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In this paper, we study the behavior of the steady-state potentials in a material composed by an interior medium surrounded by a
rough thin layer and embedded in an ambient bounded medium. The roughness of the layer is supposed to be -periodic, being the
small thickness of the layer and is a parameter, that describes the roughness of the layer: if the layer is weakly rough, while
if , the layer is very rough. Depending on the roughness of the membrane, the approximate transmission conditions are very
different. We present and validate numerically the rigorous approximate transmissions proved by Poignard (Math. Meth. Appl. Sci.,
vol. 32, pp. 435–453, 2009) and Ciuperca et al. (Research reports INRIA RR-6812 and RR-6975). This paper extends previous works of
Perrussel and Poignard (IEEE Trans. Magn., vol. 44, pp. 1154–1157, 2008) in which the layer had a constant thickness.

Index Terms—Asymptotic model.

I. INTRODUCTION

I N DOMAINS with rough thin layers, numerical difficul-
ties appear due to the complex geometry of the rough layer

when computing the steady-state potentials. We present here
how these difficulties may be avoided by replacing the rough
layer by appropriate transmission conditions. Particularly, we
show that considering only the mean effect of the roughness is
not sufficient to obtain the potential with a good accuracy when
the layer is too rough.

For the sake of simplicity, we present here the two-dimen-
sional case, however, the approximate conditions are still valid
for the three-dimensional case. The results presented in this
paper together with the result of Perrussel and Poignard [1] pro-
vide a survey of the different configurations that appear when
dealing with thin layers for steady-state potential or diffusion
problems.

A. Statement of the Problem

Let be a smooth bounded domain of with connected
boundary . For and strictly positive, we split into
three subdomains: , and . is a smooth domain
strictly embedded in (see Fig. 1). We denote by its con-
nected boundary. The domain is a thin oscillating layer
surrounding . We denote by the oscillating boundary of

: . The parameter is related to the ratio of
period of the oscillating boundary and the mean membrane
thickness. It can be seen as a roughness parameter: for ,
the membrane thickness is constant, for the period of the
oscillations is similar to the membrane thickness, for the
membrane is very rough.
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Fig. 1. Geometry of the problem.

We denote by the domain . Define the two
following piecewise-constant conductivities on the domain ,
denoted by and , by

if
if ,
elsewhere

if
if

where , , and are given positive constants.1

Let and be defined by

in , in
(1)

where is a sufficiently smooth boundary data. For different
values of , we present how to define the potential such that

is approached by for tending to
zero.2

1The same following results hold if , , and are given complex num-
bers with imaginary parts (and, respectively, real parts) with the same sign.

2The notation means that goes to zero faster than
as goes to zero. We refer to [2]–[4] for a precise description of the involved

norms and the accuracy of the convergence.
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B. Heuristics of the Derivation of the Conditions

Suppose is a smooth closed curve of of length 1 and
parametrize it by the curvilinear coordinate

. Let be the (outward) normal to . is described
by

where is a smooth one-periodic and positive function and is
a positive parameter, that describes the roughness of the layer.

The heuristics of the derivation consists in performing a suit-
able change of variables in the domain in order to make ap-
pear the small parameter in the partial differential equations.
Then, supposing that the potential can be written as a formal
sum and identifying the terms with the same
power in , we infer the approximated transmission conditions.
We emphasize that for rough thin layers, these conditions can be
very different, depending on the roughness of the layer. Actu-
ally, deriving the above function with respect to makes ap-
pear the term , which is not negligible as soon as ,
providing rather different terms in the identification process.

Three kinds of roughness appear: the weakly rough layer
— — the very rough case — — and the case .
In the following, it is convenient to denote by the mean value
of

II. WEAKLY OSCILLATING THIN LAYER

In this section, we suppose that , meaning that the thin
layer is weakly rough. This is the simplest case of rough thin
layer in the sense that the intuition, which consists in consid-
ering the mean effect of the roughness, is valid. More precisely,

, where the first-order coefficient is the
solution to the following problem3:

in ,

(2)

where , , and denote, respectively, the surface gra-
dient, the tangential divergence and the normal derivatives along

. Therefore, according to [1], we infer that if , the
first order approximation amounts to replacing the weakly oscil-
lating thin layer by a thin layer with a constant thickness equal
to .

III. THE CASE

Suppose now that . As theoretically shown in Ciuperca
et al. [3], considering only the mean value of is not sufficient
to provide an accurate approximation of the potential. Actually,
it is necessary to define appropriate boundary layer correctors.

3We denote by the jump of a function on .

A. Boundary Layer Corrector in the Infinite Strip

The key-point of the derivation of the equivalent transmission
conditions consists in taking advantage of the periodicity of the
roughness. This is performed by unfolding and upscaling the
rough thin layer into the infinite strip .

Define the closed curves and , which are trigonometri-
cally oriented by

The outward normals to and equal

(3)

According to [3], there exists a unique couple where
is a continuous vector field and is constant such that

(4a)

(4b)

(4c)

(4d)

where the convergences at infinity are exponential. We empha-
size that is not imposed but is a floating potential, which has
to be calculated numerically.

B. Approximate Transmission Conditions

Our transmission conditions are then obtained with the help
of the constant vector and defined by

The potential is then defined by:

where is the curvature of .
Observe that our conditions are different than if we would

only consider the mean effect of the roughness described by (2).

IV. VERY ROUGH THIN LAYER

We consider in this section the case of a very rough thin layer:
the parameter is strictly greater than 1.

For any , we define the one-dimensional set by
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and we denote by the Lebesgue-measure of

is the characteristic function4 of the set . The ap-
proximate transmission conditions for the very rough thin layer
require the two following numbers:

where and are the extremal values of the function .
According to [4], satisfies the following problem:

(5)

and the following transmission conditions on :

(6)

(7)

V. NUMERICAL SIMULATIONS

In order to verify the convergence rate stated in the previous
sections, we consider a problem where the geometry and the
boundary conditions are -periodic, for three different : 0, 1,
and 2. The computational domain is delimited by the circles
of radius 2 and of radius 0.2 centered in 0, while is the in-
tersection of with the concentric disk of radius 1. The rough
layer is then described by . One pe-
riod of the domain is shown Fig. 2(a), for and Fig. 2(a)
for . The Dirichlet boundary data is identically 1 on the
outer circle and 0 on the inner circle.

The mesh generator Gmsh [5] and the finite element library
Getfem++ [6] enables us to compute the five potentials , ,

, , and . The rough thin layer is supposed slightly insu-
lating. The conductivities , and , respectively, equal to
3, 1, and 0.1. We denote by the solution to Problem (2).

4The characteristic function of a set is the function equal to 1 if
and 0 if .

Fig. 2. Representation of one period of the domain and the corresponding er-
rors with approximate solutions and . . Do not consider
the error in the rough layer because a proper reconstruction of the solution in it
is not currently implemented. (a) One period. (b) Error order 0. (c) Error order 1.

TABLE I
COEFFICIENTS ISSUED FROM THE SOLUTION TO PROBLEM (4).

THREE SIGNIFICANT DIGITS ARE KEPT

Fig. 3. -Error in the cytoplasm versus for three approximate solutions.

A. The Case

The computed coefficients5 issued from Problem (4) are given
in Table I.

The numerical convergence rates for the -norm in of
the three following errors , and

as goes to zero are given in Fig. 3. As predicted by the
theory, the rates are close to 1 for the order 0 and for the order 1
with the mean effect, whereas it is close to 2 for the “real” order
1 equal to .

5The convergences at the infinity in Problem (4) are exponential, hence, we
just have to compute problem (4) for , with large enough to obtain

with a good accuracy.
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Fig. 4. Representation of one period of the domain and the corresponding er-
rors with approximate solutions and . . Do not consider
the error inside the rough layer because a proper reconstruction of the solution
in it is not currently implemented. (a) One period. (b) Error order 0. (c) Error
order 1.

Fig. 5. -error versus for three approximate solutions. We choose .

B. The Very Rough Thin Layer With

Suppose now that . One period of the domain is shown
Fig. 4(a). The computed coefficients for quantifying the rough-
ness effect are and (three significant
digits are kept).

The numerical convergence rates for both the - and the
-norms in of the three following errors ,

and as goes to zero are given in Fig. 5 for
. Observe that the numerical convergence rates are similar

to the rates shown for . More precisely they are close to 1
for and for , whereas the convergence
rate is close to 2 for .

Fig. 6. -error in the cytoplasm versus for four approximate solutions.

VI. CONCLUSION

In this paper, we have presented approximate transmission
conditions that tackle the numerical difficulties due to the com-
putation of the steady-state potential in a rough thin layer. The
rough layer is rigorously replaced by appropriate conditions that
avoid to mesh it.

Depending on the roughness of the layer, three different con-
ditions have to be used. These three transmission conditions
describe all the configurations of rough thin layers: from the
weakly oscillating thin layer to the very rough membrane.

The main feature of the paper consists in the fact that consid-
ering the mean effect of the roughness is not sufficient when the
layer is too rough.

To conclude, Fig. 6 demonstrates that when the conver-
gence rate of the approximate transmission conditions for very
rough thin layers decreases dramatically. Therefore to compute
the steady-state potential with a good accuracy, it is necessary to
choose appropriately one of the above transmission conditions.
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