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Connecting Gobner bases programs with Coq to do proofs in
algebra, geometry and arithmetics

Loic Pottier
projet Marelle
INRIA Sophia Antipolis

loic.pottier@sophia.inria.fr

Abstract

We describe how we connected three programs that compotenérbases [1] to Co@ [11], to
do automated proofs on algebraic, geometrical and arifbaietxpressions. The result is a set of
Coq tactics and a certificate mechanism

The programs are: F4][5], GBI[4], and gbc0ql[10]. F4 and GB heefastest (up to our knowl-
edge) available programs that compute Grobner bases.q@®stow in general but is proved to be
correct (in Coq), and we adapted it to our specific problemeefficient. The automated proofs
concern equalities and non-equalities on polynomials egttfficients and indeterminates in R or Z,
and are done by reducing to Grobner computation, via HitbBiullstellensatz. We adapted also the
results of [7], to allow to prove some theorems about modafitihmetics. The connection between
Coq and the programs that compute Grobner bases is dong thsiriexternal” tactic of Coq that
allows to call arbitrary programs accepting xml inputs antpats. We also produce certificates in
order to make the proof scripts independant from the extpnograms.

1 Introduction

Proof assistants contain now more and more automatic punoeedhat generate proofs in specific do-
mains. In the Coq system, several tactics exist, for exatmglemega tactic which proves inequalities
between linear expressions with integer variables,ftherier tactic which does the same thing with
real numbers, theing andfield tactic, which proves equalities between expressions im@ or a
field, thesos tactic which proves some inequalities on real polynomids. describe here a new tactic,
calledgb, which proves (non-)equalities in rings using other (neqtiglities as hypotheses. For example
VXY RX2+Xxy=0, Y’ +xy=0=x+y=0, orvx: R x> # 1= x# 1.

This tactic uses external efficient programs that computidb@r bases, and their result to produce
a proof and a certificate.

We wrote such a tactic several years dgo [9], but using omlygtitog program, which were rather
slow. So the tactic remained experimental and was not irduidthe Cog system. There are also similar
tactics in other proof systems: in hol-light, John Harrismote a program that computes Grobner bases
to prove polynomial equalities, specially in arithmeti@§. [ This program was adapted in Isabelle by
Amine Chaieb and Makarius Wenzel for the same task [2]. Wevsiroexamples that our tactic is faster.

This paper is organized as follow. In section 2 we explaimtiaghematical method we use to reduce
the problem to Grobner bases computations. In section 3etail dhe tactic and the way it builds a
proof in Coq. In section 4 we show how we connected Coq to tieeialized programs that computes
Grobner bases. Section 5 details the complete tacticptbees also non-equalities, and section 6 shows
how to produce certificates and then save time in the progftsdn section 7 we give some examples
of utilisations of the tactic in algebra, geometry and anigtics, with comparisons with hol-light[6] .
Section 8 contains the conclusion and perpectives of thikwo

2 Hilbert Nullstellensatz

Hilbert Nullstellensatz shows how to reduce proofs of eijeal on polynomials to algebraic computa-
tions (see for examplé&][3] for the notions introduced in #@stion).

G. Sutcliffe, A. Voronkov (eds.): easychair 1.0, 2008, volume 1, issue: 1, pp. 1{10
ldownloadable @ittp://www-sop.inria.fr/marelle/Loic.Pottier/gb-keappa.tgz
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It is easy to see that if a polynomi& in K[Xy,...,X,] verifiesP" = 53 ; QiR, with r a positive
integer,Q; andR also inK[Xy,...,Xq], thenP is zero whenever polynomiaR, ..., Ps are zero.

Then we can reduce the proof Bf =0,...,Ps,=0= P =0 to find Qy,...,Qs andr such that
P'=73iQP.

The converse is also true when K is algebraically closed iththe Hilbert Nullstellensatz. In this
case, the method is complete.

FindingP" = 3; QiR can be done using Grobner bases, as we will explain now.

Recall that arideal .# of a ring is an additive sub-group of the ring such thate .# whenever
a € .#. The idealgeneratedby a family of polynomials is the set of all linear combinaisoof these
polynomials (with polynomial coefficients).

A Grdbner basisof an ideal is a set of polynomials of the ideal such that theid monomials
(relative to a choosen order on monomials, e.g. lexicodcaptuler, or degree order) generates the ideal
of head monomials of all polynomials in the ideal. The maioperty of a Grobner basis is that it
provides a test for the membership to the ideal: a polynomiah the ideal iff its euclidiardivision
by the polynomials of the basis gives a zero remainder. T¥isidin process is a generalisation of the
division of polynomials in one variable: to divide a polynaiP by a polynomialaX® — Q we write
P = aX?S+ T whereT contains no monomial that is multiple ¥“. Then chang® with QS+ T and
repeat divison. The last non zefois the remainder of the division. To divide a polynomial byaafly
of polynomials, we repeat this process with each polynomiiahe family. In general, the remainder
depends on the order we use the polynomials of the family.vBilita Grobner basis, this remainder is
unique (this is a characteristic property of Grobner Hasis

2.1 Method 1: howto findQg,...,Qssuch thatl = y; QiR

Compute a Grobner base of the polynomillg — &, ge;j, gt};j (wheret,ey,...,es are new variables)
with an order such thdt> X; > g.
Suppose that, in this basis, there is a polynomial of the forny; Q;e. This polynomial is then in
the ideal generated bfR, — &, ge;j, at}i j, so is a linear combination of these polynomials:
t-5i Qe =3 h(th—-ea)+ 3jgjee + Sikat
g are formal variables, so we can substitute formallyith tR, and we obtairt(1—5;QR) =
0 +t%( 3 6jRP; + YikP).
Then the coefficient df in this equation must be zero:-1y; QiR = 0, and we are done.
Note that the polynomial§et, ge;} are not necessary, but their presence much speed up the com-
putation of the Grobner balis

2.2 Method 2: how to findQu,...,Qsandr such thatP" = 5; QiR

Use the standard trick: search to write=I3; iR + h(1—zP) (%), wherezis a new variable. This can
be done with the previous method. Suppose we succeed.lesthe max degree inof polynomialsh.

Substitute formally with 1/P, and multiply the equation (*) by?". Then we obtaiP" = §; QiR as
required, wher&);, = P'hj[z«+ 1/P]

2.3 Completness

It is easy to see that methods 1 and 2 are complete in the d&tséR" = 5; Q;R, holds, there will find
such an equation:

2thanks to Bernard Mourrain for this trick
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e method 1: suppose-1y;QR =0. Thent = 3;QitR, andt — 5;Qie = 5; Qi(tR —&). Hence
t — 5;Qie belongs to the ideal of which we have computed a GrobnesbBsicause of the order
we have choosen on variables, this implies that there is ynpolialt — 3;hig in the Grobner
basis.

e method 2: suppose’ = 3;QiP. We have +-ZP" = (1+zP+...+Z1P"1)(1-zP). Replacing
P" with 5; QP we obtain 1= Z (3;QP) + (1 + zP+... +Z 1P 1)(1-zP).

2.4 Example
Takep = X+Y, pr =X+ Xy, po = Y%+ xy. With the previous method, the Grobner basis is:

t—zye — zx@ — 226, — 26 — &
y2ey — X2€n +2yQ — 2X& — €1+ &
YX& + X260 + 2ye + ZX& — &

Xe — Y&
€1, €, €2, €162, €5

we obtainr =2, Q; = 1, Q, = 1, and then(x+Yy)? = 1 x (X2 +xy) + 1 x (y? +xy). Which proves
thatx? +xy=0, y’+xy=0=x+y=0.

3 Proofin Coq

Coq [11] is a proof assistant based on type theory, where wentaractively build proofs ofjoals
which are logical assertions of the forvH; : Ty,...,VHy : T,,C(H1,...,H,). Using tactics, we can
simplify the goal, while the system builds the correspogdirece of proof.

Typically we will treate goals of the form:

X : Z
y : Z
H:x " 2+x*xy=20

HO : y "2 +x*xy=0

x+y=0

Here hypotheses are variables belonging in a ring or a fialilegualities between polynomials.

We explain now how to compute and use the Nullstellensatatamjuto build a proof of this goal
in Cog. The steps are: syntaxification, Grobner basis céatpn, and building the proof from the
Nullstellensatz equation.

3.1 Syntaxification

We begin by building polynomials from the three equationghis goal. This is done in the tactic
language of Coq (LTAC, which is a meta-language for computactics and executing them) by first
computing the list of variables:

lv = (cons y (cons x nil))

and the list of polynomials:
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lp = (cons (Add (Pow (Var 2) 2) (Mul (Var 2) (Var 1)))
(cons (Add (Pow (Var 1) 2) (Mul (Var 2) (Var 1)))
(cons (Sub (Add (Var 2) (Var 1)) (Comnst 0 1))
nil)))

Variables are represented by their rank in the list of véembPolynomials are elements of an in-
ductive type, and we can recover the equations by intengrdékiem in Z with the list of variables. For
example,

(interpret (Add (Pow (Var 2) 2) (Mul (Var 2) (Var 1)))
1v)

evaluates ik™2 + x * y.
We used parts of the code of thes[8] tactic, written by Laurent Théry.

3.2 Calling Grobner basis computation

We call the external program gb (see section 4) with the fispbynomials; here we choose the program
F4 to compute Grobner basis:

external "./gb" "jcf2" 1lp

The result is the term:

(cons
(Pow
(Add
(Add Zero
(Mul
(Add (Add Zero (Mul (Const O 1) (Const 1 1)))
(Mul (Const 1 1) (Pow (Var 1) 1))) (Comst 1 1)))
(Mul (Const 1 1) (Pow (Var 2) 1)))
2)

(cons (Const 1 1) (cons(Const 1 1) (cons (Const 1 1) nil))))

which has the structure
(cons (Pow p d) (comns c 1))

such that the Nullstellensatz equation holds:
cp'= S ap
gi€lq
Here, we havéq = q1,0, 1 =02 =1

3.3 Building the proof from the Nullstellensatz equation

After interpreting the polynomialg; and gy in Z using the original list of variables, we get and prove
easily the goal

1*x (x+y)2=1x*(x"2+x*xy)+1x*x(y~2+zxx*y)

by the ring tactic.

To prove the original goal, it is now sufficient to rewrite2 + x * y andy~2 + x * y by O,
gettingl * (x + y)~2 = 0, and, using a simple lemma, we get+ y = 0 and we are done.

4
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4 Connecting F4, GB, and gbcoq to Coq

Coq allows to call arbitrary external programs via a functa@alled "external”. It sends Coq terms in
xml format (i.e. as tree) to the standard output of the eslgsrogram, and gets its standard output (also
in xml format) as a resulting Coq term. We use this functiortampute a Grobner basis of a list of
polynomials, via a single interface to three specializesyjpams: F4, GB, and gbcoq. This interface,
called "gb” is written in ocaml. It translates the list of gobmials given as standard input in xml format
in the format of the choosen program (F4, GB or gbcoq), caliith the good arguments, get its result
(a Grobner basis, if no error occured), selects its usefakination, translates it in xml and sends it as
result to standard output. More precisely:

e F4is aClibrary, and has only an interface for Maple. We weosémple parser of polynomials to
use it on command line, helped by J.C. Faugeére.

e GBis also written in C and has a command line interface, oegtdoputs in a file; with a Maple-
like syntax for polynomials.

e Gbcoq is written in ocaml, so is integrated to gb. This progteses an Buchberger-like algorithm
which has been extracted from Coq. So it is proven to be corvée added recently an optimisa-
tion which reduces drastically the time to compute Nullstedatz equations: each time we add a
new polynomial during the completion via the reduction dical pairs, we divide the polynomial
that we want to test if it is in the ideal, by the current fanmifiypolynomials. If this gives zero,
then we stop:, and return the Nullstellensatz coefficietsiuced from the divisions we made.
More we also try its powers (up to a parametrized limit). Thelhen we have computed the whole
Grobner basis, we can compute the Nullstellensatz cosifisj without having to verify that the
remaining critical pairs reduce to zero. More, this is oflem case that the polynomial reduces to
zero with a partial Grobner basis! The time is sometimegldiy by 1000 with such a technique,
and always much reduced. Note that such an improvement thamoade in a blackbox program
such as the programs of JC Faugere, which are free but nosopece.

5 The gbR and gbZ tactics in Coq

We wrote two tactics: gbR for real numbers, gbZ for integefhie set of integer is not a field, but
we can simulate computations in the field of rational numheiag only integers. In this case, the
Nullstellensatz equation becorng® = ¥i0ipi, wherecis an integer, and thg have integer coefficients.

We can allow negations of equations in the conclusion. Famptexy =1 = x# 0. The trick is to
replacex # 0 with x=0=- 1 = 0, which is equivalent to add a new equation in hypothesesreplace
the equation to prove with £ 0.

In the case of real numbers, we can allow also negations @tiemqs in hypotheses. For example
x? # 1= x# 1. This can be done by introducing new variables, remarkiag # 0 < 3t, pxt = 1.
In the example, this giveigx? — 1) = 1 = x # 1. The negation in conclusion can be removed and leads
tot(x* —1) = 1, x— 1= 0= 1= 0, which is proven using the Nullstellensatz equatioa 1 x (t(x*> —
1) —1)+ (t+tx) x (x—1)

Finally, the tactics use first the program F4. If it fails (foemory limits), then the tactics try GB.
If it fails too, then the tactics uses gbcog. We have alsoiafiged tactics, allowing the user to choose
which program to use, between F4, GB, and gbcog. Indeedriexgrets show that no one is better than
others.
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6 Certificates

Once the Nullstellensatz equation is computed, we can ehtvgproof script, replacing the tactic gb
with a similar tactic, called "checlghb” which will not call external programs, but instead it Midke as
arguments all the components of the Nullstellensatz eguuatso, next time we will execute the proof
script, for compilation for example, it will not need extatrGrobner computati@n Let us give an
example. Suppose we want to prove:

Goal forall x y z:R, x"2+x*xy=0 -> y " 2+x*y=0 -> x+y=0.
we execute the tactic gbR, which proves the goal, and phietstlines in the standard output of Coq:

(* with JC.Faugere algorithm F4 *)

gbR_begin; check_gbR

(x+y-0)

(List.cons (x * (x * 1) + x * y) (List.cons (y * (y * 1) + x * y) List.nil))
(List.cons y (List.cons x List.nil))

(1ceq
(Pow
(Add
(Add Zero
(Mul
(Add (Add Zero (Mul (Const O 1) (Const 1 1)))
(Mul (Const 1 1) (Pow (Var 1) 1))) (Comst 1 1)))
(Mul (Const 1 1) (Pow (Var 2) 1))) 2)
(1ceq (Const 1 1) (lceq (Comnst 1 1) (lceq (Const 1 1) 1nil))))

Then, we can replace the line calling gbR with these tacines| which contains no more than the
components of the needed Nullstellensatz equdtiany)? = 1 x (x> +xy) + 1 x (y?+xy), and then need
much less time to evaluate, because it doesn’'t need Griasés computation.

7 Examples

In this section we give several examples of use of the taghé€sand gbR.

7.1 Algebra

The following examples uses the symetric expressions dficamts with roots of a polynomial.

First in degree 3: ik,y,z are the three complex roots ¥f + a* X+ b X + ¢ then we havea =
—(X+y+2),b=xxy+y*xz+zxX andc= —xxy=*z And then we can prove that+y+z=0=
X*xy+y*Z+2zxX=0= xxy*xz= 0= x=0, because then the polynomial becorXésand has only 0
as a root.

Require gbZ.

Sthanks to Julien Narboux for this suggestion
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Goal forall x y z:Z,

x+y+z=0 —-> x¥y+y*z+z*x=0 -> x*y*z=0 -> x=0.
gbZ.
Qed.

More complicated, the same thing in degrees 4 and 5:

Goal forall xy z u:Z,
x+y+z+u=0 ->
xXky+y*z+zrutwkx+xxz+uxy=0 ->
X*y*zZ+y*zrutzrwkx+ukx*xy=0 ->
x*xy*zxu=0 -> x=0.

gbZ.

Qed.

Goal forall xy z u v:Z,
xty+z+ut+v=0 ->
X*y+x*z+x*u+x*v+y*z+y*u+y*v+z*u+z*v+u*v=0—>
X*y*z+x*y*u+x*y*v+x*z*u+x*z*v+x*u*v+y*z*u+y*z*v+y*u*v+z*u*v=0—>
X*y*z*u+y*z*u*v+z*u*v*x+u*v*x*y+v*x*y*z=0 ->
xky*xzrukv=0 -> x75=0.

gbZ.

Qed.

Last example takes less than 1s with F4 and GB, and gbcoq.halfitlght, it takes 1s.

7.2 Geometry

Desargues theorem is too complicated to be proved with i@&bbases. But Pappus theorem can. We
formalize in Coq the set of points in the real plane:

Open Scope R_scope.
Record point:Type:={
X:R;

Y:R}.

Then we give two definitions of colinearity of three pointsgtheorem is false if we use only the
second definition, because of degenerated configurations):

Definition colinear(C A B:point):=
exists a:R,
(X C)=a*x(X A)+(1-a)*(X B) /\ (Y C)=ax(Y A)+(1-a)*(Y B).

Definition colinear2(A B C:point):=
(X A)*(Y B)+(X B)*(Y C)+(X CO*(Y A)
=(Y B)*(X C)+(Y C)*(X A)+(Y A)*(X B).
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Then we state and prove the Pappus theorem, in a specidiaedithout lost of generality) config-
uration:

Lemma pappus: forall A B C A’ B’ C’ D E F:point,
(X A’)=0 -> (X B’)=0-> (X C’)=0 ->
(Y A)=0 > (Y B)=0 > (Y C) =0 —>
colinear D A B’ -> colinear D A’ B ->
colinear E A C’ -> colinear E A’ C ->
colinear F B C’ -> colinear F B’ C ->
colinear2 D E F.

gbR_choice 2.
Qed.

In this example, F4 fails, GB takes 9s, and gbcoq takes 3s.I80dréed hol-light with this example,
which takes 77s:

./hol
prioritize_int();;
let t1 = Unix.time();;

int_ideal_cofactors

[‘XD -( x4 * XA )°¢;

‘YD -((&1 - x4) * YB1)‘;
‘XD -( (&1 - x3) * XB)*;
‘YD - (x3 * YA1)¢;

¢ XE - x2 *x XA¢;

‘YE - (&1 - x2) * YC1°;
¢ XE - (&1 - x1) * XC%;

¢ YE - x1 *x YA1¢;

¢ XF - x0 * XB;

' YF - (&1 - x0) * YC1°;
¢ XF - (&1 - x) * XC¢;

¢ YF - x % YB1¢]

XD * YE + XE * YF + XF * YD —(YE * XF + YF * XD + YD * XE)‘;;

Unix.time()-.t1;;

The general case of Pappus theorem is too complicated toutemp

7.3 Arithmetics

Following the idea ofi[[7], we can prove statements aboutinwgdity, gcd and divisions. We have to do
some work for that, because the tactic gbZ is not sufficient.tBe problem is again an ideal membership
one, then solvable by Grobner basis computation. We haitteewa tactic doing that, callegbarith.
Here are examples of its use in Coq:
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Definition divides(a b:Z):= exists c:Z, b=cx*a.

Definition modulo(a b p:Z):= exists k:Z, a - b = kx*p.

Definition ideal(x a b:Z):= exists u:Z, exists v:Z, x = uka+v*b.
Definition gcd(g a b:Z):= divides g a /\ divides g b /\ ideal g a b.
Definition coprime(a b:Z):= exists u:Z, exists v:Z, 1 = uxa+vxb.

Goal forall a b c:Z, divides a (b*c) -> coprime a b -> divides a c.
gbarith.
Qed.

Goal forall m n r:Z, divides m r -> divides n r -> coprime m n -> divides (m*n) r.
gbarith.
Qed.

Goal forall x y a n:Z, modulo (x72) a n -> modulo (y~2) a n -> divides n ((x+y)*(x-y)).
gbarith.
Qed.

7.4 Computation times, comparison with hol-light

Previous examples, and more we made, show that no one amo@df-gdbcoqg and is better than others.
hol-light is sometimes better than F4 and GB, but gbcoq ishrhetter than hol-light. The reason is
simple: we often stop computations before obtaining a Gebdlbasis.

8 Conclusion

The "external” tactic of Coq is a very good tool to use effitiprograms to produce proofs in specific
domains. We have shown how to use efficient Grobner baseputations in this context. The use
of certificates should be developped to reduce time of rifiea&ion of proofs. The certificate can be
written explicitely in the proof script, as we have showndydaut it could be stored in a cache. We have
shown the interest of using external programs, but also lihgts, as soon as it is impossible or difficult
to adapt them to specific use of proof systems. We plan totigets other decisions procedures, for
example polynomial system solving, to produce new tactidthé same spirit.

Acknowledgements: we thank anonymous referees for their suggestions on treectied of this
paper and bibliographical completions.
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