
HAL Id: inria-00504630
https://hal.inria.fr/inria-00504630

Submitted on 20 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

HPC in Java: Experiences in Implementing the NAS
Parallel Benchmarks

Brian Amedro, Denis Caromel, Fabrice Huet, Vladimir Bodnartchouk,
Christian Delbé, Guillermo L. Taboada

To cite this version:
Brian Amedro, Denis Caromel, Fabrice Huet, Vladimir Bodnartchouk, Christian Delbé, et al.. HPC
in Java: Experiences in Implementing the NAS Parallel Benchmarks. 10th WSEAS international
conference on applied informatics and communications, Aug 2010, Taïpeh, Taiwan. �inria-00504630�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50068215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00504630
https://hal.archives-ouvertes.fr

HPC in Java: Experiences in Implementing

the NAS Parallel Benchmarks

BRIAN AMEDRO,

DENIS CAROMEL,

FABRICE HUET

INRIA – I3S – CNRS – UNSA

2004 route des lucioles

06902 Sophia Antipolis

FRANCE

first.last@inria.fr

VLADIMIR BODNARTCHOUK,

CHRISTIAN DELBÉ

ActiveEon

2004 route des lucioles

06902 Sophia Antipolis

FRANCE

first.last@activeeon.com

GUILLERMO L. TABOADA

University of A Corunña

Faculty of Informatics

SPAIN

taboada@udc.es

Abstract: This paper reports on the design, implementation and benchmarking of a Java version of the Nas Parallel

Benchmarks. We first briefly describe the implementation and the performance pitfalls. We then compare the

overall performance of the Fortran MPI (PGI) version with a Java implementation using the ProActive middleware

for distribution. All Java experiments were conducted on virtual machines with different vendors and versions.

We show that the performance varies with the type of computation but also with the Java Virtual Machine, no

single one providing the best performance in all experiments. We also show that the performance of the Java

version is close to the Fortran one on computational intensive benchmarks. However, on some communications

intensive benchmarks, the Java version exhibits scalability issues, even when using a high performance socket

implementation (JFS).

Key–Words: Benchmarks, Java, HPC, NAS Benchmarks, ProActive, SCI

1 Introduction

Message Passing Interface (MPI) is the dominant pro-

gramming model of choice for scientific computing.

This library proposes many low-level primitives de-

signed for pure performance. But for several years,

the tendency has been to look for productivity[11],

and to propose efficient high-level primitives like

collective operations [7], object-oriented distributed

computing [4] and material to ease the deployment of

applications.

In order to perform an evaluation of Java ca-

pabilities for high performance computing, we have

implemented the NAS1 Parallel Benchmarks (NPB)

which are a standard in distributed scientific compu-

tation. Many middleware comparatives and optimiza-

tion techniques are usually based on them [15, 5, 8,

10, 6]. They have the characteristic to test a large set

of aspects of a system, from pure computation perfor-

1Numerical Aerodynamic Simulation

mance to communication speed.

By using a Java-based middleware, instead of

Fortran+MPI, we want to demonstrate the perfor-

mance which can be obtained, comparing it to an

equivalent native version. Our aim is to identify the

areas where Java still lacks some performance, in par-

ticular the network layer.

Our contributions are the following : (1) An eval-

uation of the Java overhead for arithmetic computa-

tion and array manipulation, (2) a report on common

performance pittfals and how to avoid them and (3) a

performance comparison of an implementation of the

NPBs in Java and Fortran/MPI (PGI) on Gigabit Eth-

ernet and SCI

The rest of this paper is organized as follows.

Section 2 gives some background: a short descrip-

tion about the benchmarks used in our experiments,

the ProActive library (in particular the active object

model), and the Java Fast Sockets[17]. Section 3

presents some related work. In section 4, we dis-

cuss the implementation and some performance is-

sues. Section 5 presents the results obtained with the

NAS Parallel Benchmarks on two network architec-

tures. Finally, we discuss the future work and con-

clude in section 5.

2 Background

2.1 The NAS Parallel Benchmarks

NAS Parallel Benchmarks (NPB) consists of a set of

kernels which are derived from computational fluid

dynamics (CFD) applications. They were designed by

the NASA Ames Research Center and test different

aspects of a system.

Some are testing pure computation performance

with different kinds of problems like matrix computa-

tion or FFTs. Others involve a high memory usage or

network speed with large data size communications.

Finally, some problems try to evaluate the impact of

irregular latencies between processors (short or long

distance communications). Each of these five kernels

was designed to test a particular subset of these as-

pects. To follow the evolution of computer perfor-

mance, the NPB were designed with several classes of

problems making kernels harder to compute by modi-

fying the size of data and/or the number of iterations.

There are now 6 classes of problems: S, W, A, B, C

and D. Class S is the easiest problem and is for test-

ing purpose only. Class D is the hardest and usually

requires a lot of memory.

Here we will use the IS, FT, EP, CG and MG ker-

nels with the problem class C.

2.2 The ProActive Library

ProActive is a GRID middleware (a Java library with

open source code under LGPL license) for parallel,

distributed, and concurrent computing in a uniform

framework. With a reduced set of simple primitives,

ProActive provides a comprehensive API to simplify

the programming of Grid Computing applications:

distributed on Local Area Network (LAN), on clus-

ters of workstations, or on Internet Grids.

ProActive uses standard RMI as a transport layer

and is thus bound to its limitations [9]. However, the

RMI transport overhead can be reduced through the

use of a high performance Java sockets implementa-

tion named Java Fast Sockets (JFS)[17]. JFS pro-

vides high performance network support for Java (cur-

rently direct Scalable Coherent Interface –SCI– sup-

port). It also increases communication performance

avoiding unnecessary copies and buffering, by reduc-

ing the cost of primitive data type array serialization,

the process of transforming the arrays in streams to

send across the network.

Although our implementation of the NPBs uses

some ProActive specific features, it could easily be

ported to another middleware. Thus the insights gain

from these experiments will be valuable to the HPC

community, irrespective of their use of ProActive.

3 Related Work

Studies of Java for High Performance Computing can

be traced back to the JavaGrande Forum community

effort[14]. The results, at that time, were disappoint-

ing and gave Java a bad reputation. Since then, only a

few works have been dedicated to this task, although

the technologies behind the Java Virtual Machines and

the computer architecture have changed a lot over the

years. A notorious performance hit was the garbage

collector, because of the pauses it introduced. Nowa-

days, all JVMs come with multiple garbage collec-

tors implementation which can be chosen at start-time

[16, 2]. Multi-core CPUs are now mainstream and

might change fundamentally the performance of Java.

Indeed, a JVM is multi-threaded and can take advan-

tage of multiple cores to perform background tasks

like memory management or Just-In-Time compila-

tion.

A recent work is the DaCapo Benchmarks suite

[3]. The authors define a set of benchmarks and

methodologies meaningful for evaluating the perfor-

mance of Java. As noted by the authors, Java in-

troduces complex interactions between the architec-

ture, the compiler, the virtual machine and the mem-

ory management through garbage collectors. As such,

using benchmarks and methodologies developed for

Fortran/C/C++ might put Java at a disadvantage.

4 Implementation

Our implementation of the NPB is done strictly in

standard Java, without relying on external libraries ex-

cept for communication. As we will show in this sec-

tion, writing HPC code in Java is possible but requires

care and good knowledge of the internals of the JVMs.

We have tried to be as close as possible to

the original NPB3.2-MPI implementation. However,

there are a few dissimilarities induced by both the ob-

ject oriented model (Java) and the distribution library

(ProActive).

Using the Object-Oriented SPMD layer provided

by the ProActive library [1], each SPMD MPI pro-

cess has been translated to an active object (remotely

accessible Java object) named Worker. Due to the

ProActive principles, we have also redefined the itera-

tions in tail-recursive calls. Thus, each kernel iteration

is a ProActive request.

4.1 Basic arithmetic operations

Some of the primitives provided by the standard JVM

for numerical operations are not very efficient. Espe-

cially, simple operations such as integer binary loga-

rithm or binary powering are not optimized by either

the static compiler or the JIT.

For example, on the Table 4.1, we compare per-

formance between standard and optimized functions

for pow and log. It shows that HPC programmer

should take care about arithmetic operations and con-

sider optimizing by-hand some of its intensive com-

putation loops. For efficient and higher level math-

ematical computation, developer can use specialized

libraries such as MKL2 which provides efficient prim-

itives for operations such as matrix computation and

fast fourier transformations.

However, due to license limitations, we did not use

MKL in our implementation, but only rewrote ba-

sic operations with base-2 and integer optimizations.

Note that is has been done only in innermost loops.

4.2 Optimization of data structures memory

footprint

HPC applications are often characterized by the use of

large data structures. Thus, developer of such applica-

tion might be aware of the actual memory footprint of

the objects he deal with. Java offers two ways to store

data: primitive types, and Objects. Primitive types

only contain actual data whereas Objects have asso-

ciated meta-data which are used by the JVM to en-

2Math Kernel Library

Sun IBM Oracle gcc

1.6 1.6 1.6 4.3.2

pow(2,i) 305.28s 256.58s 201.82s 107.5s

1 << i 8.32s 9.06s 10.99s 8.5s

log(i)/log2 90.42s 168.51s 91.35s 92.3s

ilog2(i) 11.18s 13.12s 16.89s 19.3s

Table 1: Performance comparison between standard

arithmetic functions and optimized versions

Sun 1.6 IBM 1.6 Oracle 1.6

byte[] 10 MB 10 MB 10 MB

Byte[] 80 MB 80 MB 40 MB

short[] 20 MB 20 MB 20 MB

Short[] 320 MB 320 MB 200 MB

int[] 40 MB 40 MB 40 MB

Integer[] 320 MB 320 MB 200 MB

double[] 80 MB 80 MB 80 MB

Double[] 320 MB 320 MB 200 MB

Table 2: Memory footprint comparison between prim-

itive types and Object type wrappers on a 10 millions

element array with different JVM vendors on 64 bits

architecture

force language properties or features. For every prim-

itive type, there is an equivalent Object which acts as

a wrapper (double and Double, int and Integer...).

As shown on Table 4.2, there is an important dif-

ference between primitive types and Objects. For this

comparison we have used a large array of 10 millions

elements and measured the memory usage. Although

the Oracle JRockit 1.6 JVM needs less memory for

the same amount of data, Object payload is impor-

tant compared to primitive, especially for integer or

double. Thus, handling large data structures requires

using primitive types.

Allocation strategy of multi-dimensional arrays

also has an important impact on memory footprint,

because Java does not have support for true multidi-

mensional arrays. Instead, it relies on arrays of arrays

to simulate them. This leads to non rectangular arrays

with variable shapes. Also, Java arrays are actually

Objects even if they only contain primitive type data.

It is very hard for a compiler to perform optimizations

on such array. Although some solutions have been

proposed to address these issues [13], none has made

it in the official releases of Java.

Table 4.2 shows the memory usage of various

JVMs when allocating a 2-dimensions array of 20M

elements (double or byte). We also indicate the value

measured on a C and a Fortran versions compiled with

gcc. We have measured 3 different allocations strate-

gies : [2][10M], [10M][2M] and [20M]. As ex-

pected, the lowest usage is obtained when allocating

a single dimension array, as the memory can be allo-

cated contiguously in memory. When allocating two-

dimensional arrays, we see that the Oracle JRockit

JVM performs sometimes better than the C version.

We believe this is because when instantiating the ar-

ray in the Java version, the bounds are known and thus

the JVM has enough information to manage memory

in a more efficient way. For its part, Fortran inlines

all multi-arrays, regardless of the allocation strategy,

thus allowing optimal memory management.

Sun IBM Oracle gcc f77

1.6 1.6 1.6 4.3.2

byte[2][10M] 19.1 19.1 19.1 19.2 19.1

byte[10M][2] 380 381 269 381 19.1

byte[2*10M] 19.1 19.1 19.1 19.2 19.1

double[2][10M] 152 152 152 152 152

double[10M][2] 456 457 345 381 152

double[2*10M] 152 152 152 152 152

Table 3: Memory footprint comparison on multi-array

declaration strategies (in MB) on 64 bits architecture

As we can see, to be memory-efficient we have

to use one-dimensional arrays. Also, In the Fortran

implementation of the NPBs, one dimensional arrays

are often seen as 2 or 3 dimensional one. However,

there is no direct support in Java for such operations.

When necessary, we have rewritten the Java code to

manipulate only one dimensional arrays, using a sim-

ple flattening technique and adding methods to treat

them as multidimensional one.

The first versions of Java suffered from automatic

bounds checking of arrays. However, since the NPBs

operate on arrays with known size at runtime, most

of the unnecessary checks are removed by the Just-In-

Time compiler [19].

4.3 JIT

Compared to Fortran or C, most of the optimization in

Java are not performed at compile time but at run time,

by the Just-In-Time compiler (JIT) [12] which usually

comes in two flavors: client and server. The main dif-

ference being that the second one performs more ag-

gressive optimization and might incur a higher over-

head. The decision of compiling a method is mainly

based on the number of invocations already performed

or the number of backward branches taken in loops

(both controlled by the CompileThreshold property).

One of the difficulties is to write code which will lead

to high performance after being compiled by the JIT.

Thus, as the JIT compiler mostly works on methods,

our experience in the development of the NPBs have

confirmed that keeping small methods (i.e avoiding

inlining) lead to better performance.

5 Experimentation

5.1 Experimentation Methodology

We divide the five kernels in two categories. If the

kernel performs many calls with a particular commu-

nication scheme, we define it as a communication in-

tensive one; otherwise, it is a computation intensive

one.

Following this study, each kernel was run with

different parameters:

• the JVM version and vendor: Oracle/BEA (5 and

6), IBM (5 and 6) and Sun (5, 6 and 7),

• the initial and maximum heap size of the JVM,

• the number of nodes used (from 1 to 32),

• the kernel problem class size (class S or C)

• the network architecture: Gigabit Ethernet

(GBE) with ProActive over RMI and Scalable

Common Interface (SCI) with ProActive over

JFS.

Some values or combinations had no impact on the

running of the NPBs and are not presented in the re-

maining of the paper.

The NPB ProActive implementation we have

made is based on the NPB 3.2 version distributed by

NASA. The Fortran MPI version was compiled with

the 64 bits PGI 7.1 compiler (with -O3 option) and run

onto a MPICH 2 message-passing implementation.

To perform our tests, we have used two clusters:

• Gigabit Ethernet : Sun Fire X2200 M2 cluster, 50

nodes Quad Core AMD Opteron 2218 (2.6GHz

/ 1MB / 667MHz), with 4 GBytes of memory.

All the nodes are running on a Red Hat Enter-

prise Linux 5 with a Linux 2.6.18 kernel and are

connected to 4 Cisco-3750 switches (gigabit eth-

ernet). The switches are interconnected using a

32Gbps stack.

• SCI cluster : eight nodes, with two dual-core pro-

cessors per node (Intel Xeon Dual Core 5060 at

3.2 GHz) and 4GBytes of memory. The SCI NIC

is a D334 card plugged into a 64bits/66MHz PCI

slot. The OS is Linux CentOS 4.2.

On the SCI cluster, experiments have been run us-

ing one process per node (single process configura-

tion) or four processes per node (quad process config-

uration).

The transport protocol for ProActive on the SCI

cluster is JFS, which achieves a latency of 6 microsec-

onds and an asymptotic throughput of 2398 Mbps.

The native MPI library presents a latency of 4 mi-

croseconds and an asymptotic throughput of 2613

Mbps. Thus, this high-performance interconnect clus-

ter can achieve significantly higher performance scal-

ability.

All the presented values are the average of five

runs.

5.2 Computation Intensive Applications

Computation intensive applications can be character-

ized by a strong integer or float arithmetic, or by com-

plex array manipulation. The Fourier Transformation

(FT), Integer Sort (IS) and Embarrassingly Parallel

(EP) kernels are such applications. In the remaining

of this section we discuss results on up to 32 nodes.

We have ran the benchmarks on 128 nodes (256 for

EP) but the results were not different and are omitted

here for space reasons.

5.2.1 Fourier Transformation Kernel (FT)

It is a test for computation performance with a large

memory footprint, solving differential equation using

FFTs. This kernel also tests communication through-

put by sending a few numbers of very large messages.

For a class C problem with 16 workers, each worker

sends 22 messages for a total amount of 180 MBytes.

Notice that the original Fortran implementation uses

some native operations on multi-dimensional arrays

which are not available on Java. Thus, we have imple-

mented some of these operations in Java, at a higher

level, causing a large amount of integer operations

through array indices computation.

If we take a look at the Fig.1, we see that the

kernel could not start with a small number of nodes.

While the MPI version ran from 2 nodes, we see that

the Java versions only starts from 8 nodes, except for

the Sun 1.5 version which was only able to start the

kernel from 16 nodes. Actually, as this kernel deals

with very large data structures, we encountered nu-

merous “OutOfMemory” errors. Regarding the dura-

tion time, we can see that the ProActive version has

about the same behaviour with 6 JVM out of 7. Com-

pared to the MPI version, results are in the same order

of magnitude.

5.2.2 Integer Sort Kernel (IS)

It tests both computational speed and communication

performance. It performs a bucket sort on a large array

of integers (up to 550 MBytes for a class C problem).

Thus, this kernel is mainly characterized by a large

amount of data movements. On a class C problem

with 16 workers, each worker sends to each other 65

messages for a total amount of 22 MBytes.

On the Fig.1, we see that all the JVM implemen-

tations have similar behaviours with an execution time

which is not so far from the native MPI results (by a

factor smaller than 2).

5.2.3 Embarrassingly Parallel Kernel (EP)

It provides an estimation of the floating point

performance by generating pseudo-random floating

point values according to a Gaussian and uniform

schemes. This kernel does not involve significant

inter-processor communication. Regarding the im-

plementation in Java ProActive, some mathematical

functions have been rewritten for performance issues

with base 2 computation. This is the case with pow

and log methods. A large amount of the operations in-

volved in this kernel are some very simple operations

1 2 4 8 16 32
number of nodes

0

200

400

600

800

1000

1200

1400

1600

ti
m

e
 (

s
)

Kernel FT on class C

IBM 1.5
IBM 1.6
Sun 1.5
Sun 1.6
Sun 1.7
BEA 1.5
BEA 1.6
MPI/PGI

1 2 4 8 16 32
number of nodes

5

10

15

20

25

30

35

40

45

ti
m

e
 (

s
)

Kernel IS on class C

IBM 1.5
IBM 1.6
Sun 1.5
Sun 1.6
Sun 1.7
BEA 1.5
BEA 1.6
MPI/PGI

1 2 4 8 16 32
number of nodes

0

200

400

600

800

1000

ti
m

e
 (

s
)

Kernel EP on class C

IBM 1.5
IBM 1.6
Sun 1.5
Sun 1.6
Sun 1.7
BEA 1.5
BEA 1.6
MPI/PGI

Figure 1: Execution time of the computation intensive kernels (FT, IS and EP) for various JVMs on the Gigabit

Ethernet cluster

such as bit shifting.

Figure 1 shows that the achievable floating point

performance of Java is now quite competitive with na-

tive Fortran. With a problem class C, we can say that

the overall behaviour of the various implementations

of Java are the same, with a lack of performance for

IBM 1.5. Furthermore, we note that for this kind of

problem, the Java results are slightly better than the

MPI ones.

5.3 Communication Intensive Applications

Communication intensive kernels are those which

send a large amount of messages. The Conjugate Gra-

dient (CG) and MultiGrid (MG) kernels are such ap-

plications.

5.3.1 Conjugate Gradient Kernel (CG)

It is typical of unstructured grid computation. It is

a strong test for communication speed and is highly

dependent on the network latency. It deals with a

very large amount of small messages (with a prob-

lem class C on 16 nodes, 429, 248 messages smaller

than 50 bytes are sent) and a large amount of mid-size

messages (86, 044 messages of 300 KBytes are sent).

When running a class C problem, CG kernel is com-

posed of 75 iterations. In fact, this characterizes the

unstructured communications aspect of this kernel.

Regarding performance comparison, Fig.2 shows

the performance results on the Gigabit Ethernet clus-

ter. We can see that almost all the JVM implementa-

tions (except BEA on 1 node) and native MPI version

have about the same performance. Actually, in the

Java ProActive implementation, CG kernel uses many

of the exchange operators. Recall that it optimizes the

synchronization between processes and eliminates un-

necessary data duplications. It shows that to send a

large number of messages of varying size (429, 248

messages of less than 50 bytes and 86, 044 messages

of 300 KBytes), the Java ProActive solution is as good

as the native Fortran MPI solution. When looking at

the performance comparison on the SCI cluster, pre-

sented on Fig.3, we see about the same behaviour as

for the Gigabit Ethernet cluster. More precisely, the

Fig.3(a) shows that MPI take a little more advantage

of the low latency cluster, but not blatantly. If we

now put more than 1 process per node, as the Fig.3(b)

shows, we see that the achievable floating point per-

formance increase significantly for MPI, but also for

Java ProActive.

5.3.2 MultiGrid Kernel (MG)

It is a simplified multi-grid problem. Topology is

based on a vanilla hypercube (some edges are added

to standard hypercube). It tests both short and long

distance data communication with variable message

size. When running with a problem class C on

16 nodes, a total of about 25, 000 messages are

sent. Size distribution is as follows: 5000*1KB,

4032*2 KB, 4032*8KB, 4032*32KB, 4032*128KB

and 4032*512KB. Also, MG deals with much larger

data structures in memory than the CG kernel, causing

memory problems.

Regarding performance comparison, Fig.2 shows

the performance results on the Gigabit Ethernet clus-

ter. Here, the important size of data structures, pre-

1 2 4 8 16 32
number of nodes

0

200

400

600

800

1000

1200

1400

1600

1800

ti
m

e
 (

s
)

Kernel CG on class C

IBM 1.5
IBM 1.6
Sun 1.5
Sun 1.6
Sun 1.7
BEA 1.5
BEA 1.6
MPI/PGI

1 2 4 8 16 32
number of nodes

0

50

100

150

200

250

300

350

400

450

ti
m

e
 (

s
)

Kernel MG on class C

IBM 1.5
IBM 1.6
Sun 1.5
Sun 1.6
Sun 1.7
BEA 1.5
BEA 1.6
MPI/PGI

Figure 2: Execution time of the communication intensive kernels (CG and MG) for various JVMs on the Gigabit

Ethernet cluster

viously mentioned, is clearly visible. Indeed, when

using only one node, the data structures are too large

to be handled by the JVMs. To be able to perform a

run, we need at least two nodes for the BEA and IBM

JVMs, and 4 nodes for the Sun, with default garbage

collector configuration. On the other hand, the na-

tive MPI version is able to run using only one node.

Looking at the execution time, we see that Sun and

BEA JVMs are twice as slow as the MPI version. The

IBM JVM performance is even worse than other ven-

dors VM . This lack of performance can be explained

by the large amount of double and integer operations

involved in.

When running on the SCI cluster, as shown on

the Fig.3, we see that the MPI implementation takes

a better advantage of the low latency cluster. When

deploying one process per core (4 processes per node),

as shown on the Fig.3(d), we obtain better results with

the Java version, closing on the MPI performance.

6 Conclusion and Future Work

In this paper we have reported on the design, imple-

mentation and benchmarks of a Java version of the

NPBs using the ProActive middleware for distribu-

tion.

First we have shown that care is needed when

writing HPC code in Java. The standard arithmetic

methods have low performance compared to C equiv-

alent. But when replacing them with an optimized

version, it is possible to outperform equivalent na-

tive code. The memory overhead can be important

when manipulating multi-dimensional arrays. This is

easily addressed by using flattening techniques. Fi-

nally, avoiding premature optimization (such as inlin-

ing) helps the JIT and leads to better performance.

Second, we have compared the performance of a

Java implementation of the NPBs to a Fortran MPI

one (PGI 7.1). When considering strongly commu-

nicating applications, the speed and scalability of the

Java ProActive implementation are, as of today still

lower than MPI. On the MG and FT kernels, the over-

head factor ranged from 1.5-2 on 16 nodes to 2-6 on

32 nodes. The lack of scalability in those benchmarks

is mainly due to numerous small messages for which

the ProActive overhead is significantly higher than the

MPI one. We are working to reduce that overhead

through size reduction of the message context but are

dependent on the RMI layer. One solution would be

to bypass RMI by defining a new protocol adapted to

small messages.

On computational intensive benchmarks (IS and

EP) the Java ProActive version performs is as effec-

tive as the Fortran MPI version on up to 64 machines.

We have also shown that it is possible to take ad-

vantage of high-performance interconnects (SCI) in

a non-intrusive way. Using a network layer, JFS, it

is possible to transparently use an SCI infrastructure

without source code modification or reconfiguration.

The differences between the Java implementation and

the MPI one are narrower on these systems, showing

the feasibility of this approach on high-performance

interconnects. Moreover, the communication bottle-

neck can be further reduced using a mixed approach

by putting several processes on a multi-core node to

1 2 4 8
number of procs

0

500

1000

1500

2000

ti
m

e
 (

s
)

Kernel CG on class C, 1 proc per node

MPI/PGI
Sun 1.6

(a)

4 8 16 32
number of procs

0

100

200

300

400

500

600

ti
m

e
 (

s
)

Kernel CG on class C, 4 procs per node

MPI/PGI
Sun 1.6

(b)

1 2 4 8
number of procs

0

50

100

150

200

250

ti
m

e
 (

s
)

Kernel MG on class C, 1 proc per node

MPI/PGI
Sun 1.6

(c)

4 8 16 32
number of procs

0

20

40

60

80

100

120

140

ti
m

e
 (

s
)

Kernel MG on class C, 4 procs per node

MPI/PGI
Sun 1.6

(d)

Figure 3: Execution time of the communication intensive kernels (CG and MG) on the SCI cluster

take advantage of local communications.

Overall, the results obtained are encouraging. We

believe that the overhead of Java is acceptable when

performing computational intensive tasks. Regard-

ing communication intensive tasks, the lower perfor-

mance can be partially overcome using mixed ap-

proach and optimized network layers. The HPC com-

munity has already worked on the issue and produced

interesting results [18]. However, current JVM ven-

dors have not developed efficient enough solutions

yet.

Acknowledgments

Experiments presented in this paper were carried out

using the Grid’5000 experimental testbed, being de-

veloped under the INRIA ALADDIN development

action with support from CNRS, RENATER and sev-

eral Universities as well as other funding bodies (see

https://www.grid5000.fr).

References:

[1] L. Baduel, F. Baude, and D. Caromel. Object-

oriented spmd. In Proceedings of Cluster Com-

puting and Grid, Cardiff, United Kingdom, may

2005.

[2] BEA. Checklist/tuning guide

for optimizing the jrockit jvm.

http://dev2dev.bea.com/pub/a/2007/12/jrockit-

tuning.html.

[3] S. M. Blackburn, R. Garner, C. Hoffman, A. M.

Khan, K. S. McKinley, R. Bentzur, A. Di-

wan, D. Feinberg, D. Frampton, S. Z. Guyer,

M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B.

Moss, A. Phansalkar, D. Stefanović, T. Van-

Drunen, D. von Dincklage, and B. Wieder-

mann. The DaCapo benchmarks: Java bench-

marking development and analysis. In OOPSLA

’06: Proceedings of the 21st annual ACM SIG-

PLAN conference on Object-Oriented Program-

ing, Systems, Languages, and Applications, New

York, NY, USA, Oct. 2006. ACM Press.

[4] D. Caromel. Toward a method of object-oriented

concurrent programming. Communications of

the ACM, 36(9):90–102, 1993.

[5] K. Datta, D. Bonachea, and K. Yelick. Tita-

nium Performance and Potential: An NPB Ex-

perimental Study. LECTURE NOTES IN COM-

PUTER SCIENCE, 4339:200, 2006.

[6] M. Frumkin, H. Jin, and J. Yan. Implementa-

tion of NAS Parallel Benchmarks in High Per-

formance Fortran. In Proceedings of the 13th In-

ternational Parallel Processing Symposium and

the 10th Symposium on Parallel and Distributed

Processing,(IPPS/SPDP’99), San Juan, Puerto

Rico, 1999.

[7] S. Gorlatch. Send-receive considered harmful:

Myths and realities of message passing. ACM

Trans. Program. Lang. Syst., 26(1):47–56, 2004.

[8] W. Huang, B. Abali, and D. Panda. A case for

high performance computing with virtual ma-

chines. In Proceedings of the 20th annual inter-

national conference on Supercomputing, pages

125–134. ACM Press New York, NY, USA,

2006.

[9] F. Huet, D. Caromel, and H. E. Bal. A high

performance java middleware with a real ap-

plication. In SC ’04: Proceedings of the

2004 ACM/IEEE conference on Supercomput-

ing, page 2, Washington, DC, USA, 2004. IEEE

Computer Society.

[10] H. Jin, M. Frumkin, and J. Yan. The OpenMP

Implementation of NAS Parallel Benchmarks

and Its Performance. National Aeronautics and

Space Administration (NASA), Technical Report

NAS-99-011, Moffett Field, USA, 1999.

[11] L. V. Kale, E. Bohm, C. L. Mendes, T. Wilmarth,

and G. Zheng. Programming Petascale Applica-

tions with Charm++ and AMPI. In D. Bader, ed-

itor, Petascale Computing: Algorithms and Ap-

plications, pages 421–441. Chapman & Hall /

CRC Press, 2008.

[12] T. Kotzmann, C. Wimmer, H. Mössenböck,

T. Rodriguez, K. Russell, and D. Cox. Design

of the java hotspotTMclient compiler for java

6. ACM Trans. Archit. Code Optim., 5(1):1–32,

2008.

[13] J. E. Moreira, S. P. Midkiff, and M. Gupta.

A comparison of three approaches to language,

compiler, and library support for multidimen-

sional arrays in java. In JGI ’01: Proceedings

of the 2001 joint ACM-ISCOPE conference on

Java Grande, pages 116–125, New York, NY,

USA, 2001. ACM.

[14] M. Philippsen, R. F. Boisvert, V. Getov, R. Pozo,

J. E. Moreira, D. Gannon, and G. Fox. Java-

grande - high performance computing with java.

In PARA ’00: Proceedings of the 5th Interna-

tional Workshop on Applied Parallel Comput-

ing, New Paradigms for HPC in Industry and

Academia, pages 20–36, London, UK, 2001.

Springer-Verlag.

[15] S. Saini, J. Chang, R. Hood, and H. Jin. A Scal-

ability Study of Columbia using the NAS Paral-

lel Benchmarks. Journal of Comput. Methods in

Sci. and Engr, 2006.

[16] Sun. Java se 6 hotspot[tm] virtual

machine garbage collection tuning.

http://java.sun.com/javase/technologies/hotspot/gc/gc tuning 6.html.

[17] G. L. Taboada, J. Touriño, and R. Doallo. Ef-

ficient java communication protocols on high-

speed cluster interconnects. In Proc. 31st IEEE

Conf. on Local Computer Networks (LCN’06),

pages 264–271, Tampa, FL, 2006.

[18] R. V. van Nieuwpoort, J. Maassen, G. Wrzesin-

ska, R. Hofman, C. Jacobs, T. Kielmann, and

H. E. Bal. Ibis: a flexible and efficient Java

based grid programming environment. Concur-

rency and Computation: Practice and Experi-

ence, 17(7-8):1079–1107, June 2005.

[19] T. Würthinger, C. Wimmer, and H. Mössenböck.

Array bounds check elimination for the java

hotspotTMclient compiler. In PPPJ ’07: Pro-

ceedings of the 5th international symposium on

Principles and practice of programming in Java,

pages 125–133, New York, NY, USA, 2007.

ACM.

