A Survey of Hybrid Representations of Concept Lattices in Conceptual Knowledge Processing

Peter Eklund¹ <u>Jean Villerd</u>²

¹School of Information Systems and Technology University of Wollongong Australia

> ²Loria - INRIA Nancy Grand Est France

> > ICFCA 2010

Outline

- Drawing line diagrams
 - geometrical heuristic
 - additive line diagrams
 - layer approach
 - hybrid layer + additive approach
 - force-directed approach
- Line diagrams for data exploration
 - Toscana systems and nested-line diagrams
 - handling numerical attributes through an overview + details approach
 - highlighting conceptual similarity
 - faceted browsing

Drawing line diagrams

Lattices in data analysis are more than just mathematical structures: they carry meaning. Therefore, drawings of such lattices should not only reflect the mathematical structure but also give a meaningful presentation for the data. (Wille 1989)

line diagrams constraints

- preservation of the partial order
- provide insights into the structure

aesthetic constraints

- minimize edge crossings
- maximize parallel lines
- no two vertices at the same point
- an edge should not cross another vertex

Geometrical heuristic [Stumme & Wille 1995]

- each concept has a geometric representation w.r.t. is upper cover \boldsymbol{U}
- identify meaningful substructures

U	shape	
1	point	
2	line	
3	triangle	
n	(n-1)-simplex	

Geometrical heuristic [Stumme & Wille 1995]

- ullet each concept has a geometric representation w.r.t. is upper cover U
- identify meaningful substructures

U	shape
1	point
2	line
3	triangle
	• • • •
n	(n-1)-simplex

Additive line diagrams [Ganter & Wille 1999]

additive	attribute-additive
representation set	
X	irreducible attributes
representation function	
$L o \mathcal{P}(X)$	rep(c) = Int(c)
$c_1 \leq c_2 \Rightarrow \mathit{rep}(c_2) \subseteq \mathit{rep}(c_1)$	
grid projection	
$X o \mathbb{R}^2$	$ec{a} = (-1,1), \vec{b} = (0,1), \vec{c} = (1,1)$
position function	
$pos(c) = \sum_{x \in \mathit{rep}(c)} ec{x}$	$pos(\perp) = \vec{a} + \vec{b} + \vec{c} = (0,3)$

Additive line diagrams [Ganter & Wille 1999]

- in attribute-additive diagrams, some concepts may be distended (distance to parents large compared to average distance)
- occurs in non-distributive lattices

irregularities may provide insights [Becker 2005]

 $A_1A_4A_5 \rightarrow A_6$ appears clearer on the left

Additive line diagrams [Ganter & Wille 1999]

- in attribute-additive diagrams, some concepts may be distended (distance to parents large compared to average distance)
- occurs in non-distributive lattices

irregularities may provide insights [Becker 2005]

best diagram? depends on which interpretation is wanted

Layered approach [Cole 2001, Yevtushenko 2004]

[Sugiyama et al. 1981] method for drawing directed acyclic graphs

- 1 layer nodes
 - ullet proper layered digraph (no edge span > 1), add dummy nodes
 - raking strategy: minimize height, width, dummy nodes
- 2 minimize edge crossings
 - NP-complete problem [Garey & Johnson 1983]
 - many heuristics, e.g. layer-by-layer sweep

[Dalen & Spaans 2001]

Layered approach [Cole 2001, Yevtushenko 2004]

advantages

efficient for planar or "close to planar" line diagrams

drawbacks

does not emphasize regular structures and symmetrical displays

layered approach

additive approach

[Yevtushenko 2004]

Hybrid layer + additive approach [Cole 2001]

- layer approach : determine vertical positioning
- additive approach : determine horizontal positioning
- 1 choose horizontal vectors such that the hybrid diagram is satisfactory :
 - no two concepts on the same layer have the same x-coordinates
 - no edge crosses the coordinates of a concept

formulated as a constraint satisfaction problem to produce a list of satisfactory diagrams

- 2 satisfactory diagrams are partially order w.r.t. quality functions
 - symmetry between siblings on the same layer
 - minimize lines (distinct edge vectors)
 - maximize chains

Force-directed approach [Cole 2000, Freese 2004]

[Eades 1984][Kamada & Kawai 1989][Fruchterman & Reingold 1991]

forces exerted on a vertex

- attractive force : edges act as springs $f_a(d) = -k_a d$
- repulsive force : nonneighboring nodes repel each other $f_r(d) = rac{k_r}{d^2}$

heuristic

- 1 assign random positions to vertices
- 2 until an equilibrium configuration is reached, do
 - for each vertex, compute the sum of exerted forces
 - update each vertex position

Force-directed approach [Freese 2004]

- 1 layering : layer(a) = height(a) depth(a) + M (fixes z-coordinate)
- 2 attractive force : between comparable nodes (z-coordinate remains fixed)
- **3 repulsive force**: between incomparable nodes (z-coordinate remains fixed)
- 4 projection into the plane

Force-directed approach [Freese 2004]

advantages

efficient with non-planar diagrams, reveals symmetries

drawbacks

does not maximize parallel lines

layered approach

additive approach

[Yevtushenko 2004]

Freese

other approaches

- multidimensional additive diagrams [Becker 2001]
- planar diagrams and forces [Zschladig 2005]
- conflict distance [Ganter 2004]
- •

tools

- Glad
- Con Exp
- Galicia
- Toscana
- •

Conceptual knowledge retrieval [Wille 2006]

Conceptual knowledge retrieval is often a process in which humans search for something with they only vaguely imagine

Toscana [Vogt et al.]

- interactive retrieval and navigation
- conceptual scales as search structures
- attributes partitioning through nested-line diagrams

Overview + details navigation [Villerd et al. 2009]

- overview: line diagram built w.r.t. a set of binary or nominal attributes
- detailed view: projection of objets w.r.t. numerical attributes using Multi Dimensional Scaling (MDS), revealing proximities of objects

Force-directed MDS [Chalmers 1996] allows the user to

- dynamically select the subset of numerical attributes used to compute dissimilarities
- dynamically observe addition/removal of objects while navigating on the line diagram

Overview + details navigation [Villerd et al. 2009]

- overview: line diagram built w.r.t. a set of binary or nominal attributes
- detailed view: projection of objets w.r.t. numerical attributes using Multi Dimensional Scaling (MDS), revealing proximities of objects

Force-directed MDS [Chalmers 1996] allows the user to

- dynamically select the subset of numerical attributes used to compute dissimilarities
- dynamically observe addition/removal of objects while navigating on the line diagram

Highlighting conceptual similarity [Hannan & Pogel 2006]

conceptual similarity

- 2 concepts are conceptually similar if their extents are nearly equal
- distance $\delta(c_i, c_i) = |Ext(c_i) \triangle Ext(c_i)|$

diagram improvement algorithm

- spring between each pair of concepts with $\delta(c_i, c_i)$ as natural length
- iteratively improves the diagram so that the actual distance $d(c_i, c_j)$ is proportional to $\delta(c_i, c_i)$

 $milk \stackrel{95.1\%}{\longrightarrow} hair$

Faceted navigation [Eklund]

- the user sees the extent of a concept
- he progressively browses the collection by adding or removing proposed attributes (moving to an upper or lower concept)
- the font size is proportional to the number of retrieved objects

Conclusion and Perspectives

- hybrid representations that depart from the conventions of line diagram drawing have pratical value when used in an appropriate application context
- further experimentation in this direction will lead to innovations that enhance the application of Conceptual Knowledge Processing
- solutions for handling large line-diagrams
- scenarios that activate/deactivate specific forces in order to highlight specific parts of the lattice