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Estimating the minimal length of Tardos code

Teddy Furon1, Luis Perez-Freire1, Arnaud Guyader2, and Frédéric Cérou2⋆

1 Thomson Security Lab, Cesson-Sévigné, France
2 INRIA Rennes Bretagne Atlantique, Rennes, France

Abstract. This paper estimates the minimal length of a binary proba-
bilistic traitor tracing code. We consider the code construction proposed
by G. Tardos in 2003, with the symmetric accusation function as im-
proved by B. Skoric et al. The length estimation is based on two pillars.
First, we consider the Worst Case Attack that a group of c colluders can
lead. This attack minimizes the mutual information between the code
sequence of a colluder and the pirated sequence. Second, an algorithm
pertaining to the field of rare event analysis is presented in order to es-
timate the probabilities of error: the probability that an innocent user
is framed, and the probabilities that all colluders are missed. Therefore,
for a given collusion size, we are able to estimate the minimal length of
the code satisfying some error probabilities constraints. This estimation
is far lower than the known lower bounds.
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1 Introduction

This article deals with traitor tracing which is also known as active fingerprinting,
content serialization, user forensics or transactional watermarking. The typical
application is as follows: A video on demand server distributes personal copies of
the same content to n buyers. Some are dishonest users whose goal is to illegally
redistribute a pirate copy. The rights holder is interested in identifying these
dishonest users. For this purpose, a unique user identifier consisting on a sequence
of m symbols is embedded in each video content thanks to a watermarking
technique, thus producing n different (although perceptually similar) copies.
This allows tracing back which user has illegally redistributed his copy. However,
there might be a collusion of c dishonest users, c > 1. This collusion mixes their
copies in order to forge a pirated content which contains none of the identifiers
but a mixture of them.

The traitor tracing code invented by Gabor Tardos in 2003 [1] becomes more
and more popular. This code is a probabilistic weak fingerprinting code, where
the probability of accusing an innocent is not null. The decoding of this code
is focused, in the sense that it states whether or not a given user is guilty. Its
performances are usually evaluated in terms of the probability ǫ1 of accusing
an innocent and the probability of missing all colluders ǫ2. Most of the articles
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2 Tardos code length experimental assessment

dealing with the Tardos code aim at finding a tight lower bound of the length of
the code. In his seminal work G. Tardos shows that, in order to guarantee that the
probability of accusing an innocent is below ǫ1, the inequality m > Kc2 log n/ǫ1
with K = 100 must be satisfied. Many researchers found the constant K =
100 not accurate. Better known approximations are, for instance, K = 4π2 [2],
K = 38 [3]. Other works propose more practical implementations of the Tardos
code [4]. The reader will find a pedagogical review of this code in [5].

The goal of this paper is to propose yet another evaluation of the Tardos
constant. Whereas the previous articles proposed values based on theoretical
bounds, our approach is radically different because it is purely experimental. For
a given length of code m, we estimate the probability of accusing an innocent
and the probability of missing all colluders. This task is not easy because the
probabilities to be estimated are very small. Indeed, a classical Monte-Carlo
algorithm would take too long time. The algorithm we propose in Sec. 4 is the
result of a collaboration between statistician experts in rare event analysis and
watermarkers. It is very generic and much more efficient than a classical Monte
Carlo estimator. It estimates the probability P that a set of data x ∈ X with a
known pdf pX has a score s(x), with s(.) : X → R a deterministic score function,
bigger than a given threshold τ: P = Pr[s(x) > τ].

This experimental approach has also the advantage to be closer to what really
matters in practice. All the aforementioned theoretical bounds are based on the
mean of the accusation scores of the colluders. This is needed for mathematical
tractability but it provides an upper bound of the probability of false negative in
the ‘Detect-one’ case: if the mean of the accusation scores is below the threshold,
then at least one colluder is not accused, hence a false negative. In our experi-
mental setup, we estimate the probability that the maximum (resp. minimum)
of the colluders scores is below the threshold. This is the exact definition of a
false negative event for the ‘Detect-one’ strategy (resp. ‘Detect-all’ strategy) [6].

The second main idea of this paper is the Worst Case Attack. Sec. 2 presents
the model supporting a collusion strategy which is compliant with the well known
marking assumption [7]. Among these collusion strategies, it appears that some
of them have a deeper impact on the accusation performances than others. This
is quite surprising because the Tardos decoding was previously believed to be
invariant against the collusion strategy [5]. The Worst Case Attack (WCA) is
thus defined as the collusion strategy minimizing the accusation performances.
In order to evaluate these performances in the broadest sense, Sec. 3 relies on
the concept of achievable rate of a traitor tracing code introduced in [6] as the
criterion to be minimized. The experimental assessment is then based on the
WCA in order to estimate the true minimal Tardos constant K.

2 The Setup

2.1 Code generation

We briefly remind how the Tardos code is designed. The binary code X is com-
posed of n sequences of m bits. The sequence Xj = (X(j, 1), · · · , X(j,m)) identi-



Estimating the minimal length of Tardos code 3

fying user j is composed of m independent binary symbols, with PrX(j,i)[x(j, i) =
1] = pi, ∀i ∈ [m], with [m] denoting {1, . . . ,m}. {Pi}i∈[m] are independent and
identically distributed auxiliary random variables in the range [0, 1]: Pi ∼ f(p).
Tardos proposed the following pdf, f(p) = (π

√

p(1 − p)−1, which is symmetric
around 1/2: f(p) = f(1 − p). It means that symbols ‘1’ and ‘0’ play a similar
role with probability p or 1 − p. The actual occurrences {Pi}i∈[m] of these ran-
dom variables are drawn once for all at the initialization of the code, and they
constitute its secret key.

2.2 Collusion process

Denote the subset of colluder indices by C = {j1, · · · , jc}, and XC = {Xj1 , . . . ,Xjc
}

the restriction of the traitor tracing code to this subset. The collusion attack is
the process of taking sequences in XC as inputs and yielding the pirated sequence
Y as an output.

Fingerprinting codes have been first studied by the cryptographic community
and a key-concept is the marking assumption introduced by Boneh and Shaw [7].
It states that, in its narrow-sense version, whatever the strategy of the collusion
C, we have Y (i) ∈ {X(j1, i), · · · , X(jc, i)}. In words, colluders forge the pirated
copy by assembling chunks from their personal copies. It implies that if, at index
i, the colluders’ symbols are identical, then this symbol value is decoded at the
i-th chunk of the pirated copy.

This is what watermarkers have understood from the pioneering crypto-
graphic work. However, this has led to misconceptions. Another important thing
is the way cryptographers have modelized a host content: it is a binary string
where some symbols can be changed without spoiling the regular use of the
content. These locations are used to insert the code sequence symbols. Cryptog-
raphers assume that colluders disclose symbols from their identifying sequences
comparing their personal copies symbol by symbol. The colluders cannot spot a
hidden symbol if it is identical on all copies, hence the marking assumption.

In a multimedia application, the content is divided into chunks. A chunk can
be a few second clip of audio or video. Symbol X(j, i) is hidden in the i-th chunk
of the content with a watermarking technique. This gives the i-th chunk sent to
the j-th user. In this paper, we mostly address collusion processing where the
pirated copy is forged by picking chunks from the colluders’ personal copies. The
marking assumption in the studied problem still holds but for another reason:
as the colluders ignore the watermarking secret key, they cannot create chunks
of content watermarked with a symbol they do not have. However, contrary to
the original cryptographic model, this also implies that the colluders might not
know which symbol is embedded in a chunk.

At the end of the paper, we also consider a content post-processing: After
mixing their copies, the colluders apply a coarse compression for instance. We
assume that this yields decoding errors at the watermarking layer. However,
we suppose the colluders do not control or know where the errors appear, and
at which rate. Therefore, the collusion consists in two independent processing:
mixing of copies followed by a degradation of the watermarking layer.
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2.3 Mathematical model

Our mathematical model of the collusion is essentially based on four main as-
sumptions. The first assumption is the memoryless nature of the collusion attack.
Since the symbols of the code are independent, it seems relevant that the pirated
sequence Y also shares this property. Therefore, the value of Y (i) only depends
on {X(j1, i), · · · , X(jc, i)}.

The second assumption is the stationarity of the collusion process. We as-
sume that the collusion strategy is independent of the index i in the sequence.
Therefore, we can describe it for any index i, and we will drop indexing for sake
of clarity in the sequel.

The third assumption is the exchangeable nature of the collusion: the colluders
select the value of the symbol Y depending on the values of their symbols, but
not on their order. Therefore, the input of the collusion process is indeed the
type of their symbols (i.e. the empirical probability mass function). In the binary
case, this type is fully defined by the following sufficient statistic: the number
Σ(i) of symbols ‘1’: Σ(i) =

∑c
k=1 X(jk, i).

The fourth assumption is that the collusion process may be deterministic
(for instance, majority vote, minority vote), or random (for instance, the symbol
pasted in the pirated sequence is decided upon a coin flip).

These four assumptions yield that the collusion attack is fully described by
the following parameter: θ = {θ0, . . . , θc}, with θσ = PrY [1|Σ = σ]. There is
thus an infinity of collusion attacks, but we can already state that they all share
the following property: The marking assumption enforces that θ0 = 0 and θc = 1.
A collusion attack is thus defined by c− 1 real values in the hypercube [0, 1]c−1.

At the end of the paper, we consider a content processing on top of the
collusion. The model is a Binary Symmetric Channel with error rate ǫ. Since the
colluders do not control the value of ǫ, their collusion strategy is independent of
this additional degradation. Its impact transforms θ into θ(ǫ) = (1 − 2ǫ)θ + ǫ.

3 The Worst Case Attack

3.1 Tardos decoding

The accusation proposed by G. Tardos belongs to the class of “simple decoders”,
using the nomenclature introduced by P. Moulin [6]. For any user j, a simple
decoder calculates a score depending on the code sequence xj , the sequence y

decoded from the pirated copy, and the secret of the code p = (pi, . . . , pm).
B. Skoric et al. [8] proposed a symmetric version of the original Tardos score:

s(xj ,y,p) =
∑

i∈[m]

δy(i)(x(j, i))

√

1 − py(i)

py(i)
− (1 − δy(i)(x(j, i)))

√

py(i)

1 − py(i)
, (1)

with py(i) = p
y(i)
i (1 − pi)

1−y(i), and δa(b) the Kronecker mapping equalling 1 if
a = b, 0 else. User j is accused if s(xj ,y,p) is bigger than a threshold τ. This
last parameter sets the trade-off between probabilities ǫ2 and ǫ1.
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Paper [5] explains what seems to have been the rationale of G. Tardos. The
collusion attack θ is a nuisance parameter because it is not known at the ac-
cusation side. Nevertheless, the performances of the code should be guaranteed
whatever the value of this nuisance parameter. The decoding proposed by Tardos
and improved by Skoric et al. has indeed a very strong invariance property: for a
given collusion size, the mean and the variance of the scores of the innocent and
the colluders do not depend on θ. Therefore, no collusion is worse than another.

Yet, the rationale of [5] is in practice flawed. The typical behavior of the scores
boils down to mean and variance if and only if they are Gaussian distributed.
Being the sum of statistically independent random variables, the Central Limit
Theorem (CLT) states that this is the case only when the code length is infinite
which is of course not true in practice. The achievable rate reflects this fact.

3.2 The Achievable Rate

The rate of a traitor tracing code is defined by R = log2(n)/m. Loosely speaking,
the achievable rate is a parameter which tells the maximum code rate that
can be achieved yet guaranteeing a reliable accusation process exists [6]. The
achievable rate for the simple decoder against a given collusion attack, under
the assumptions stated in this paper, is given by [6]:

Rsimple(θ) = EP [I(Y ;X|P = p)]

= EP [H(Y |P = p)] − EP [H(Y |X, P = p)] ,

= EP

[

DKL(pY |X · pX ||pX · pY |P )
]

, (2)

where EP [] denotes expectation over P , I(Y ;X|P = p) is the mutual information
between Y and X conditioned on P = p, and H(x) = −x log2(x)−(1−x) log2(1−
x) is the binary entropy function [9]. Notice that the achievable rate depends
on the considered collusion attack θ through the probabilities involved in the
computation of the mutual information. The equality (2) provides us with an
interesting interpretation. The accusation can be seen as a hypothesis test: H0

the user is innocent, H1 the user is guilty. The performances of the test are
theoretically limited by the Kullback-Leibler distance, DKL, between the pdf of
the observations under both hypotheses. Under H0, the sequence Y is created
from sequences statistically independent from the user sequence X. Therefore,
their joint pdf is indeed the product pX · pY . Under H1, on the contrary, there
exists a conditional pdf linking the two sequences. The conditioning over P comes
from the fact that the accusation uses this secret parameter as side information.
The bits of the sequences being independent, the KL distance of the sequences
is the sum of the KL distances of the samples, which is m times the expectation
per symbol.

The Stein lemma [9] states that, asymptotically, ǫ1 → 2−mRsimple(θ). Consider
n = 2mR with R the rate of the code. Then, asymptotically, the probability of
falsely accusing any user is bounded by nǫ1 < 2−m(Rsimple(θ)−R). This bound has
a positive error exponent (i.e., an exponential decrease as the code gets longer) if
the rate of the code is lower than the achievable rate: R < Rsimple(θ). Moreover,
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this should hold for any collusion attack, and thus, for the Worst Case Attack
(WCA) defined as follows:

θ
⋆ = arg min

θ

Rsimple(θ). (3)

The WCA is thus defined as the collusion attack θ
⋆ minimizing the rate of the

code, or equivalently, the asymptotic positive error exponent. To calculate the
achievable rate, we need the following expressions of the probabilities induced
by θ:

PrY [1|p] =

c
∑

k=0

θk (c
k) pk(1 − p)(c−k), (4)

PrY [1|X = 1, p] =

c
∑

k=1

θk

(

c−1
k−1

)

pk−1(1 − p)(c−k), (5)

PrY [1|X = 0, p] =

c−1
∑

k=0

θk

(

c−1
k

)

pk(1 − p)(c−k−1). (6)

The achievable rate is then simply:

Rsimple(θ) = EP [H(PrY [1|p])]

− EP [p · H(PrY [1|X = 1, p]) − (1 − p) · H(PrY [1|X = 0, p])] . (7)

3.3 Identifying the WCA

The expression (7) can be evaluated through numerical integration for a given θ.
To identify the WCA, we use a classical optimization algorithm to find the min-
imum of the achievable rate. This is however only tractable for a small collusion
size. Here are the results:

c = 2 : θ
⋆ = (0, 0.5, 1),

c = 3 : θ
⋆ = (0, 0.652, 0.348, 1),

c = 4 : θ
⋆ = (0, 0.488, 0.5, 0.512, 1),

c = 5 : θ
⋆ = (0, 0.594, 0.000, 1.000, 0.406, 1). (8)

The fact that the WCA satisfies the relationship θk = 1 − θc−k for any
k ∈ [c] is very surprising. The WCA belongs to the class of collusion named
‘sighted colluders’, also known as ‘multimedia collusion’ [5]. This relationship
means that the colluders do not need to know which symbol is indeed in the i-th
block of content. They just need to compare their blocks of content and to count
the similar versions they received: They have Σ(i) times the same version, and
c − Σ(i) the other version. But, they don’t know which version indeed conveys
the symbol ‘1’ or ‘0’. This information is not required for launching the WCA.
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4 A Rare Event Analysis

Our algorithm estimating probabilities of rare events is explained in a very gen-
eral manner, and then its application to traitor tracing is discussed. The goal is
to estimate the probability P of the rare event A that a set of data, called here-
after a particle, x ∈ X with a known pdf pX has a score s(x), with s(·) : X → R a
deterministic score function, bigger than a given threshold τ: π = PrX[s(x) > τ].

4.1 The Key Idea

To factorize a probability into a product of bigger probabilities, we use the
following trick: let AN = A be the rare event, and AN−1 a related event such
that when AN occurs, AN−1 has also occured. However, when AN−1 occurs, it
doesn’t imply that AN is true. Hence, AN−1 is less rare an event than AN . This
justifies the first equality in the following equation, the second one being just
the Bayes rule:

Pr[AN ] = Pr[AN , AN−1] = Pr[AN |AN−1] · Pr[AN−1]. (9)

Repeating the process, we finally obtain:

P = Pr[AN ] = Pr[AN |AN−1]Pr[AN−1|AN−2] · · ·Pr[A2|A1]Pr[A1] (10)

provided that {Aj}
N
j=1 is a sequence of nested events. Knowing that estimation of

a probability is easier when its value is bigger, we have succeeded in decomposing
a hard problem into N much easier problems.

This decomposition is very general, but the construction of this sequence of
nested events is usually not a simple task. An exception is when the rare event
AN admits a geometrical interpretation: AN occurs when x ∈ AN . A sequence
of nested events translates then in a sequence of subsets AN ⊂ AN ⊂ . . . ⊂ A1.
The task is even simpler in traitor tracing problem because an indicator function
of these events can be as follows: x ∈ Aj if s(x) > τj . Nested events are created
for a sequence of increasing thresholds: τ1 < τ2 < · · · < τN = τ.

4.2 Generation of vectors

The first step estimates π1 = Pr[A1]. In practice, N is large enough so that
this probability is not lower than 0.1. Then, a classical Monte Carlo estimator
is efficient. We generate l1 vectors x distributed as px, we calculate their score
and count the number k1 of times it is higher than τ1. This first step leads not
only to an estimator π̂1 = k1/l1, but also to a generator of the event A1. It is
not very efficient because approximately only π1l1 occurrences of the event A1

are produced.
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4.3 Replication of particles

The issue of the second step is the estimation of π2 = Prob[A2|A1]. We set the
threshold τ2 just above τ1, so that this probability is large (typically not lower
than 0.1). A MC estimator is π̂2 = k2/l2, where k2 is the number of particles
x of the set A1 which also belong to A2. We need to generate l2 particles x

distributed according to pX and in the set A1. We could apply the first step of
the algorithm to generate these particles, but it is not efficient enough as such.

We then resort to a so-called replication process, which almost multiplies by
a factor ρ the size of a collection in a particular region of the space. For each
particle, we make ρ copies of it, and then we slightly modify the copies in a
random manner. This modification process must leave the distribution of the
particle invariant: if its inputs are distributed according to pX, its outputs must
follow the same distribution. A modified copy is likely to belong to the set if the
modification is small. However, we check whether this is really the case, and go
back to the original particle if not. The replication process is thus a modification
followed by a filter.

Since we have run the first step, we have already k1 particles in A1. We
choose a replication factor ρ1 ≈ π̂1

−1 approximately keeping the same number
of particles. We calculate the scores of the ρ1k1 modified copies. We keep the
copies whose score is bigger than τ1, and replace the others by their original
particle. This makes the l2 = ρ1k1 input particles of the MC estimator. These
two first steps lead to an estimator of π2 and a generator of events A2.

The core of the algorithm is thus the following one. The selection kills the par-
ticles whose score is lower than an intermediate threshold τi, these are branched
on selected particles. The replication proposes randomly modified particles and
filters those that are still above the intermediate threshold. Selection and repli-
cation steps are iterated to estimate the remaining probabilities π3, · · · , πN . The
estimator π̂ is then simply π̂1 . . . π̂N .

4.4 Adaptive thresholds

The difficulty is now to give the appropriate values to the thresholds {τi}
N−1
1 ,

and also to the sizes of the sets {li}
N
1 . The probabilities to be estimated must

not be very weak in order to maintain reasonable set sizes. Moreover, it can
be shown that the variance of π̂ is minimized when the probabilities {π̂i}

N
i are

equal [10]. We would need the map τ = F−1(π) to set the correct value of the
thresholds, which we have not. Otherwise, we would already know the value of
π = F (τ).

The idea is to set the thresholds adaptively. The number of particles is kept
constant in all the experimental rounds: li = l ∀i ∈ {1 · · ·N}. The threshold
τi has the value such that ki = k. Thus, k and l are the parameters of the
algorithm. The estimated probabilities are all equal to πi = k/l, ∀i ∈ [N − 1]. It
means that the selection sorts the scores in a decreasing order, and adaptively
sets τi as the value of the k-th higher score. Particles whose score is below this
threshold are removed from the stack, and replaced by copies of other particles.
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The size of the stack is constant and the replication factors {ρi} are all equal
to l/k (k divides l). All the particles in the stack are independently modified.
The modification of a particle is accepted only if its new score is still above the
threshold.

The last step is reached when τi > τ. Then, we set N = i, τN = τ and kN is
the number of scores above τ, so that, for this last iteration, π̂N = kN/l. At the
end, the probability of the event AN is estimated by:

π̂ =
kNkN−1

lN
. (11)

The number of iterations is expected to be as follows:

E [N ] = ⌊log π−1/ log l/k⌋ + 1. (12)

The total number of detector trials is lN , which has a logarithmic scale with
respect to π−1, whereas a classical MC estimator would need at least π−1 trials.

The method is given in pseudo-code in Algorithm 1. Note that the thresholds
{τi} are stored in memory. This is not useful when estimating π, but this gives a
nice byproduct for ROC curves: the map π = f(τ) is estimated through the fol-
lowing points: {((k/l)j , τj)}

N−1
j=1 . From [11], the method inherits the asymptotic

properties of consistency and normality, with equations:

π̂
a.s.

−−−−→
l→+∞

π (13)

√

l(π̂ − π)
L

−−−−→
l→+∞

N (0, σ2) (14)

with

σ2 & π2

(

(N − 1)

(

l

k
− 1

)

+
l

kN
− 1

)

(15)

4.5 Estimation of ǫ1

We use our algorithm to estimate the probability of accusing an innocent. Parti-
cles in this framework are now binary code sequences of length m. The GENERATE
subroutine is given by the construction of the code [1] and the SCORE function
is given by Eq. (1). One very important fact is that the symbols in a code se-
quence are statistically independent and distributed according to their own law.
The MODIFY subroutine is thus very simple: we randomly select a fraction µ of
them (parameter µ sets the modification strength), and re-generate them ac-
cording to their own law: PrXj,i

[1] = pi. These non deterministic changes leave
the distribution of the code sequence invariant.

We generate c code sequences of length m. The collusion strategy is the
WCA. Then, we estimate the map τ = F−1(PrX[s(x,y,p) > τ|y,p]) with our
algorithm. Indeed, the target threshold is fixed to a very high value so that the
algorithm stops after Nmax iterations. The obtained mapping is Nmax couples
(τ̂j , (k/l)j). However, this holds for a special occurrence of y and p. Therefore,
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we need to integrate this conditional probability over y and p. To do so, we
run W times the estimator. At each run, the secret key p is different, and c
code sequences are drawn independently and uniformly to forge a new pirated
sequence. The j-th threshold is averaged over the W estimates. We estimate the
plot mapping ǫ1 and the threshold τ, for different couples (c, m).

4.6 Estimation of ǫ2

The second part of the experiment measures probability ǫ2 of missing all collud-
ers, i.e. the false negative for the ‘Detect-one’. A particle is now a set of c Tardos
sequences {x1, . . . ,xc} and sequence y forged from these c sequences by the
WCA. The MODIFY subroutine independently modifies the c Tardos sequences as
described above.

The SCORE function is more complicated. From a particle, it calculates the c
accusation sums. The score of the particle is then their mean or their maximum.
Tardos and his followers based their analysis on the mean of the scores of the
colluders because this leads to tractable equations. The rationale is that if the
mean is below the threshold, then there is at least one colluder whose score is
lower than the threshold. However, the probability that the mean is below the
threshold τ is a very rough estimate of the probability of false negative ǫ2. We
choose to follow Tardos’ choice of the mean to appreciate the refinement by our
experimental investigation compared to the constants found by Tardos and his
followers via Chernoff bounds. However, we can also set the score of a particle
as the maximum of the c accusation sums in order to really estimate ǫ2 as the
probability that none of the c colluders gets caught.

The rest of the second part works like the first part. We are interested
in estimating the mapping τ = F−1(Prob(maxi∈[c] s(xi,y,p) < τ)) (max or
mean) using our algorithm. The experiment is run W times, and the interme-
diate thresholds are averaged for a better precision. Then, we plot in the same
figure (see Fig. 1) the false positive mapping and the false negative mapping,
except that for this latter one, the probability is taken to the power 4/c to
provide a fair comparison to previous evaluations of constant K where ǫ2 was

set to ǫ
c/4
1 (original Tardos setup). The intersection of the two mappings at a

point (T0(m, c), ǫ0(m, c)) implies that it is possible to find a threshold such that
ǫ1 = ǫ0(m, c) and ǫ2 = ǫ0(m, c)c/4. This value indeed reflects the best we can
do given m and c. We cannot achieve a lower significance level while preserving

the relationship ǫ2 = ǫ
c/4
1 because no threshold fulfills this constraint at a lower

significance level than ǫ0(m, c). The only way to get lower significance levels is
to increase the code length for a given collusion size.

5 Experimental Evaluation

Several experimentations have been carried out with various code lengths m ∈
{100, 150, 200, 300, 400, 600} and collusion size c ∈ {3, 4, 5} to obtain different
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Fig. 1. Mappings of the false positive probability (blue) and false negative probability
to the power c/4 (red) against the threshold. m = 600, c ∈ {3, 4, 5}. The score of a
particle is the max of the c colluders scores. The collusion strategy is the worst as given
in (8).

values of ǫ0(m, c). The final plot draws m against the function c2 log ǫ0(m, c)−1,
see Fig. 2.

The most striking fact is that the evaluated lengths are indeed much lower
than foreseen by the theoretical bounds in m > Kc2 log ǫ−1

1 . With the symmetric
accusation scoring, K = 50 (Tardos) or K = 2π2 (Skoric et al.). Here, the
experiment clearly shows that m ≈ K1c

2 log ǫ−1
1 + K0(c), with a negative K0(c)

and K1 < K. Yet, this is not a contradiction: previous works claimed that if m
is bigger than the lower bound, one could be sure that the requirements on the
probabilities of errors were met. We just show that indeed these lower bounds
are over-pessimistic. It is not very clear whether the slope of the plot K1 is
independent of the collusion size. However, if this holds, this is a very very light
dependency, and more experiments should be carried out to confirm this fact.

5.1 Maximum and mean score

The evaluation of the false negative rate from the mean of the scores or their
maximum doesn’t change the nature of the plot. Whereas constant K1 is not
really different, the difference on constant K0 might have a big impact in practice:
for c = 4 and m = 600, the minimum achievable error probability is ǫ1 = ǫ2 =
2, 5 · 10−3 for the mean score, and 5, 3 · 10−4 for the maximum score, or, in
the other way around, for a given ǫ1 and c = 4, the code length is more than
200 bits shorter than foreseen by mean-based estimations. Indeed, these are
overestimating the power of the colluders. It is much more difficult to forge a
pirated copy such that all the accusation scores is below a given τ, than to forge
a pirated copy such that the mean of these scores is below τ.
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Fig. 2. Code length needed to obtain ǫ1 = ǫ
c/4
2 for c = 2, 3 or 4 colluders (WCA),

against function c2 log ǫ−1
1 . The probability ǫ2 has been estimated with the mean of the

colluders’ scores (solid lines) or their maximum (dotted lines). Aforementioned bounds
appear in black: Tardos K = 50 (dotted line), Skoric et al. K = 2π2 (solid line).

5.2 The impact of the Worst Collusion Attack

Fig. 3 compares the impact on the code length of the WCA and the Majority
attack. Clearly, the WCA increases the length of code for given collusion size
and probabilities of errors. A linear predictor shows that the constant K1 for the
WCA is approximately the same as when the collusion attack is a majority vote
(cf. Table 5.2). This supports the commonly accepted fact, as stated in previous
articles, that the collusion attack has no impact on the asymptotic expression
of the code length when the accusation rule (1) is used. Nevertheless, the WCA
imposes a bigger offset K0, which can make a big difference for not so small error
probabilities.

Majority vote WCA WCA ǫ = 0.05 WCA ǫ = 0.1
K1 K0 K1 K0 K1 K0 K1 K0

c = 3 7.2 −180 7.6 −180 9.3 −210 11.6 −245

c = 4 7.0 −270 7.1 −265 8.6 −305 10.6 −355

c = 5 6.7 −380 6.6 −340 8.0 −405 9.6 −465

Table 1. Identification of the model m = K1c
2 log ǫ−1

1 + K0.
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Fig. 3. Code length needed to obtain ǫ1 = ǫ
c/4
2 for c = 2, 3 or 4 colluders. The colluders

lead a WCA (solid lines) or a Majority vote (dashed lines).

5.3 The impact of the Binary Symmetric Channel

Fig. 4 shows the impact of the error rate ǫ of the BSC on top of the WCA
attack. It is not surprising to note that the code length grows as ǫ increases.
Table 5.2 clearly reveals that the BSC error rate has a dramatic impact on both
constants K1 and K0. To outline the impact of the BSC, let us consider a channel
producing erasures (unreadable bits) with a rate η. At the accusation side, the
erasures are not considered, and everything acts as if the code length is reduced
by a factor η. Hence, for a given couple (c, ǫ1), one needs mη extra bits, which
changes the constants in K1(1+η) and K0(1+η). The impact of the BSC channel
is much stronger: an error rate of 5% produces an increase of 20%, an error rate
of 10% increases the constant K1 by 50%. Therefore, it is of utmost importance
to resort to a very robust watermarking scheme.

6 Conclusion

The estimation of the code length of a Tardos code requires two skills: to assess
what is the worst attack the colluders can lead, and to experimentally assess
the probabilities of false positive and false negative for a given collusion size
and code length. The worst case attack is defined as the collusion minimizing
the achievable rate of the code. This theoretical definition has a very broad
scope: whatever the accusation algorithm, we are sure that the colluders cannot
lead a stronger attack than this. We propose an estimator of weak probabilities
whose scope is far broader than the traitor tracing problem. Our experimental
evaluation gives lengths of code which are far smaller than the previously known
theoretical lower bounds.
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Fig. 4. Code length needed to obtain ǫ1 = ǫ
c/4
2 for c = 2, 3 or 4 colluders. A Binary

Symmetric Channel modifies the pirated sequence forged by the WCA, with error rate
ǫ = 0 (solid lines), ǫ = 0.05 (dashed lines) and ǫ = 0.1 (dotted lines).
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Algorithm 1 Estimation of the probability that s(x) > τ , when x ∼ pX.

Require: subroutines GENERATE, SCORE, HIGHER SCORE & MODIFY

1: for i = 1 to l do

2: xi = GENERATE(pX); sxi = SCORE(xi);
3: end for

4: N = 1;
5: τN = HIGHER SCORE(sx, k); τ ′ = τN;

6: while τ ′ < τ and N < Nmax do

7: t = 1;
8: for i = 1 to l do

9: if sxi ≥ τ ′ then

10: yt = xi; syt = sxi; t = t + 1;
11: end if

12: end for

13: for i = 1 to k do

14: for j = 1 to l/k do

15: z = MODIFY(yi);
16: if SCORE(z) > τ ′ then

17: x(i−1)l/k+j = z; sx(i−1)l/k+j = SCORE(z);
18: else

19: x(i−1)l/k+j = yi; sx(i−1)l/k+j = syi;

20: end if

21: end for

22: end for

23: N = N + 1; τN = HIGHER SCORE(sx, k); τ ′ = τN;

24: end while

25: k′ = 0;
26: for i = 1 to l do

27: if sxi > τ then

28: k′ = k′ + 1;
29: end if

30: end for

31: return π̂ = k′kN−1

lN
;
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