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Analysis of Quasi-Cyclic LDPC codes under ML

decoding over the erasure channel

Mathieu Cunche∗, Valentin Savin†, Vincent Roca∗

∗INRIA Rhône-Alpes Grenoble France, †CEA-LETI MINATEC Grenoble France

Abstract—In this paper, we show that over the binary erasure
channel, Quasi-Cyclic LDPC codes can efficiently accommodate
the hybrid iterative/ML decoding. We demonstrate that the quasi-
cyclic structure of the parity-check matrix can be advantageously
used in order to significantly reduce the complexity of the ML
decoding. This is achieved by a simple row/column permutation
that transforms a QC matrix into a pseudo-band form. Based on
this approach, we propose a class of QC-LDPC codes with almost
ideal error correction performance under the ML decoding, while

the required number of row/symbol operations scales as k
√

k,
where k is the number of source symbols.

I. PROBLEM POSITION AND RELATED WORKS

In modern communication systems, data is often transmitted

as independent packets. These packets can be subject to losses

(erasures) caused by bad channel conditions, intermittent con-

nectivity, congested routers, or failures. If solutions based

on the retransmission of lost packets are possible (ARQ,

Automatic Repeat Requests), they are not always suitable (e.g.

broadcasting), nor possible (no return link, e.g. satellite com-

munications). In such cases Forward Error Correction (FEC)

schemes represent the foremost alternative. These schemes

rely on erasure codes operating either at the transport or the

application layer of the communication system, which are able

to recover lost data thanks to the transmission of redundant

(repair) packets.

In the family of error-correcting codes, a prominent role

is played by Low-Density Parity-Check (LDPC) codes. They

feature a linear complexity iterative (IT) decoding, and can be

optimized for a broad class of channels, with asymptotically

performance close to the theoretical Shannon limit. Although

iterative and maximum likelihood (ML) are equivalent for

cycle-free codes, for a given finite code (with cycles) the

gap between their performance can be significant. Hence, ML

decoding has been recently considered in order to improve

the correction capacity of LDPC codes over the binary era-

sure channel (BEC) for short to moderate code-length. This

comes at a cost in the decoding complexity; however, efficient

ML decoding algorithms with reduced complexity have been

proposed over the last few years [1].

Before discussing the complexity of the ML decoding, let us

first consider the complexity of the encoding process. Encod-

ing a systematic LDPC code is equivalent to solving a linear

system HpP = HsS, where H = (Hs, Hp) is the parity-

check matrix of the code, and S and P denote respectively

This work was supported by the French ANR grant No 2006 TCOM 019
(CAPRI-FEC project).

the sequences of source and parity bits. This can be done by

Gaussian elimination (GE), whose complexity1, expressed as

the number of row operations2, is expected to scale as k2,

where k denotes the number of source bits. However, it has

been shown in [9] that the GE can take advantage of the

sparseness of the parity check matrix, and it can be efficiently

performed in O((gk)2) row/symbol operations, where g is

called the gap of the code. Roughly speaking, the idea behind

is that if a fraction g of parity bits are resolved, remaining

parity bits can be recovered by performing an iterative erasure

decoding.

Similar considerations apply to the ML decoding over the

BEC, which consists of solving the linear residual system

HeXe = HrXr, where Xr and Xe denote the vectors of

received and of erased bits, respectively, and Hr, He are the

corresponding submatrices of H . Using a GE algorithm that

takes advantage of the sparseness of this system [5], [1], the

decoding complexity scales, in average, as (εk)2 row/symbol

operations, where ε is the average reception overhead neces-

sary to successfully complete the iterative decoding. However,

the decoding complexity is still quadratic in k. As the code

length tends to infinity, ε tends to a positive threshold value,

but even if this asymptotic threshold is close to 0, ε still can

be relatively large for finite codes. Besides, typically, there

is a tradeoff between performance of the IT decoding that

of the ML decoding. Consequently, improvement of the ML

decoding performance comes at the price of some degradation

of the IT performance, which results in an increased average

overhead εIT [7]. For instance, for regular repeat-accumulate

(RRA) codes, it has been shown in [6] that increasing the

degree of source bit-nodes results in an improvement of

the ML performance, but induces a degradation of the IT

performance. Hybrid IT-ML decoding algorithms have also

been considered in [8].

Quasi-Cyclic (QC) LDPC codes [13] are structured LDPC

codes defined by a base matrix B with entries bi,j ∈ N∪{−1}.

Subsequently, parity-check matrices with variable length can

be obtained by expanding the base matrix B by some factor

1We consider here the complexity of the GE, and not of the encoding
process itself. Clearly GE is performed only once, and can be done “offline”,
hence its complexity is irrelevant for the encoding process itself, but it is
relevant in the perspective of the subsequent discussion about ML decoding
complexity.

2Each row operation requires k bit operations (corresponding to the k
entries of the row), and one operation on the right-hand side of the system.
In AL-FEC applications, the right-hand side is not a bit, but an entire packet,
also called symbol. Thus, a row operation will be also referred to as symbol

operation
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z ≥ 1. Within the expansion process, each entry of the base

matrix is replaced by a square z × z matrix: a −1 entry is

replaced by the all-zero matrix, while a non-negative entry

bi,j ≥ 0 is replaced by a circulant permutation matrix corre-

sponding to a shift by bi,j . It is known that non-zero entries

of the base-matrix can be chosen such as to avoid unsuitable

topologies in the expanded matrix (as short cycles), which may

cause degradation of the iterative decoding performance [4].

The goal of this paper is to design LDPC codes that

efficiently accommodate the hybrid IT/ML decoding. Com-

plexity and error correction performance of the ML decoding

constitute the primary objectives. IT performance does not

impact the error correction performance of the overall scheme,

but it allows for increasing throughput in the low-loss scenario.

We do not consider QC-LDPC codes for improving the IT

decoding performance, but for decreasing the ML decoding

complexity. This is achieved by using a transformation of the

residual system HeXe = HrXr into a linear system with a

pseudo-band system matrix. This transformation exploits the

quasi-cyclic structure of the parity-check matrix H . Conse-

quently, the ML decoding can be efficiently performed, and

the required number of row/symbol operations scales as a sub-

quadratic power of k, namely k
√
k.

The paper is organized as follows. In Section II, we briefly

review the GE and ML decoding algorithms. Band transforma-

tion and a complexity analysis of ML decoding are presented

in Section III. Section IV describes the proposed design of

regular repeat-accumulate QC-LDPC codes. Finally, Section

V presents the experimental results, and Section VI concludes

the paper.

II. HYBRID IT/ML DECODING

The hybrid IT/ML decoder [6], [8] is an advantageous

combination of the IT and ML decoders, which has the ability

to cope with fluctuating channel conditions, and allows to

tradeoff between complexity and performance.

A. Principles

Consider an LDPC code defined by a parity check matrix

H , and let X be a codeword transmitted over the BEC. The

subset of received symbols3 is submitted to the IT decoder,

which may recover all or only a part of the erased symbols. If

the IT decoding fails, the ML decoder is activated, and tries

to complete decoding by solving the residual system HeXe =
HrXr, as explained in the introduction. The system matrix

He has a number of rows equal to m′ ≤ m− k and a number

of columns4 equal to n′ ≤ n − k. The above inequalities are

generally tight, except when the IT decoding fails in the error

floor region (small stopping sets). This linear system can be

solved by using the Gaussian elimination method, or any other

algorithm available in the literature.

3Entries X of are referred to as symbols, instead of bits. Actually, in AL-
FEC applications, each symbols represents an entire packet, which is either
erased or correctly received

4Each symbol received or recovered by the IT decoding, removes 1 column
and at least 1 row from the system matrix

B. Gaussian elimination

Although many algorithms are known for solving linear

systems, most of them are based on (efficient implementations

of) the Gaussian Elimination (GE) algorithm. This algorithm

consists of two steps.

First, the Forward Elimination (FE) step transforms the

system into an upper triangular system, which can be done

as follows. Starting from i = 0, choose in column i a non null

entry, the pivot, with row-index j ≥ i. Permute rows i and

j, then add the row i to all the rows corresponding to non-

zero sub-diagonal entries of column i. Simultaneously, similar

operations are performed on the right-hand side of the system,

i.e. the right symbol of the i-th row is added to right symbols

of corresponding rows.

The algorithm completes with a Backward Substitution

(BS) step, which recursively recovers the last symbol of

an upper-triangular system: starting from the last column,

the corresponding erased symbol is given the value of the

corresponding right-hand side symbol, and is then substituted

in all the equations it is involved in.

In the remaining of the paper, this algorithm will be referred

to as the “Standard Gaussian Elimination”. Its complexity is

of order O(k2) row/symbol operations.

III. PSEUDO-BAND MATRIX TRANSFORMATION AND ML

DECODING COMPLEXITY

It is well known that the complexity of the GE algorithm can

be reduced if the system matrix is structured in some specific

way. For instance, the use of a band structure to reduce the ML

decoding complexity has been studied in [11] and [10]. In this

section, we show that the parity check matrix of QC-LDPC

codes features such a “hidden” band structure, that allows for

considerably reducing the complexity of ML decoding with

standard GE.

A. Transformation into a pseudo-band matrix

Consider a base matrix B, of size a× b, with entries from

[0, . . . ,M ]∪{−1}. Let H be a m×n binary matrix, obtained

by expanding B by some factor z > M ; hence, m = za
and n = zb. With an appropriate row/column permutation, the

quasi-cyclic matrix H can be transformed into a matrix H ′

that exhibits a band structure.

The following algorithm performs the appropriate permuta-

tion:

for all (i, j) in [0, . . . ,m− 1]× [0, . . . , n− 1]

a) decompose: i = xiz + yi and j = xjz + yj
b) define: i′ = xi + yia and j′ = xj + yjb
c) set: H ′[i′][j′] = H[i][j]

The resulting matrix H ′ exhibits a pseudo-band structure,

as illustrated at Figure 1. Note that, by convention, the (0, 0)
position of the matrix is the bottom-right position, and the

same convention will be used for the subsequent figures. Two

integers p and q are associated with H ′, which represent

respectively the subdiagonal height and the width of the band.



3

a

b

p

q

q

p

0

0

m

n

Fig. 1. H′, the parity check matrix after row/column permutation

They depend on M , the maximum value of the non-negative

entries of B, and on a and b, the dimensions of B. We have:

p = a(M + 1)

q = b(M + 1)

Proof: Consider the set of z × z circulant matrices

corresponding to a right-shifted identity by k positions, with

k ∈ [0, . . . ,M ], and let cα,β be the element of index (α, β) of

one of these matrices. Then cα,β is potentially non-zero if and

only if (M ≥ β − α ≥ 0) or (α− β ≥ z −M). Now, H[i][j]
is the element with index (yi, yj) of the (xi, yj)-th circulant

matrix composing H . Therefore H[i][j] is potentially non-zero

iff (M ≥ yj − yi ≥ 0) or (yi − yj ≥ z −M).
From the first inequality, we obtain:

M ≥ yj − yi ≥ 0
aM ≥ a

b
(byj)− ayi ≥ 0

In addition, we have a ≥ xi − a
b
xj ≥ −a; therefore:

a(M + 1) ≥ a
b
(byj + xj)− ayi − xi ≥ −a

a(M + 1) ≥ a
b
j′ − i′ ≥ −a

From the second inequality, we obtain:

yi − yj ≥ z −M
ayi − a

b
(byj) ≥ az − aM

Again, tacking into account that a ≥ xi − a
b
xj ≥ −a, we get:

ayi + xi − a
b
(byj + xj) ≥ az − a(M + 1)

i′ − a
b
j′ ≥ az − a(M + 1)

Therefore H ′[i′][j′] is potentially non-zero if and only if

(a(M + 1) ≥ a
b
j′ − i′ ≥ −a) or (i′ − a

b
j′ ≥ m− a(M + 1)),

which implies that (i′, j′) is inside the pseudo-band of H ′.

Although this result holds for any Quasi-Cyclic code, the

pseudo-band structure will be “visible” only if p and q are

significantly smaller than m and n, respectively. This happens

only if M is significantly smaller than z, hence, in Section IV,

we will introduce Quasi-Cyclic codes featuring an appropriate

choice of the base matrix coefficients.

B. Complexity of Gaussian Elimination

During the ML decoding, the linear system to be solved is

represented by the decoding matrix H ′

e, which is a m′ × n′

matrix (n′ ≤ m′ ≤ m) composed of a subset of the rows

and columns of H ′. Consequently, H ′

e inherits the pseudo-

band structure of H ′, as illustrated at Figure 2. Although the

0

0

m’

n’

b q

q

q

b

q

Fig. 2. H′
e

, the decoding matrix
obtained from H′.

0

0

m’

n’

qq + b

2 q + b

n’-q

Fig. 3. The decoding matrix after
the Forward Elimination (FE) step.

subdiagonal height and width of the band of H ′

e are less than or

equal to the above p and q parameters, for simplicity reasons,

we consider that they are both equal to q (note that q ≥ p). The

same convention holds for the supradiagonal height and width

of the band, which are both considered equal to b. The effect

of this pseudo-band structure on the GE algorithm (Section

II-B) is described below.

Thanks to the band structure of the matrix, each FE iteration

(i.e. elimination of non-zero subdiagonal entries in a column)

requires only O(q) symbol operations5 per iteration. The cost

of FE is therefore O(qn′) symbol operations. After the FE

step, the system has a band of width q + b over the diagonal

(because of row permutation), and a column block composed

of the q last columns of the system (see figure 3).

Now, erased symbols are recursively recovered by the BS

step, starting from the erased symbol corresponding to the

last column, back to the erased symbol corresponding to the

first column. Each recovered symbol has to be substituted in

the equations it is involved in. Symbols corresponding to the

last q columns are each one involved in m′ equations, while

symbols corresponding to the first n′−q−b symbols are each

one involved in q equations. Therefore, the overall cost of the

BS is O(qm′ + (n′ − q − b)(q + b)) = O(q(m′ + n′)− q2 −
2qb− n′b− b2)) symbol operations.

Since q and b are negligible with respect to m′ and n′,

and m′ ≈ n′ ≈ m, we conclude that the resolution of the

system requires O(qm) symbol operations. Therefore the QC

structure yields a complexity gain by a factor of m/q with

respect to unstructured matrices.

IV. CODE DESIGN

This section focuses on the design of QC-LDPC codes,

by trading-off performance and complexity constraints. Fix

some base matrix B with size a × b, and let M be the

maximum value of its non-negative entries. Using the pseudo-

band transformation of expanded matrices, it follows from

the above section that the complexity of the ML decoding

scales linearly with the code dimension k (or, equivalently,

the expansion factor z). Although this is an excellent result in

terms of decoding complexity, we will see later (Section V)

that for long codes such a code design yields poor performance

5Remind that a symbol operation corresponds to a sum between two rows,
right-hand side term included.
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with both IT and ML decodings. This is explained by the

fact that the width of the pseudo-band, which depend only

on a, b, and M , becomes too thin with respect to the matrix

dimensions for large values of z. Such a thin band results

in inappropriate graph topologies6 for the IT decoding (more

short cycles and smaller stopping sets) and, simultaneously, it

reduces the probability of He (the ML decoding matrix) being

full-rank. In order to avoid such a situation, we propose the

use of a base matrix with variable non-negative entries. Within

such a matrix, only the −1 entries are fixed. Equivalently,

the indexes of non-negative entries are fixed, but not their

values, which may vary with the expansion factor z, such that

to ensure that the width of the pseudo-band is not too thin.

Pseudo-band width: In [11], [12], Studholm and Blake

conjectured that a matrix with a band of width 2
√
k, filled

with 2 log k symbols per column, is full rank with probability

close to that of fully random matrices. Following this idea, we

set q = C
√
k. This implies M = C

√

zR
b

, where R = k/n is

the code rate, and C is a positive constant. The ML decoding

with standard GE of such a code therefore requires O(k
√
k)

row/symbol operations. Even if the column degree does not

follow the recommendation of loc. cit., it is chosen sufficiently

large (see below) to provide excellent correction capabilities

(Section V). In addition the C parameter can be adjusted

to find a trade-off between error correction capabilities and

complexity.

Base matrix structure: We use a Regular Repeat Accu-

mulate [3] (RRA) quasi-cyclic structure in order to benefit

a linear time encoding. The parity side of the base matrix

has a double-diagonal structure, which will be referred to

as staircase. Consequently, the extended parity-check matrix

inherits a staircase structure by blocks, which allows to re-

cursively build all the parity symbols with a linear number

of symbol operations. Hybrid IT/ML decoding for Regular

Repeat Accumulate LDPC codes has been studied in [2], and

more particularly the impact of the source node degree on the

performances. A value of 5 for this degree is considered as

a good compromise, as it allows excellent performance under

the ML decoding, with good enough performance under IT.

Base matrix entries: The values of non-negative entries of

the base-matrix are randomly chosen from {0, . . . ,M}, where

the maximum value M depends on the expansion factor z, as

explained above. Such a random choice simplifies the code

generation and does not require an expensive optimization for

the non-negative entry values. This is an asset when codes

need to be produced on the fly, in real time.

Additional optimization: If the last element of the stair-

case is expanded into a circulant matrix, the corresponding

z columns of H are all of degree one. In order to avoid

the negative impact of degree one columns on the decoding

performance, the last element of the staircase is itself expanded

into a staircase z×z matrix. An example of such a parity check

matrix is represented at figure 4.

6Remind that the pseudo-band structure is obtained by a simple row/column
permutation of H .

Fig. 4. Example of a QC parity check matrix (NB: the bottom right block
is a staircase matrix).

V. EXPERIMENTAL RESULTS

We have performed experiments to assess the gains provided

by the QC structure both from an erasure correction capability

and decoding complexity points of view.

A. Experimental setup

The QC-LDPC codes considered are using a base matrix

having a size 5×15 matrix (Figure 4), which is the minimum

size for a rate-2/3 RRA matrix with a source node degree

equal to 5.

In order to identify the influence of the QC structure

and band width on the decoding performance, we consider

four code ensembles. These codes are built from the same

base matrix, but using different choices for the non-negative

entries of B (and also a different expansion technique for

the protograph codes, see below). There are two reasons for

using a small base matrix. First, the length of the extended

code is a multiple of b, hence, small a and b allow the finest

grain for the length and the dimension of the extended codes.

Second, the band width linearly depends on the base matrix

dimensions and M , which should be large enough to produce

a sufficiently large range for the random distribution of the

base matrix coefficients. Therefore, for a given bandwidth, b
is chosen as small as possible to maximize M .

The considered codes are the following:

• band QC LDPC codes, our proposal. The non-negative

entries bi,j can take any value in the range [0, . . . , 3
√
z],

i.e. the maximum value M = 3
√
z. The factor 3 has

been chosen following a tradeoff between error correction

capabilities and complexity. These codes are QC-LDPC

featuring a “visible” pseudo-band structure, with a width

that depends on the code dimension (Section IV).

• unconstrained QC LDPC codes. The non-negative entries

bi,j can take any value in the range [0, . . . , z], i.e. M =
z. These codes does not exhibit a “visible” pseudo-band

structure.

• constant band-width QC LDPC codes. The non-negative

entries bi,j can take any value in the range [0, . . . ,M ],
where M is a fixed constant, which does not depend on

the code dimension. We chose the value M = 42 that is

equal to the corresponding value for the band QC LDPC of

dimension k = 2000. These codes are QC-LDPC featuring

a very thin pseudo-band structure, for large values of k.

• protograph LDPC codes. They are built from the same

base matrix B, but non-negative entries are expanded into

random z × z permutation matrices, instead of circulant

matrices. These codes do not have a pseudo-band structure.
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For the reason presented in section IV, all these codes feature

a z × z staircase matrix at the bottom right. In order to avoid

consideration on the loss model, the symbols are randomly

permuted before the transmission on a memoryless erasure

channel. For each test the results of at least 500 experiments

is averaged. Since we are considering code ensembles, the

seed used to construct the parity check matrix is different for

each experiment.

B. Erasure recovery capabilities

The average inefficiency ratio, defined as the number of

symbols required to complete decoding over the code di-

mension, is presented as a function of the code dimension

at figure 5 for the IT decoding, and at figure 6 for the ML

decoding.

First of all, we observe that the constant band-with QC

LDPC codes exhibit the worst performance, under both IT

and ML decodings. This is explained by the fact that the parity

check matrix is concentrated on a pseudo-band, which is too

thin with respected to the matrix dimensions. Consequently,

codes from the constant band-with QC LDPC ensemble con-

tain more short cycles and small stopping sets than codes from

the other ensembles, which leads to a degraded performance

under the IT decoding. On the other hand, the concentration

of the parity check matrix on a thin pseudo-band decreases the

probability of the ML decoding matrix being full-rank, which

explains the performance under the ML decoding.

We also observe that under the ML decoding, the average

inefficiencies of Band QC LDPC, unconstrained QC LDPC

and protograph LDPC are very close. Thus, even if Band

QC LDPC codes are more constrained, they are still random

enough, such that to provide ML performance close to that

of unconstrained codes. This also confirms the conjectures in

[11], [12], in the sense that the band width should depend

on the code dimension in order to provide ML performance

close to that of unconstrained codes. Under the IT decoding,

the Band QC LDPC codes show a slightly better inefficiency

ratio than the other two code ensembles.
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Figure 7 shows the failure probability of the ML decoding

(codeword error rate) as a function of the loss percentage for a
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Fig. 6. Inefficiency ratio as a function of the code dimension, ML decoding
(R = 2/3).

code dimension k = 2000. In the waterfall region, the different

curves are almost indiscernible and close to the theoretical

limit. While no error floor is visible (down to 10−6) for

unconstrained QC LDPC codes, the band QC LDPC, constant

band width QC LDPC and protograph LDPC codes present

an error floor at a failure probability of 10−5. However, this

error floor is sufficiently low for practical applications, and it

is offset by a lower decoding complexity, as shown below.
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Fig. 7. Block error rate W.R.T. channel loss percentage, ML decoding (k =

2000, R = 2/3).

C. Algorithmic complexity

The algorithmic complexity is evaluated by mean of number

of row/symbol operations. At figure 8, one can see that for low

channel loss percentage, the number of row/symbol operations

is low (the IT decoding is sufficient). When the channel loss

percentage increases, the number of row/symbol operations

increases because the ML decoding is activated more and more

often. The number of operation under IT decoding is similar

for all the codes, since there parity check matrix have the

same number of ones. However, once the ML decoding is

activated, the Band QC LDPC codes clearly outperform the

protograph LDPC and unconstrained QC LDPC codes. This

is a direct consequence of the “visible” pseudo-band structure

of the decoding matrix, that allows to reduce the complexity
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of ML decoding. For constant band width QC LDPC codes

the number of operations is even smaller, as their bandwidth

(q = 42 × 15 = 630) is significantly smaller than that of the

Band QC LDPC codes (q = 164× 15 = 2460).
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We have plotted on figure 9 the number of row/symbol

operations performed by the ML decoding in the worst case

(minimum number of symbols received for which the ML

decoding succeeds). As expected, Band QC LDPC and con-

stant band width QC LDPC codes require fewer row/symbol

operations than the other codes. The curves of protograph

LDPC and unconstrained QC LDPC codes are almost identi-

cal, and they do not exhibit a specific structure that may reduce

the complexity of standard GE (the pseudo-band structure of

unconstrained QC LDPC codes is not “visible”). This curves

are also compatible with the theoretical complexity : O(k) for

the constant band width QC LDPC codes, O(k
√
k) for the

Band QC LDPC codes, and O(k2) for the protograph LDPC

and unconstrained QC LDPC codes.

Thus, under the ML decoding, the proposed band QC LDPC

codes perform very close to the channel capacity (overhead of

only 0.5% with respect to “the ideal code”), with tractable

complexity even for large code dimension.
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Fig. 9. Number of row/symbol operations performed during ML decoding
W.R.T. the code dimension (R = 2/3).

VI. CONCLUSIONS

In this paper we presented an analysis of the ML decoding

of QC-LDPC codes over the erasure channel. We showed

that any QC matrix can be transformed into a pseudo-band

form, which allows for reducing the complexity of the ML

decoding. The complexity gain depends on the “visibility”

(width) of the pseudo-band, and the thinner is the band,

the less complex is the decoding. However, the band width

has to tradeoff between performance and complexity gain.

For this end, we proposed an ensemble of QC-LDPC codes

that possess excellent correction capabilities under the ML

decoding (overhead of only 0.5%), while decoded with a

complexity of O(k
√
k) in terms of row/symbol operations.

The gain in complexity increases significantly with the code

dimension, which allows ML decoding to be a realistic option

for longer LDPC codes.

Additionally, the quasi-cyclic construction and the pseudo-

band transformation can be generalized to any linear code (i.e.

need not be low-density) in order to reduce the complexity of

the ML decoding.
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