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SUMMARY

This paper deals with on-line identification of continuous-time systems subject to impulsive terms.
Using a distribution framework, a scheme is proposed in order to annihilate singular terms in
differential equations representing a class of impulsive systems. As a result, an on-line estimation
of unknown parameters is provided, regardless of the switching times nor of the impulse rules.
Numerical simulations of physical processes with noisy data are illustrating our methodology and
results. Copyright c© 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The primary concern of the paper is on-line identification of hybrid systems the underlying
model of which is viewed as a continuous-time system subject to impulsive terms. A motivating
example behind the present investigation comes from modeling a biped robot whose dynamics
are governed by ordinary differential equations at any time instant but the ones when a
leg of the biped robot hits the ground, thereby resulting in an instantaneous change of
the leg velocity. As the ground surface does not permit a perfect measurement, on-line
identification of parameters of such a system, including identification of impact time instants,
represents a challenging problem. Many other examples of this particular class of hybrid
system (impulsive) can be found in [5], and for most of them, observability, parameters and
state estimation are challenging problems since active mode and continuous state have to be
estimated simultaneously within a finite time interval. In recent works such as [1], [6], [13],
the estimation of the switching times for some classes of hybrid systems (mainly for switched
ones) has been related to observability issues, where the problem consists in recovering, from
available measurements, the state of the system and/or the switching signal, and eventually
the switching time. Usually, the hybrid observer consists of two parts: an index estimator of
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the current active sub-model and a continuous observer that estimates, asymptotically in most
cases, the continuous state of the hybrid system.

Even though considerable efforts have been undertaken on various aspects of parameters
estimation, there are still many open problems due to the specific structure of the underlying
models. For hybrid discrete time systems, an overview of the existing approaches, mainly based
on classification, bayesian or bounded error procedures, can be found in [10]. In the present
paper, an annihilation procedure for the singular terms of the underlying continuous time
models is proposed in a deterministic framework. By solving a generalized eigenvalue problem,
this procedure leads to the on-line and non asymptotic estimation of the unknown parameters
to be identified, and a simultaneous estimation of the switching times, when available, is also
proposed. The approach considered here takes root in the work developed in [7] for parameter
identification of continuous linear systems, using algebraic tools (differential algebra, module
theory and operational calculus). It results in finite time estimates given by explicit algebraic
formulae that can be implemented in a straightforward manner using standard tools from
computational mathematics. Recently, those results have been also extended to the problems
of state, parameter and unknown input (such as faults) for other classes of continuous time
systems in [2], [4], [8], [9], [11], [12].

The paper is organized as follows. Due to the occurrence of nonsmooth dynamics, a
distribution framework is adopted and the required notions are recalled in Section 2. The class
of impulsive systems considered in this paper is given in Section 3, and Section 4 describes
the proposed approaches for finite time estimation of parameters and switching times. The
obtained results are illustrated in Section 5 by numerical simulations of a bouncing ball, a
mechanical system with dry friction, and a thermostat with an incomplete description of the
switching rule.

2. MATHEMATICAL TOOLS

We recall here some standard definitions and results from distribution theory [15, 17], and fix
the notations to be used in the sequel. The space of C∞-functions having compact support in
an open subset Ω of R is denoted by D(Ω), and D′(Ω) is the space of distributions on Ω, i.e.,
the space of continuous linear functionals on D(Ω). For u ∈ D′, 〈u, ϕ〉 denotes the real number
which linearly and continuously depends on ϕ ∈ D. This number is defined as 〈u, ϕ〉 =

∫ ∞
−∞ f.ϕ

for a locally Lebesgue integrable function u = f . The support of a distribution u, denoted as
supp u, is defined as the complement of the largest open subset of Ω in which the distribution
u vanishes.

For the Dirac distribution u = δ and its derivative u̇ = δ̇, the functional is defined as
〈u, ϕ〉 = ϕ(0) and 〈u̇, ϕ〉 = −ϕ̇(0) respectively. More generally, every distribution is indefinitely
differentiable, by virtue of its definition:

〈u̇, ϕ〉 = −〈u, ϕ̇〉 , ∀ϕ ∈ D(Ω). (1)

For notational convenience, we shall denote u̇ or u(1) the distributional derivative of u, while for
a function u, du

dt will stand for the distribution stemming from the usual derivative (function) of
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ESTIMATION PROBLEMS FOR A CLASS OF IMPULSIVE SYSTEMS 3

u defined almost everywhere. Throughout this paper, functions (locally Lebesgue integrable)
are considered through the distributions they define. Hence, if u is a continuous function
except at a point a with a finite jump σa, one can easily show that its distributional derivative
writes u̇ = du/dt + σa δa, where δa is the Dirac distribution located at {a}. This result can
be generalized to arbitrary derivation orders and discontinuity points as follows: let {tν} be
an increasing sequence of points that are finite in number in every finite interval. Assume also
that both left-hand and right hand derivatives dpu

dtp (tν) exist and denote the corresponding
jump σp

ν = dpu
dtp (tν+) − dpu

dtp (tν−). Then one has:

u(p) =
dpu

dtp
+

∑
ν

p−1∑
k=0

σp−1−k
ν δ

(k)
tν

. (2)

When rewritten in a distributional sense, the class of ordinary differential equations, we
shall encounter in the sequel will always exhibit such singular terms. Inputs and outputs
involved in such equations will be viewed as elements with support contained in [0,∞), and
the singularities, stemming from the origin t0 = 0, will be gathered into a single distribution
denoted ψ0, of order n − 1 and support {0}. With a slight abuse of language, the latter
distribution ψ0 will be referred to as the initial condition term.

Another useful result we shall exploit in the sequel is based on properties derived from the
multiplication of distributions. Although this operation is not always defined for arbitrary
distributions, it turns out that multiplication of two distributions (say α and u) is always
well-defined when at least one of the two terms (say α) is a smooth function. By definition:

〈α u, ϕ〉 = 〈u, αϕ〉 . (3)

The previous definitions of derivation (1) and multiplication (3) also allow to transform terms
of the form α u(n) into linear combinations of derivatives of products α(k) u. Indeed, for any
ϕ ∈ D(Ω):

〈αu̇, ϕ〉 = 〈u̇, αϕ〉 = −
〈
u, ˙(αϕ)

〉
= −〈u, α̇ϕ + αϕ̇〉 =

〈
−α̇u + ˙(αu), ϕ

〉
,

yelding

αu̇ = −α̇u + ˙(αu).

This ”reversed” Leibniz rule can be easily extended to any derivation order n by:

α u(n) =
n∑

k=0

(−1)2n−kCk
n w

(n−k)
k , wk := α(k) u. (4)

Note that successive integrations of the latter equation result in nothing but the integration by
parts formula with available data wk = α(k) u when u is obtained via sensor measurements. In
a noisy context, such integrations can be however advantageously replaced by any appropriate
filter of relative degree larger than n, also avoiding any measurement of the time derivatives.

The following Theorem is the key result from which the parameters (including the switching
times) of the class of systems under study can be identified.
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Theorem 1. [15] If u has a compact support K and is of order r (necessarily finite)†, α u = 0
whenever α and its derivatives of order ≤ r vanish on K.

In this paper, we shall be mainly concerned with the annihilation of singular distributions,
and as an illustration of the previous Theorem, one has for every smooth function α:

α δτ = α(τ) δτ , (5)

α δ
(r)
τ = 0 ∀α s.t. α(k)(τ) = 0, k = 0, . . . , r. (6)

We complete this introductory section with some well-known definitions and results from
the convolution products, and as usual, denote D′

+ the space of distributions with support
contained in [0,∞). It is an algebra with respect to convolution with identity δ. For u, v ∈ D′

+,
this product is defined as 〈u ∗ v, ϕ〉 = 〈u(x).v(y), ϕ(x + y)〉, and can be identified with the
familiar convolution product (u∗v)(t) =

∫ ∞
0 u(θ)v(t−θ)dθ in case of locally bounded functions

u and v. Derivation, integration and translation can also be defined from the convolutions
u̇ = δ̇ ∗ u,

∫
u = H ∗ u, u(t − τ) = δτ ∗ u, where H is the familiar Heaviside step function.

As for the supports, one has for u, v ∈ D′
+:

supp u ∗ v ⊂ supp u + supp v, (7)

where the sum in the righthand side is defined by A + B = {x + y ; x ∈ A, y ∈ B}. Finally,
with no danger of confusion, we shall denote u(s), s ∈ C, the Laplace transform of u (in a
distribution setting).

3. IMPULSIVE MODELS

The general class of systems considered in this paper consists of nth order nonlinear ordinary
differential equations subject to impulsive righthand sides, described in a distributional
framework, with input u and output y, both in D′

+:
n∑

j=0

aj g
(j)
j (u, y) = ψ0 +

∞∑
j=1

bj δ(t − tj). (8)

Here, aj are constant and unknown coefficients (except for an := 1) and g
(j)
j (u, y) are known

and possibly nonlinear functions of the input and output measurements. The function gj(u, y)
is assumed to be continuous, and the distribution ψ0, of order n− 1 and support {0}, gathers
all the singular terms derived from the initial conditions as described in the previous section.
Throughout this paper, we shall assume the existence of a non zero smallest dwell time
avoiding accumulation points and Zeno phenomena. Finally, the unknown coefficients bj are
state dependent, since they are generally related to the possible state deviations at the impact
or switching times tj , i.e.:

bj = bj

(
tj , u(tj),

du

dt
(tj±), . . . ,

dnu

dtn
(tj±), y(tj),

dy

dt
(tj±), . . . ,

dny

dtn
(tj±)

)
. (9)

†The order of a distribution u is the smallest integer m such that: ∃C > 0 such that for any smooth function
ϕ, one has | 〈u, ϕ〉 | ≤ C sup

0≤i≤m
‖ϕ(i)‖∞ (for example, δ(r) is of order r).
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ESTIMATION PROBLEMS FOR A CLASS OF IMPULSIVE SYSTEMS 5

It is worth noticing that the switching time sequence {tj} being a priori unknown, the
proposed model may not be appropriate for some analysis issues (for example stability), nor for
simulation purposes. However, the description of the right hand side of equation (8) as singular
functions (or distributions) is of great interest since, on one hand, straightforward methods
will be derived for the parameters (and possibly switching times) estimation, and on the other
hand, the discrete transitions or switching rules need not to be known. The latter point is of
particular interest when one knows that transition rules such as impacts of mechanical systems
on irregular surfaces are not easy to model. The following example illustrates how, using an
a priori unknown switching time sequence, an impulsive model can be obtained by simple
differentiation of the underlying process, even in the presence of dynamic uncertainties.

3.1. Example: An impulsive model for a thermostat

Consider the academic control problem of heating a room using a thermostat [18]. In this
example, we do not have an exact model of how the thermostat works but it is only known
that the thermostat turns the radiator on when the temperature is between min1 and min2 and
turns the radiator off when the temperature is between max1 and max2. This heating system
can be described by the non deterministic hybrid automaton in Figure 1, where y denotes the
temperature and a > 0, b > max1.

off on

ẏ = −ay ẏ = −ay + b

y > min1
y < max2

y ≤ min2

y ≥ max1

Figure 1. The thermostat as a hybrid system.

Due to uncertainties in the radiator dynamics, it is not possible to solve the system equations.
However, given the a priori unknown switching sequence {tj}∞j=1 from one position to another,
and assuming that the process is initially in configuration off with initial state y0, the behavior
of such a process can be described by:

ẏ = −ay + y0δ0 + b

∞∑
j=0

χ[t2j+1,t2j+2](t), (10)

where χ[ti,tj](t) denote the characteristic function of the interval [ti, tj ], (i.e. χ[ti,tj ](t) = 1 if
t ∈ [ti, tj], and 0 elsewhere). Since, in a distribution setting, χ̇[ti,tj](t) = δ(t − ti) − δ(t − tj),
one obtains by derivation of (10):

ÿ + aẏ = y0δ̇0 + b

∞∑
j=0

δ(t − t2j+1) − δ(t − t2j+2) = y0δ̇ −
∞∑

j=1

(−1)jb δ(t − tj), (11)

which corresponds to the model description given in (8). Note that from this simple linear
system, we can also derive an operational description based on the more familiar Laplace

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 00:1–6
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6 L. BELKOURA, T. FLOQUET, K. IBN TAARIT, W. PERRUQUETTI, Y. ORLOV

transform, recalling the correspondence ẏ ↔ sy(s) − y0, δ(r) ↔ sr, and δ(t − ti) ↔ e−tis. One
therefore gets from (11):

y(s2 + as) = y0 s −
∞∑

j=1

(−1)jb e−tjs. (12)

The main motivation for using a distribution framework lies in the ability to consider the
multiplication of equation (8) with a large class of candidate functions. In the Laplace
setting, the equivalence with such a multiplication is not easy to handle unless restricted
to multiplication with polynomial functions (for the linear identification problem considered
in [7, 8, 9], this is done using the derivation with respect to s, by virtue of the property
dy(s)/ds ↔ −t y(t)).

4. STRUCTURE OF THE ESTIMATION PROBLEMS

Two principal structures for estimation issues will be developed in this section, and both are
derived from a straightforward application of the results of Section 2. They are mainly based
on two steps consisting in: (i) a multiplication with smooth functions αk, k = 1, 2 and (ii) a
convolution with an appropriate filter h. From the multiplication properties, given in (6), we
first get that multiplying equation (8) with arbitrary smooth functions αk, k = 1, 2 such that
α

(i)
k (0), i = 0 . . . , n − 1, cancels the initial conditions, yielding:

αk ×
n∑

j=0

aj g
(j)
j (u, y) =

∞∑
j=1

bj αk(tj)δ(t − tj), k = 1, 2. (13)

Note that using this operation, the unknown switching times tj also appear as arguments of
the known functions αk. As an equality of singular distributions, we are not able to recover
these arguments from the previous equations. Hence, the next step consists in a convolution
with a filter h, yielding an equality of functions that is more appropriate for measurements
manipulations:

h ∗

⎡
⎣αk ×

n∑
j=0

aj g
(j)
j (u, y)

⎤
⎦ =

∞∑
j=1

bj αk(tj)h(t − tj), k = 1, 2. (14)

From this formulation, causal relations (avoiding any measurement derivatives) will be
obtained if the chosen function h is of class Cn, which is equivalent for a linear filter h(s)
to have a relative degree ≥ n. Furthermore, in order to get a sequential estimation of the
switching times, the main a priori assumption we shall need in the sequel is a lower bound
estimate of the smallest dwell time. If the support of h lies within the smallest dwell time,
i.e. supp h ⊂ (0, minj(tj+1 − tj)), then the main idea consists in getting the switching instants
tj from the comparison of the left hand sides of (14) for k = 1, 2. For instance, if α2 = t α1,
then the ratio of the left hand sides of (14), when defined, yields precisely, and in real time,
the switching times tj . More generally, let us introduce, with slight abuse of definition, the
switching function ζ(t) as:

ζ(t) =
∞∑

j=1

ζj χ[tj,tj+1](t), ζj = α1(tj)/α2(tj). (15)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 00:1–6
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ESTIMATION PROBLEMS FOR A CLASS OF IMPULSIVE SYSTEMS 7

By virtue of the support of h, the local equality we have just obtained from such a comparison
can be extended to the whole real line as:⎛

⎝h ∗ [α1 ×
n∑

j=0

aj g
(j)
j (u, y)]

⎞
⎠ = ζ(t)

⎛
⎝h ∗ [α2 ×

n∑
j=0

aj g
(j)
j (u, y)]

⎞
⎠ . (16)

Such an extension has been performed only by letting 0 = ζ(t)0 outside the supports of
h(t − tj). It should be pointed out that following the approaches developed in [7], algebraic
(and hence non asymptotic) relations are obtained, unlike that of most estimation algorithms
where asymptotic relations are only due. Moreover, the state dependent terms bj are canceled
by the proposed method, avoiding any a priori knowledge of the switching rules.

4.1. Example of the thermostat (continued)

Figure 2 (top) shows a simulated trajectory of the thermostat described in Section 3.1,
with the numerical values (min1, min2) = (0, 1), (max1, max2) = (4, 5), a = −1.3, b = 5,
and an additive normally distributed noise of amplitude 3% max(y). The switching sequence
{tj} = {0, 2, 5, 8, 10, 13, 15, 17, 20} has been fixed to satisfy the prescribed intervals. Based on
the measurement y and the known parameter a, Figure 2 (bottom) illustrates a realization of
the left hand side of equation (14), which reduces in this case to:

h ∗ [αk × (ÿ + aẏ)], k = 1, 2. (17)

The adopted filter and functions are given by h =
((

1 − e−1.5 s
)
/s

)4, α1 = sin(2 t), and
α2 = sin2(2 t). Hence, on each (unknown) interval (tj , tj+1), the formed functions in Figure 2
(bottom) are linked by the relation:

(h ∗ [α2 × (ÿ + aẏ)]) (t) = sin(2 tj) (h ∗ [α1 × (ÿ + aẏ]) (t), t ∈ (tj , tj+1). (18)

Finally, and for the sake of simplicity, the initial condition y(0) has been set to 0 to avoid its
cancellation by using the additional constraint α̈1(0) = 0.

4.2. Robustness and identifiability issues

The estimations algorithms we shall use in the next Sections 4.3 and 4.4 are both derived
from equation (16), and it is worth noticing that the robustness of such procedures in a noisy
context will highly depend on the filtering capabilities, within the reduced dwell time, of the
function h, as well as on the choice of the candidate functions αk for the multiplication. The
combination of compact support filters and pre-multiplication by smooth functions is a non
standard problem in signal processing, and selecting the optimal pair αk, k = 1, 2, and the
filter h is still an open problem. In the remaining part of this section, some comments and hints
for the choice of the multiplicative functions is provided, and a discussion on the identifiability
of the switching sequence is introduced.

First, getting the times impact tj from the coefficients ζj involved in (15) assumes a one to
one map between ζ(t) and t, which implies that ζ(t) is a possibly unbounded function. In turn,
this also means that the multiplicative functions α1 and/or α2 are also unbounded, yielding
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0
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Temperature of the thermostat
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−20

−10

0
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20

30
Realization of l.h.s. of equation (15) for two different functions α

t(s)

 

 

α
1

α
2

Figure 2. Illustration of equation (16) for the thermostat example.

non trivial robustness problems in case of noisy data. To illustrate this aspect, consider for
instance a model description in (8) with g(u, y) = y, and assume we want an explicit time
impact estimation by setting in (15) tj = ζj . By virtue of (15 second equation), this implies
that α1(t) = tα2(t). Hence, one has to consider from (16) (see also the detail algorithm of
the next section) filtering by h of terms of the form α2(t) t y, yielding non trivial robustness
issues due to the multiplication by t of the noisy data y. As illustrated in our examples,
this unboundness issue can be however circumvented using for instance bounded and periodic
functions αi, thus resulting in an estimation modulo a known fixed period: in that case, the
real estimation of the the impact times can be easily deduced from the actual running time.

Next, from the properties of the support of a convolution product (7), or alternatively from
the right hand side of (14), one can show that the estimation problem of the switching sequence
is not consistent for all t > 0. In other words, and as illustrated in Figure 2 (bottom), both
formed functions vanish locally, yielding 0 = ζ(t)0 outside the latter intervals and leading to
a local loss of identifiability of ζ. This drawback may require the use of a priori information
(threshold) testing the consistency of (14). This issue is discussed in Section 4.3 where the
estimation of both parameters and switching times is considered.

Equation (16) is obviously nonlinear with respect to both the switching function ζ and
the unknown coefficients ai, and is clearly not sufficient in case of a simultaneous estimation
problem. However, additional relations can be obtained if the filter h is replaced by a set
of hi filters sharing the same previous condition on the support. Depending on the chosen
factorization, two different structures of the estimation problem are derived; the first one,
presented in Section 4.3 aims at providing a simultaneous estimation of the switching time
function ζ and the unknown coefficients ai. In the second approach detailed in Section 4.4,
only parameters estimation is considered, which allows to avoid the identifiability problem of
the switching function ζ. The formulations, advantages and limitations of each approach are
discussed in the rest of this section.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 00:1–6
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ESTIMATION PROBLEMS FOR A CLASS OF IMPULSIVE SYSTEMS 9

4.3. Simultaneous switching time and parameters estimation

Denoting Θ = (1, an−1, . . . , a0)T the set of unknown parameters, (16) reads in a matrix form
(where we dropped the arguments of g for compactness):[

h ∗ (α1 × g(n)
n ), · · · , h ∗ (α1 × g

(0)
0 )

]
Θ = ζ(t)

[
h ∗ (α2 × g(n)

n ), · · · , h ∗ (α2 × g
(0)
0 )

]
Θ. (19)

Considering equation (19) for different filters hi, i = 0, . . . , n lead to the following (n+1×n+1)
eigenproblem structure involving both unknown switching times and parameters:

[A1(u, y) − ζ(t)A2(u, y)] Θ = 0, (20)

Ak(u, y) = hi ∗ [αk × g
(j)
j (u, y)], (21)

k = 1, 2; i, j = 0, . . . , n.

It should be stressed that the matrices Ak(u, y), k = 1, 2, are only depending on inputs u and
outputs y measurements, as detailed in the following algorithm describing the realization steps
of their entries (the subscripts are omitted for the sake of readability):

1. From the inputs/outputs measurements, form the functions gj(u, y) according to the
model (8).

2. For an arbitrary smooth function α such that α(i)(0), i = 0 . . . , n−1, form the functions
wk = α(k)g, and develop αg(n) according to (4) to get:

α g(n) =
n∑

k=0

(−1)2n−kCk
n w

(n−k)
k . (22)

3. Apply the filter h to the previous equation. By virtue of the property h ∗ w(n−k) =
h(n−k) ∗ w, one gets:

h ∗ (α g(n)) =
n∑

k=0

(−1)2n−kCk
n h(n−k) ∗ wk. (23)

It is clear from the latter equation, whose Laplace transform reads as

L(h ∗ (α g(n))) =
n∑

k=0

(−1)2n−kCk
n sn−kh(s)wk(s), (24)

that strictly causal relations are obtained if the relative degree of the filter h(s) is larger
than n, avoiding derivative measurements. Moreover, this allows us to consider real time
implementations of the estimation algorithms.

The estimation problem has been therefore formulated in terms of a generalized eigenvalue
problem where, at each time t, the switching function ζ(t) corresponds to one of the
generalized eigenvalues of the problem (20), while the unknown coefficients are derived from
the corresponding normalized eigenvector. The main interest of such a formulation lies in the
simplicity of its numerical implementation, since many fast and efficient numerical algorithms
are available for eigenvalue problems. As mentioned in the previous section, its principal
limitation comes from the local loss of identifiability of ζ(t). This loss of consistency also

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 00:1–6
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10 L. BELKOURA, T. FLOQUET, K. IBN TAARIT, W. PERRUQUETTI, Y. ORLOV

reads 0 = ζ(t) 0 in (19), yielding a simultaneous rank deficiency of A1 and A2 in (20). A
suggested method to avoid this drawback may be based on some informative function such as:

γ(t) =
√

(det A1(t))2 + (detA2(t))2), (25)

who aims at selecting the appropriate structure of the estimation problem. More precisely, and
given an a priori threshold ε, the eigenvalue problem will be considered as not consistent for
γ(t) ≤ ε. Hence, one can only solve the linear structures AiΘ = 0 and estimate the coefficients
ai (recall that the vector Θ is normalized). If γ(t) ≥ ε, not both A1 and A2 are rank deficient
and the eigenvalue problem (A1 − ζA2)Θ = 0 can be solved to get both parameters and the
switching time.

4.4. Parameter estimation regardless of the switches

In this section where only the parameters ai are to be estimated, the consistency issues of
the previous section are avoided. An alternative representation of the estimation problem,
involving matrices with only 2 columns, can be simply obtained using a different factorization
of (16) as follows:

[Mn(u, y) + an−1Mn−1(u, y) + . . . + a0M0(u, y)] ξ(t) = 0, (26)

Mk(u, y) := hi ∗ [αj × g
(k)
k (u, y)], (27)

i = 1, 2 . . . , j = 1, 2, k = 0, . . . , n.

with ξ(t) := (1,−ζ(t))T . Although the eigenstructure is lost in case of more than one unknown
coefficient ai, its fundamental advantage lies in the fact that none of the matrices Mk(u, y)
defined in (27) is structurally zero on any interval. Note also that, as in the previous case, no
measurement derivative has to be computed.

Therefore, one can consider the ai’s estimation from (26) regardless of the switching time
function ξ(t) (i.e. even when ζ(t) is not identifiable), by considering for instance the set of
nonlinear equations:

det
n∑

i=0

aiQi,j(u, y) = 0, j = 1, 2 . . . , (28)

where Qi,j are 2 × 2–matrices derived from the lines of Mk(u, y) in (27). In the general case,
this problem is however not trivial unless it is transformed into a least square problem with
redundancy in the vector to be estimated, (which is given here by Θ̄ = (a1, a2, a

2
1, a1a2, . . .)T ).

Note also that in case of a single unknown parameter a0, the problem (26) is still an eigenvalue
problem and can be solved as such. To illustrate the capability of identifying the parameters
regardless of the identifiability of ζ(t), let us recall that the generic eigenvalue problem
(λI − A(t))v = 0 is well posed even if (λI − A(t)) = 0, and in such a case, any vector v
is an eigenvector.

To conclude this section, let us mention that while solving an eigenproblem, the eigenvalue
corresponding to the actual unknown quantity has to be selected. The first approach would
consist in the resolution of an augmented system of equations by adding more filters hi and
hence forming a matrix pencil. However this situation “has the awkward feature that most
matrices have no eigenvalues at all, whilst for those that do, an infinitesimal perturbation will
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in general remove them” [14]. An alternative approach could be based on the pseudo-spectra
analysis which consists in defining the ε−pseudospectra as the set

Λε =
{
z ∈ C : ‖A + zB‖+ > ε−1

}
. (29)

for rectangular matrices A and B (see e.g [14] and the references therein). However, this
approach is not appropriate for on-line applications, and we adopt here a simpler technique,
based on the a priori stationarity assumption of the unknown parameters: the selected
parameters correspond to the eigenpair of the square pencil that minimizes the norm of the
rectangular one.

5. APPLICATIONS

5.1. Impulsive mechanical systems: Bouncing ball and rocking block

The examples given here are (autonomous) models of a bouncing ball and a rocking block
rotating around two pivots. The outputs correspond to the position of the ball and the angle
that the block makes with the vertical, respectively [16]. The dynamical models of those systems
are described by the following equations:

d2y

dt2
= f(y) =

{
−m g (bouncing ball)
1
α sin(α (1 − y sgn(y))) (rocking block) (30)

dy

dt
(t+k ) = γ

dy

dt
(t−k ), k = 1, 2, . . . , (31)

where α is a constant coefficient depending on the size of the block, γ is the coefficient of
restitution of the velocity (γ < 0 for the bouncing ball and γ > 0 for the rocking block), and tk
are the impact instants. Interpreting y in the distribution sense with the formula of the jumps,
and denoting σk = dy

dt (tk+) − dy
dt (tk−) the jumps in the velocities, equation (30) reads as:

ÿ − f(y) = ψ0 +
∑

j

σjδ(t − tj), ψ0 = y0δ̇ + ẏ0δ, (32)

which corresponds to the model described by (8) with g2(y, u) = y, a1 = 0, g1(y, u) = 0,
a0 = 1, g0(y, u) = f(y), and bj = σj for the state dependent coefficient. It is worth noticing
that, except if some additional external input is added, the above formulation in a distribution
setting is only valid on a finite time interval since for very large time the impact times give rise
to an accumulation point. The proposed procedure is hence applicable only at the beginning of
the process evolution. Following the method of the previous section, multiplying this equation
with functions αk, k = 1, 2 such that αk(0) = α̇k(0) = 0 cancels the initial conditions, and a
convolution with filters hi results in:

hi ∗ [αk × (ÿ − f(y)] =
∑

σjαk(tj)hi(t − tj), k = 1, 2. (33)

Let us focus in this section on the mass estimation for the bouncing ball case. Since only one
parameter (the mass) is to be estimated, we adopt the eigenvalue formulation of Section 4.4
with:

M1(y)i,j = hi ∗ (αj × ÿ), M0(y)i,j = hi ∗ (αj × g). (34)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2010; 00:1–6
Prepared using rncauth.cls



12 L. BELKOURA, T. FLOQUET, K. IBN TAARIT, W. PERRUQUETTI, Y. ORLOV

A simulated trajectory of the bouncing ball, with a moderate random white noise is shown
in Figure 3-left, while Figure 3-right shows a generic realization of M1(y) avoiding any time
derivative of the measured signals. A lower bound for the smallest dwell time has been fixed
to T = 2s, and the adopted filters hi and multiplicative functions αi are given by:

α1 = sin2(t), α2 = α1 sin(t), h1 =
(

1 − e−sT/3

s

)3

, h2 =
1

(1 + 0.25s)4
, (35)

and are depicted in Figure 4-left. The matrix pencil used for the eigenpair selection has been
set using the additional filters h3(s) = sh1(s) and h4(s) = sh2(s). Note that due to their
decay rate, the filter h2 and its derivative h4 have been also assimilated to bounded supported
functions. Finally, Figure 4-right shows the on line bouncing ball’s mass estimation, regardless
of the switching rules (restitution law of the velocity) and impact instants.
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15
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25

Bouncing ball trajectory
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×
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s2h(s)

−2sh(s)
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y

α

α̇
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+

Figure 3. Bouncing ball trajectory (left) and realization scheme of M1(y) in (34) (right).
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Figure 4. Adopted filters and multiplicative functions (left) and ball’s mass estimation (right).
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5.2. Mechanical systems with dry friction

The aim of this nonlinear example is to show that the impulsive terms in the proposed
formulation (8) can be obtained by simple differentiation of the underlying process. Let H(.)
denote the Heaviside step function. Assuming zero initial conditions for simplicity, the simple
pendulum subject to asymmetrical dry friction as well as a forcing term u can be described
by equation (36) leading to (37) by means of a first order differentiation:

ÿ + a0 sin(y) = b1 H(ẏ) − b2H(−ẏ) + u, (36)

y(3) + (a0 sin(y) − u)(1) =
∑

j

σjδ(t − tj), (37)

where tj denotes the time sequence when the angular velocity is crossing zero (that is when

sign
(

dy
dt (tj−)

)
×sign

(
dy
dt (tj+)

)
= −1) , and σj = (−1)j+r(b2+b1) the jumps in the dry friction

effects (r = 0 or 1 depending on the initial state). Note that although the first order derivation
term is affine and not linear with respect to the coefficient a0, we can easily recover the general
structure of (8) by considering s3(y−u/s2) in the third order derivation. Using the singularities
annihilation approach described in this paper, the coefficients bi and hence the jumps do
not need to be known a priori, and in order to avoid an accumulation point phenomena, as
encountered in the previous example, we shall assume a non trivial input u excluding infinitely
many switches between the upper and lower friction value for ẏ = 0. Here, we are still in
the eigenvalue framework of Section 4.4. Figure 5-left shows the simulated trajectories of the
pendulum subject to the input u = 0.12 sin(0.2 t) cos(0.1 t)), with an additive random white
noise (magnitude of ±4% max(y)). The following filters and multiplicative functions have been
selected:

α1(t) = 1(t), α2(t) = sin(0.3 t), h1 =
(

1 − e−sT/5

s

)5

, h2 = e−sT/5h1, T = 8 s,

and as in the previous example, the matrix pencil is obtained using the successive derivatives
of h1 and h2. Denoting wi := α(i)y, vi := α(i) sin(y) and zi := α(i)u, the generic terms of the
matrices of the eigenvalue problem are given by:

M1(y, u)i,j = s3hw0 − 3s2hw1 + 3shw2 + shz0 − hz1, (38)
M0(y, u)i,j = shv0 − hv1. (39)

Figure 5-right shows the estimation of the parameter a0, regardless of the switching time
commutations and rules. For the sake of completeness, and in order to illustrate the previous
comments on identifiability issues, Figure 6 shows, in a reduced noise context (magnitude of
±1% max(y)), the results of the a0’s estimation algorithm, together with the corresponding
normalized eigenvector corresponding to ζ(t). Figure 6-left clearly shows random and constant
phases that illustrate the alternation of identifiability and non identifiability of the switching
times function ζ(t).
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Figure 5. Pendulum trajectories (left) and a0 parameter’s estimation (right)
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Figure 6. Normalized eigenvector (left) and a0 parameter’s estimation (right)

5.3. Example of the thermostat (continued)

In this example, we provide an estimation procedure for the mode a involved in the dynamic
of the thermostat, and adopt the factorization presented in Section 4.4:

[M1(y) + a M0(y)] ξ(t) = 0,

M1(y)i,j = hi ∗ (αj × ÿ), (40)
M0(y)i,j = hi ∗ (αj × ẏ),

with i = 1, 2, j = 1, 2. The response y(t) and the functions h1, α1 and α2 are those described
in Section 4.1, and the additional filters are given by h2(s) = h1(s) e−0.3 s. Rather than solving
an eigenvalue problem, which turned out to be more noise sensitive in this application, we
adopt the nonlinear formulation:

det [M1(y) + a M0(y)] = c0(t) + a c1(t) + a2 c2(t) = 0, (41)
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and estimate, in a least square sense, the linear system derived from the discrete measurements
(with sampling period te = 0.02 s.):

⎛
⎜⎝

c1(te) c1(te)
...

...
c2(k te) c2(k te)

⎞
⎟⎠

(
a
a2

)
=

⎛
⎜⎝

−c0(te)
...

−c0(k te)

⎞
⎟⎠ (42)

0 t1 t2 t3 t4 t5 t6 t7 20
0

0.5

1

1.5

2

Estimation of the coeffcient a

t(s)

Figure 7. Estimate of the dynamic a of the heating process

Figure 7 shows the estimate of the mode a, regardless of the unknown switching sequence. It
should be stressed that, throughout this paper, an accurate quantification of the noise effects
is not an easy task, with regard to the structure of the formed terms, and small bias in the
presented identification technique may occur. Note finally that this last example also raises
the question of choosing the best approach between a noise sensitive eigenvalue problem and
a nonlinear and redundant formulation.

6. CONCLUSION

This paper has presented new tools for the on line parameters estimation of (possibly
nonlinear) systems with impulsive terms. A unified method has been proposed using simple
algebraic techniques which are based on distributions, annihilation of singular terms and
integrations. The performance of the proposed procedure has been illustrated in simulation
studies. Although these simulations have demonstrated favorable robustness properties against
measurement noises, these properties highly depend on the filtering capability of the filters
within the reduced dwell time, and on the choice of the structure of the estimation problem.
Together with the selection of optimal multiplicative functions, such issues are under active
investigations. According to these studies, the capability to estimate parameters and switching
times, using non asymptotic methods, may provide new perspectives for real time control
procedures.
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