to make it possible to extract the
global network on the basis of their subsequent analysis
(e.g. post-processing based on vectorization in order to
connect the objects found). The results in Figure 9 are
similar to those obtained by the active contour model
presented in [37]. Our method is clearly faster than both
the specialized marked point process and active contour
models [12], [37] (See Table 3). Moreover, these two
models have a sensitive and complex parameter tuning
(more than 10 parameters for each one) compared to our
algorithm.

Fig. 9. Line network extraction. (from top to bottom) Aerial
images c©CNES/BRGM/IGN, the ground truth, results by
our method, by [12], and by [37].

The building extraction is also workable but the object
localization remains very rough compared to the spe-
cialized model in [11]. This is mainly because of the
over simplified data term in Eq. (7) that accounts for
signal homogeneity inside and outside the object. Such
a term is not relevant to this application since most of
the building areas are heterogeneous due to non-flat
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TABLE 3
Computing time for the line network extraction results

presented on Figure 9 with a 2Ghz processor.

images our model mpp model[12] hoac model[37]
road (left) 235 sec 75 min 30 min

512 × 512 pix
river (middle) 107 sec 45 min 10 min
364 × 320 pix
road2 (right) 380 sec 155 min 60 min
892 × 652 pix

roofs. A term based on border discontinuity could be
more efficient for this specific application. However, the
proposed method detects main elements of the buildings
and is clearly faster than the specialized marked point
process in [11]: 30 minutes vs 2 hours on a 0.3 km2 dense
urban area using a 3 GHz processor.

Fig. 10. Building extraction. (from left to right) Peri-urban
and dense urban aerial images c©IGN, the associated
DEMs, and our results.

5.3 Texture representation

We also tested the proposed method on a number of
natural textures in order to evaluate its potentialities
for representing them by geometric objects. Representing
textures is a partial texture reconstruction where we aim
to extract texture components of interest so that they
can be visual or/and statistically identified. The choice
of the data measure (See Section 3.2.1) is important
then for extracting the structures of interest. Such de-
scriptions provide useful information for discriminated
textures, even if it remains less detailed than texture
synthesis methods [7], [8], [9]. The results (some of
them are presented in Figure 11) are quite promising.
The obtained descriptions reconstruct the overall rough
structure and reveal interesting fine details on a large
range of textures. Various spatially homogeneous and
heterogeneous textures are successfully represented even
with a chosen simple library of objects. Some natural
textures perceived under spatially variant illumination
and reflectance (see e.g. the metal grid and tile roof
examples) are usually difficult to describe, and often

Fig. 11. Examples of natural texture representations in
terms of geometrical objects.

require specific advanced techniques such as in [38].
Our method is particularly interesting for representing
such textures since the fitting of objects does not depend
on illumination effects. Various scales of details can be
extracted in the texture structures (see e.g. the piano
keyboard where the black keys are described by bands
and the white key contours are represented by lines). The
four last examples in Figure 11 show the limits of our
model with respect to structure descriptions. In order to
improve such representations, it is necessary to develop
a more general energy function taking into account, in
particular, typical object deviations and strong noise in
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the textures (see e.g. the stone ornament and rose results).
In terms of occurrence, lines and bands are the most
frequent object types in the obtained texture represen-
tations. They allow us to describe a large range of
linear and areal structures. Rectangles and circles, which
are bounded areal descriptors, are mainly selected to
describe isolated components of textures. In particular,
these two object types lead to convincing results on
counting population problems. The three other types are
less frequent, and are used in more specific structures
such as metal grids.
Figure 12 presents both the result obtained for an im-
age with five different textures and the corresponding
evolution of the object configuration during the jump-
diffusion process. Even if the objects are disconnected
(see e.g. brick wall or rays) and not correctly selected
in some locations (see e.g. some rectangles in the disk
grid), the obtained description in terms of objects clearly
shows five different object layouts, and underlines good
potentialities for subsequent texture discrimination and
segmentation. In particular, it would be interesting to
combine such object-based representations with Markov
Gibbs random field models which are mostly used on
the pixel-wise intensities [39] and thus do not explicitly
take into account shapes and relative locations of de-
picted characteristic objects. In order to deal with more
complicated textures and have a description level similar
to filter bank methods [40], affine-invariant descriptors
[41], or wavelet based parametric models [42], the object
library has to be extended by introducing new relevant
shapes, especially general curved shapes or/and micro-
structure elements [43]. In this perspective, learning of
dominant micro-structure elements such as e.g. in [44] is
promising for the automatic selection of relevant objects
from training images.
Figure 13 shows a comparison with the multi-layer
texton model presented in [8]. Our approach provides
a good representation of the textures with few false
alarms as we can see for example on the crack image
where many small lines have been extracted. However
it remains limited in terms of description compared to
the multi-layer texton model which allows the complete
reconstruction of textures by sampling different layers
of texture components. The interesting point consists in
comparing both the models on textures composed of a
foreground layer and a homogeneous background. In
this case, our model can reconstruct the textures (see the
third row on Figure 13 where both the extracted objects
and background have been colored using the associated
intensity means in the texture image), and the obtained
results are very satisfactory for a non specialized texture
reconstruction model. The localization accuracy we ob-
tained is similar to that of the texton model as we can
see for example on the crack results. However, the brick
results show that the object connection quality of the
texton model is clearly better than the one we obtain.
In Section 6, we propose additional object interactions
which will allow the improvement of this point. The

Fig. 12. Texture representation. (the upper row, from left
to right) Original image and our result; (the middle row)
graphs of energy and number of objects in function of
the iterations during jump-diffusion process; (the bottom
row) evolution of the object configuration from the initial
temperature (red) to the final one (blue).

Fig. 13. Comparison with the texton model [8]. (from top
to bottom) Textures c©UCLA, our results, our associated
reconstructed textures, the foreground and background
texton extractions by [8] and the associated reconstructed
textures c©UCLA.
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cheetah skin results underline the limits of our model
when several texton layers are required for describing
various texture components (i.e. big dark and small
grey spots). On the contrary, the texton model leads to
an accurate reconstruction on such a multi-component
texture.
Figure 14 presents the impact of the model parameter
θattr on the results. This parameter, which tunes the
sensitiveness of data fitting, plays an important role in
the final number of objects describing the image. A low
value (e.g. 3.5 or 4.5) provides representations containing
few accurately localized objects. On the contrary, a high
value (such as 6.5 or 7.5) gives much more dense de-
scriptions but with many roughly detected objects. In our
experiments, θattr has been tuned in the interval [5.1, 5.8]
which constitutes a good compromise between the level
of details of the representation and the accuracy of the
object locations. An automatic estimation of θattr from a
given image represents a challenging but interesting per-
spective. Several kinds of information such as the signal
to noise ratio or signal co-occurrence repetitiveness in
the image could be taken into account for this estimation.
Figure 14 also shows results using different data fitting
measures.

Fig. 14. Impact of the model parameters. (the upper rows)
Impact of θattr on a natural texture representation; (the
bottom row) impact of the dbright and ddark measures.

6 INSERTION OF MORE COMPLEX OBJECT IN -
TERACTIONS

As mentioned in Section 3.2.2, introducing specific regu-
larization constraints directly impacts on three points: (i)
more complex parameter tunings, (ii) higher computing
times, and (iii) loss of the model generality level. How-
ever, such interactions bring helpful structural knowl-
edge in some applications and can allow us to obtain
better results by reducing the True Negatives and the
False Positives. In this section, we discuss the interest of

inserting new types of object interactions in the energy
model (see Eq. 5) and analyze their efficiency on various
applications.

6.1 New object interactions

According to the experiments realized in Section 5, some
results suffer from both a lack of object connection
and an approximated object alignment, especially for
line network extraction and texture representation. We
propose to introduce these two additional interactions
in our energy model in the following.

6.1.1 Inter-connection
Such an interaction type can be efficiently modeled from
the non-overlapping constraint defined in Section 3.2.2
by favoring the connected objects in keeping the high
overlaps penalize. To to so, we introduce the parameter
γattr > 1 which makes attractive (respectively repulsive)
weak (resp. high) object overlaps. The modified prior is
expressed as follows:

Rc
k(x) =

∑

xi,xj∈x

(eκg(xi,xj) − γattr) (15)

γattr controls the balance between attraction and repul-
sion in function of object overlapping. For example, if
we want to favor configurations with an overlap up to
20%, we will take γattr = exp 0.2κ.

6.1.2 Mutual alignment
This term aims at penalizing the orientation changes of
neighboring elements. It is given by:

Ra
k(x) =

∑

xi,xj∈x

(eκg(xi,xj) − 1) + λ
∑

xi,xj∈x

A(xi, xj) (16)

where A(xi, xj) measures the mutual alignment of the
objects xi and xj using a L 1

2
norm. A(., .) takes values

in [0, 1] and λ is a parameter weighting the importance of
the object alignment with respect to the non-overlapping
criterion. When xi or xj is a rotation-invariant object
(i.e. a circle), we impose A(xi, xj) = a where a ∈ [0, 1]
is a parameter allowing us to tune the occurrence of
rotation-invariant object with respect to non rotation
invariant objects. This additional parameter is necessary
for modeling alignment constraints when the object li-
brary contains rotation-invariant objects.

6.1.3 Inter-connection and mutual alignment associa-
tion
This prior is a simple combination of both the interaction
types detailed above:

Rac
k (x) =

∑

xi,xj∈x

(eκg(xi,xj) − γattr) + λ
∑

xi,xj∈x

A(xi, xj)

(17)
These three priors remain more general than those used
in the specialized marked point processes and are mod-
eled by less parameters. In addition, they are differen-
tiable which is necessary to perform diffusion dynamics.
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Compared to the original model presented in Section
3, the new energies are more complex and additional
computing time is required to optimize them.

6.2 Model complexity and efficiency

The prior terms detailed above have been tested on
various applications. Figure 15 presents the obtained
results and comparisons to the initial model and the
conventional Canny edge detector [45]. Even if the
Canny detector suitably extracts shapes of interest in
the presented textures, such an approach is limited to
pixel analysis and does not take into account the object
concept. Such an edge extraction is interesting to evalu-
ate the complexity of the presented images in terms of
boundary accuracy, noise and shape irregularity.
Simulations without data (See first column on Figure
15) show right behaviors of the proposed priors in
accordance with the expectation. The inter-connection
term, Rc

k, allows us to slightly improve the results by
reducing the false alarms but remains insufficient for
decreasing the true negative (See the road extraction
result for example). This term is clearly not adapted to
population counting problems as we can see on the tree
extraction result where objects are enlarged to be con-
nected together. On the contrary, the mutual alignment
term gives an interesting result for this application and
allows us to extract more efficiently such a grid structure
by regularizing the object orientation. The interest of
Rc

k is quite limited for the others applications. The last
term, Rac

k , gives the best results for almost all the tested
images. The combination of connection and alignment
constraints strongly reduces the number of false positive
and true negative as we can see on road and blood
vessel extraction. This prior also brings accurate texture
representations and allows us to clearly improve the
results on complex cases such as the flower. Table 4
evaluates the efficiency of these three priors in terms
of parameter tuning and computing time. The term
Rac

k , which gives the best results, also corresponds to
the most complex parameter tuning and the highest
computing time. Depending on the application context,
the initial model is preferred since the tuning of the four
parameters by trial and error requires time and expertise.

TABLE 4
Prior efficiency evaluation.

interactions parameters extra computing time
Rc

k
, connection θattr , γattr 32%

Ra

k
, alignment and θattr , λ, a 48%
non-overlapping
Rac

k
, connection θattr , γattr , λ, a 91%

and alignment

7 CONCLUSIONS

The proposed new approach based on a multi-marked
point process model allows the representation of images

in terms of simple geometric features. Although the
obtained results are generally slightly less accurate than
those provided by the specialized marked point process
models, our approach possesses several interesting char-
acteristics. First, it is more general and works efficiently
on various applications such as counting population
problems, structure reconstruction from remotely sensed
images, and natural texture representation whereas the
conventional approaches needed to exploit specialized
models for each problem. Moreover, we have proposed
an efficient Jump-Diffusion algorithm adapted to marked
point processes that allows us to strongly reduce com-
putational time with respect to the classical jump tech-
niques. Finally, we have decreased the number of tuning
parameters by formulating a global model and have
discussed the compromise between model complexity
and efficiency by analyzing the impact of additional
object interactions in the model.
However, our approach is limited by the content of
the mark library: the current set in Figure 3 cannot in
principle provide relevant representations of complex
structures such as multiple junctions or random curved
shapes. In the future, we will extend the mark library
and develop probabilistic models and techniques for
automatic selection of relevant ”basic” objects from a
given collection of training images. Another perspective
would be to improve the data term of our model by
using both a more efficient differentiable and quickly
computable measure which takes into account specific
information such as noise models or contour accuracy,
and to provide an automatic estimation of the data fitting
sensitiveness parameter.

APPENDIX

Computation of the birth-and-death kernel

Let us consider a birth, chosen with a probability pb,
from object configurations x = (xp)p∈[1,n(x)] to y =
x ∪ {xn(x)+1} where xn(x)+1 is the new added object
chosen randomly on the object space. The ratio of the
kernels in the acceptance rate equation (see Eq. 11) is
then expressed by:

QBD(y → x)

QBD(x → y)
=

pd

pb

ν(K)

n(x) + 1
(18)

where pb (respectively, pd = 1 − pb) is the probability of
choosing a birth (respectively, a death), and ν(.) is the
intensity of the reference Poisson process (See Section
2.1). In our model, the probabilities of choosing a birth
and a death are the same (i.e. pd = pb).
Let us consider now a death from object configurations
x = (xp)p∈[1,n(x)] to y = x−{xi} where xi is the removed
object chosen randomly in the object configuration x. By
the reversible assumption, the kernel ratio of the death
is given by:

QBD(y → x)

QBD(x → y)
=

pb

pd

n(x)

ν(K)
(19)
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Fig. 15. Efficiency of the various interactions. (from top to down) Images, Canny edge detector, results using the
original model, the connection, the alignment, and the connection/alignment interaction priors. The number of objects
on simulations without data (first column) has been voluntarily upper bounded in order to avoid infinite grouping of
objects and then to have comprehensible results.

Computation of the switching kernel

Let us consider a jump from an object xi of type Tm (for
example, a circle) to an object x̂i of type Tn (for example,
a rectangle) such that the current object configuration
x = (xp)p∈[1,n(x)] is perturbed into the configuration
y = x − {xi} ∪ x̂i. We then create a bijection between
the parameter spaces of the object types Tm and Tn:
xi is completed by auxiliary variables umn simulated
under a law ϕmn(.) to provide (xi, umn), and x̂i by
vnm ∼ ϕnm(.) into (x̂i, vmn) such that the mapping Ψmn

between (xi, umn) and (x̂i, vmn) is a bijection :

(x̂i, vmn) = Ψmn(xi, umn) (20)

The ratio of the kernels in the acceptation ratio (see Eq.
11) is then expressed by:

QS(y → x)

QS(x → y)
=

Jnmϕnm(vnm)

Jmnϕmn(umn)

∣∣∣∣
∂Ψmn(xi, umn)

∂(xi, umn)

∣∣∣∣ (21)

where Jmn corresponds to the probability of choosing a
jump from the object type Tm to the object type Tn. In
our case, the object types are equiprobable. It implies

Jnm = Jmn. In our experiments, the mark library is
composed of seven object types having five different
parameter sets shown in Table 1. Then, 52 − 5 = 20
bijections and associated completion parameters must be
computed.
Let us consider, for example, a jump from a circle
(denoted T1) to a rectangle (denoted T2). We move from
xi = (cx, cy, r) to x̂i = (cx, cy, L, l, θ). The parameters cx

and cy specifying the center of mass exist in both the
object types. Moreover, we can define a linear transfor-
mation between the radius r ∈ [rmin, rmax] of the circle
and the length L ∈ [Lmin, Lmax] of the rectangle such
as L = Lmax−Lmin

rmax−rmin
r + Lminrmax−Lmaxrmin

rmax−rmin
. Thus, we need

to complete the object type T1 by u1 2 = (l, θ). We then
obtain x̂i = Ψ1 2(xi, u1 2) with

Ψ1 2(X) =


Id2 0 02,2

02,1
Lmax−Lmin

rmax−rmin
02,1

02,2 0 Id2



 X +




01,2

Lminrmax−Lmaxrmin

rmax−rmin

01,2





(22)
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where Idi and 0i,j are the identity matrix of size i and
the zero matrix of size i×j, respectively. Finally, we have∣∣∣∂Ψ1 2(xi,u1 2)

∂(xi,u1 2)

∣∣∣ = Lmax−Lmin

rmax−rmin
. The completion parameters

u1 2 are chosen following uniform distributions on the
parameter spaces.

Computation of the energy gradient

Let p denote a parameter of the object xi of the object
configuration x ∈ Ck. Then, the energy derivative with
respect to p is given by:

dUk(x)
dp

=
∑

xk∈x

dd(xk)
dp

+
∑

xk,xl∈x

d(eκg(xk,xl)−1)
dp

= d(xi)
′
+

∑
j∼i

κg(xi, xj)
′eκg(xi,xj)

(23)

where (.)′ = d (.)
d p
and the notation j ∼ i corresponds

to the set of objects xj such as g(xi, xj) 6= 0 (i.e. the
neighboring objects of xi). The data term is as follows:

d(xi)
′
=

σ2
in

′
+ σ2

out
′

2S(d(xi) + θattr)(min − mout)2
×

[
1 −

(
S′

S
+ 2

min
′ − mout

′

min − mout

)
σ2

in + σ2
out + ǫ

σ2
in

′
+ σ2

out
′

]

(24)

If min = mout, a hardcore is associated with the energy
which means the object configuration is forbidden. The
derivatives of the statistical parameters used in Eq. 24
are given by the following expressions:

min
′ = −Sin

′min +
1

Sin

∫

∂Ωin

I (25)

mout
′ = −Sout

′mout +
1

Sout

∫

∂Ωout

I (26)

σ2
in

′

= − Sin
′σ2

in+

1

Sin

[∫

∂Ωin

(I − min)2 − 2

∫

Ωin

min
′(I − min)

]

(27)

σ2
out

′

= − Sout
′σ2

out +
1

Sout

×
[∫

∂Ωout

(I − mout)
2 − 2

∫

Ωout

mout
′(I − mout)

]

(28)

where I is the intensity of the image, Ωin and Ωout are
the inside and outside domain, respectively, and Sin and
Sout are the area of these domains. If we consider the
energy derivative with respect to the center of mass
and orientation object parameters, the computation is
simplified since the area of the object does not depend
on these parameters (i.e. S′ = Sin

′ = Sout
′ = 0).
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