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Arbitrary High-Order Spline Finite Element Solver for the Time

Domain Maxwell equations

Ahmed Ratnani∗ Eric Sonnendrücker†

July 30, 2010

Abstract

In this paper, we study high order methods for solving the time domain Maxwell equations
using spline finite elements on domains defined by NURBS. Convenient basis functions for the
discrete exact sequence of spaces introduced by Buffa et al [4] are exhibited which provided the
same discrete structure as for classical Whitney Finite Elements. An analysis of stability of the
time scheme is also developed.

Keywords. Maxwell’s equations, Spline Finite Element method, Isogeometric analysis, Time
domain.

AMS subject classification. 65M60

1 Introduction

Since their introduction, B-splines have had a great success, thanks mainly to fast and stable
algorithms developed for their use. They are used as well in industry as in academic research for
interpolation, data fitting and computer aided design. Recent works by Hughes and co-authors
[18, 6, 19] and the introduction of iso-geometric analysis have added yet another dimension to their
use, creating an interface between simulation and numerical modeling.

It seems that before the recent works of Hughes [18], the use of splines as basis functions in
the finite element method was quite uncommon and essentially limited to uniform B-splines using
periodic conditions, even though the web-splines developed by Hoellig and co-workers provided a
strategy for dealing with boundary conditions [16, 15]. The idea of iso-geometric analysis using
geometric transformations and non uniform splines or NURBS appears much simpler for most appli-
cations. Compared to traditional finite elements, the main change due to the iso-geometric analysis
is undoubtedly the emergence of the k-refinement, a strategy that can increase the regularity of
functions through the mesh’s interfaces, to reduce the number of degrees of freedom.

Modern finite element techniques for Maxwell’s equations rely on ideas from differential geome-
try and more precisely on the existence of discrete spaces that provide an exact De Rham sequence.
Following pioneering ideas by Bossavit [2, 3] a complete theory was successively developed [14, 1].
Buffa and co-workers [4, 5] extended iso-geometric analysis to steady-state Maxwell’s equations
providing a discrete exact De Rham sequence involving discrete spaces based on B-splines.
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Our aim is to use this discrete sequence for the solution of the time-dependent Maxwell equa-
tions. One important feature of geometric Finite Maxwell solvers is that one of Faraday’s or
Ampere’s law hold strongly in the discrete spaces and the other one needs a Galerkin Hodge opera-
tor [3]. Hence, one of the discrete equations is completely explicit and the other one involves a mass
matrix that yields a linear system to be solved at each iteration. Thanks to a property of B-spline
derivatives, we were able to exhibit basis functions of the discrete spaces involved in the De Rham
sequence, such that the same property holds and the discrete curl or divergence, depending on the
chosen formulation, is simply an incidence matrix depending only on the connectivity of the mesh,
which is thus independent of the geometric transformation. We have implemented this idea in 2D,
but as it is based on a tensor product approximation, it extends straightforwardly to 3D.

The outline of the paper is the following. First we recall the variational formulation of the
2D Maxwell equation, then we give the most important properties of B-splines and iso-geometric
analysis. After that, we construct our exact sequence of discrete spaces as spans of well chosen basis
functions on a cartesian grid and explain how to transform them on the geometric domain defined
by NURBS. We can then compute the semi-discrete equations in space in a matrix formulation.
We then prove a stability condition when a Leap-Frog algorithm in time is used. Finally, different
test cases are performed to validate the method. High-order convergence is obtained and CFL
conditions are computed for different degrees of splines.

2 Variational formulation for the 2D Maxwell equations

We consider the Maxwell equations in a subdomain Ω ⊂ R
2 with a regular boundary denoted by

Γ = ∂Ω. We note n, the outward unit normal vector of Ω on the boundary Γ. We recall that

in 2D, we have two curl operators, one acting on scalars curlu =

( ∂u
∂y

−∂u
∂x

)
, and one acting on

vectors v =

(
vx
vy

)
for which curlv =

∂vy
∂x

− ∂vx
∂y
. The divergence of a vector v is defined by

divv = ∂vx
∂x

+
∂vy
∂y
.

We shall also need the following function spaces

H(curl,Ω) =
{
v ∈ (L2(Ω))2; curlv ∈ L2(Ω)

}
and H0(curl,Ω) = {v ∈ H(curl,Ω); v × n = 0} ,

H(div,Ω) =
{
v ∈ (L2(Ω))2; divv ∈ L2(Ω)

}
.

Notice that the space that could be called

H(curl ,Ω) =
{
u ∈ (L2(Ω))2; curlu ∈ L2(Ω)

}

is identical to H1(Ω). We shall therefore stick with the more usual H1(Ω).
Finally, we recall the Green formula we will need:
∫

Ω
(curlG) · F dX =

∫

Ω
G curlF dX −

∫

Γ
(G× n) · F dS , ∀ F ∈ H(curl,Ω), ∀ G ∈ H1(Ω), (1)

and
∫

Ω
(divF)G dX = −

∫

Ω
F · (∇G) dX +

∫

Γ
F · nG dS , ∀ F ∈ H(div,Ω), ∀ G ∈ H1(Ω). (2)

In 2D domains, Maxwell’s equations can be decoupled into two systems. The first involving the
(Ex, Ey, Hz) components is called the Transverse Electric (TE) mode, and the second, involving
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the (Hx, Hy, Ez) components is called the Transverse Magnetic (TM) mode. As both mode can be
discretized in the same manner, we shall only consider in the sequel the TE mode which reads

∂E

∂t
− curlH = −J, (3)

∂H

∂t
+ curlE = 0, (4)

divE = ρ, (5)

where the components are defined by E =

(
Ex

Ey

)
, H = Hz. These equations need to be sup-

plemented with initial and boundary conditions. We shall only consider periodic or perfectly
conducting boundary conditions E×n = 0 and in a second step Silver-Müller absorbing boundary
conditions.

In order to derive a conforming Finite Element approximation of Maxwell’s equations we first
need to write an appropriate variational formulation. We would like to stay with the first order
version of the system and are then naturally led to a mixed formulation involving two different
functional spaces for E and H. The two options are, after multiplying both equations by a test
function and integrating by parts, to use Green’s formula for either one of the two equations but
not for both.

The first variational formulation, in the case of perfectly conduction boundary conditions, can
be derived using Green’s formula (1) in Ampere’s law (3). This yields
Find (E, H) ∈ H0(curl,Ω)× L2(Ω) such that

d

dt

∫

Ω
E ·ψ dX −

∫

Ω
H(curlψ) dX = −

∫

Ω
J ·ψ dX ∀ψ ∈ H0(curl,Ω), (6)

d

dt

∫

Ω
Hϕ dX +

∫

Ω
(curlE)ϕ dX = 0 ∀ϕ ∈ L2(Ω). (7)

Using the Green formula (1) in Faraday’s law (4) yields the second variational formulation
Find (E, H) ∈ H(div,Ω)×H1(Ω) such that

d

dt

∫

Ω
E ·ψ dX −

∫

Ω
(curlH) ·ψ dX = −

∫

Ω
J ·ψ dX ∀ψ ∈ H(div,Ω), (8)

d

dt

∫

Ω
Hϕ dX +

∫

Ω
E · (curlϕ) dX = 0 ∀ϕ ∈ H1(Ω). (9)

Notice that in the first variational (6)-(7) formulation the boundary condition is taken into
account in strong form by putting it into the function space where E lives. On the other hand, in
the second formulation (8)-(9) the boundary condition is taken into account in a weak form.

3 Splines and B-splines functions

3.1 Splines

Splines are piecewise polynomials defined on the real line. We shall require that on each compact
interval, they consist of a small number of non vanishing polynomial pieces.
Let T ⋆ = {t⋆i , 0 6 i 6 s} be a finite strictly increasing sequence of points of R. A function S on R

is a spline of order k, k > 1 with the breakpoints T ⋆ if on each interval (t⋆i , t
⋆
i+1), it is a polynomial

of degree 6 p := k − 1. On the other hand, the spline can have any regularity less than p − 1 at
the breakpoints. The smoothness ri of a spline S at the breakpoint t⋆i is defined as follows:
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• ri := 0 if S is discontinuous at t⋆i , otherwise

• ri is the largest integer 0 < ri 6 k so that S has continuous derivatives of orders < ri

therefore, we denote the associated spline space on an interval I = [a, b], a := t⋆0, b = t⋆s by S
⋆
k(T

⋆, I)
which consists of all splines S of order 6 k with breakpoints contained in T ⋆ and of smoothness
> ri at t

⋆
i .

Rather than use the smoothness of the spline at breakpoints, we use the defect mi := k − ri, this
is the number of degrees of freedom of S at t⋆i . A simple computation leads to dim Sk(T

⋆,m, I) =
k +

∑s
i=0mi with r := (m0, · · · ,ms). The space Sk(T

⋆,m, I) is called the Schoenberg space.
A simple basis of the Schoenberg space is

S−j(x) =
(x− a)j

j!
, j = 0, · · · , k

Si,j(x) =
(x− t⋆i )

j
+

j!
, j = k −mi, · · · , k − 1, i = 1, · · · , s

Curry and Schoenberg [7] have introduced another basis which has a more local character. Their
basis are splines with the smallest possible support. They are defined by means of the divided
differences and called basic splines (B-splines). For more details on this subject we refer to the
books of De-Boor [8] (for computational aspect), DeVore and Lorentz [9] (for more theoretical
aspects).

3.2 B-Splines

Let T = (ti)16i6N+k be a non-decreasing sequence of knots.

Definition 1 (B-Spline) The i-th B-Spline of order k is defined by the recurrence relation:

Nk
j = wk

jN
k−1
j + (1− wk

j+1)N
k−1
j+1

where,

wk
j (x) =

x− tj
tj+k−1 − tj

N1
j (x) = χ[tj ,tj+1[(x)

We note some important properties of a B-splines basis:

• B-splines are piecewise polynomial of degree p = k − 1

• Positivity

• Compact support; the support of Nk
j is contained in [tj , .., tj+k]

• Partition of unity:
∑N

i=1N
k
i (x) = 1, ∀x ∈ R

• Local linear independence

• If a knot t has a multiplicity m then the B-spline is C(p−m) at t

For each knot vector T = (ti)16i6N+k we will associate the breakpoints sequence(t⋆i )16i6s.
Let (Pi)16i6N ∈ R

d be a sequence of control points, forming a control polygon.
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Definition 2 (B-Spline curve) The B-spline curve in R
d associated to T = (ti)16i6N+k and

(Pi)16i6N is defined by:

M(t) =
N∑

i=1

Nk
i (t)Pi

Figure 1: (left) A B-spline curve and its control points, (right) B-splines functions used to draw
the curve. N = 9, p = 2 , T = {000, 14

1
4 ,

1
2
1
2 ,

3
4
3
4 , 111}

3.3 Fundamental geometric operations

After modification, we denote by Ñ , k̃, T̃ the new parameters. (Qi) are the new control points.

3.3.1 Knot insertion

One can insert a new knot t, where tj 6 t < tj+1. For this purpose we use the DeBoor algorithm:

Ñ = N + 1

k̃ = k

T̃ = {t1, .., tj , t, tj+1, .., tN+k}

αi =





1 1 6 i 6 j − k + 1
t−ti

ti+k−1−ti
j − k + 2 6 i 6 j

0 j + 1 6 i

Qi = αiPi + (1− αi)Pi−1

3.3.2 Order elevation

We can elevate the order of the basis, without changing the curve. Several algorithms exist for this
purpose. We used the one by Huang et al. [17].

k̃ = k +m

m̃i = mi +m

Ñ = N +ms
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Differential coefficients are defined as P̃
l

i:

P̃
l

i =





P̃i l = 0
1

ti+p−ti+l
(P̃

l−1

i+1 − P̃
l−1

i ) l > 0, ti+k−1 > ti+l

0 l > 0, ti+k−1 = ti+l

βi =
∑i

l=1ml, 1 6 i 6 s− 1, et αi =
∏i

l=1
k−1−l

k−1+m−l
, 1 6 i 6 k − 2

We present the algorithm by [17]:

1. Compute P̃
j

0, 0 6 j 6 k − 1 et P̃
i

βl
,1 6 l 6 s− 1 , k −ml 6 i 6 k − 1

2. Compute Q̃
j

0 =
∏j

l=1(
k−l

k+m−l
)P̃

j

0, 0 6 j 6 k − 1

3. Compute Q̃
j

βl+ml =
∏j

l=1(
k−l

k+m−l
)P̃

j

βl
, 1 6 l 6 s− 1 , k −ml 6 i 6 k − 1

4. Compute Q̃
k−1

βl+ml+i = Q̃
(k−1)

βl+ml, 1 6 l 6 s− 1 , 1 6 i 6 m

5. Compute Q̃
0

i

Note that there exist other algorithms such those given by (see [22, 21] and others). The one given
in [17] is more efficient and much more simple to implement. We can also use a more sophisticated
version of this algorithm to do the insertion of new knots while elevating the degree.

3.4 Refinement strategies

Refining the grid can be done in 3 different ways. This is the most interesting aspects of B-splines
basis.

• using the patch parameter h, by inserting new knots. This is the h-refinement, it is the
equivalent of mesh refinement of the classical finite element method.

• using the degree p, by elevating the B-spline degree. This is the p-refinement, it is the
equivalent of using higher finite element order in the classical FEM.

• using the regularity of B-splines, by increasing / decreasing the multiplicity of inserted knots.
This is the k-refinement. This new strategy does not have an equivalent in the classical FEM.

J.A. Evans et al. [11] studied the k-refinement using the theory of Kolmogorov n-widths. As we
will see in this article, the use of this strategy can be more efficient than the classical p-refinement,
as it reduces the dimension of the basis.

3.5 Grid generation

For this purpose, we use alternatively h and p-refinement. The minimal degree of the basis functions
is imposed by the domain design. When inserting knots, we can use uniformly-spaced knots or non
uniformly-spaced ones.
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Figure 2: First line, using h-refinement with p = 2, T = {000, 111}, T = {000, 12 , 111} and
T = {000, 12 ,

3
4
3
4 , 111}. Second line, using p and h-refinement with p = 3, T = {0000, 12 , 1111},

T = {0000, 12
1
2 , 1111} and T = {0000, 12

1
2
1
2 , 1111}

Figure 3: Grid generation. 1st line: (left) after h-refinement, N1 = 17, N2 = 5, (right) after p-
refinement, p1 = p2 = 3. 2nd line: (left) after h-refinement p1 = p2 = 3, (right) using unstructured
mesh, p1 = p2 = 2.

7



3.6 Spline finite elements on general domains

In order to use the spline finite elements on general domains, we shall use the ideas of isogeometric
analysis and consider domains defined with nurbs that can be obtained via CAD software and use
these nurbs to map a rectangular domain on the physical domain.

Let Q be a cell in the physical domain. Q̃ is the parametric associated cell and such that
Q = F (Q̃). let JF be the Jacobian of the transformation F , that maps any parametric domain
point (ξ, η) into physical domain point (x, y).

Q

F

Patch 
Physical Domain

K

Figure 4: Mapping from the patch to the physical domain: (left) initial patch, (right) patch after
h-refinement in the η direction

For any function v of (x, y) we associate its representation in the parametric domain

ṽ((ξ, η)) := v ◦ F ((ξ, η)) = v((x, y)).

The basis functions Ri will not be affected by these changes, the reader can always know if the we
are working in the physical or parametric domain thanks to

(x, y) = F (ξ, η), x = α(ξ, η) and y = β(ξ, η).

then,

α1 =
∂α

∂ξ
α2 =

∂α

∂η
β1 =

∂β

∂ξ
β2 =

∂β

∂η
,

we have for the determinant of the Jacobian det(JF ) = α1β2 − α2β1 and for JF−1

JF =

(
α1 α2

β1 β2

)
JF−1 =

1

∆

(
β2 −α2

−β1 α1

)
.

Let u be a (scalar or vector) function defined on the physical domain. When we use the patch
coordinates, we will write it ũ, idem for the used spaces.

3.7 Boundary conditions

The boundary conditions are very easy to handle. Thanks to the mapping, the boundary of the
physical domain is mapped into the boundary of the patch. therefore, it becomes to treat periodic
condition, by using periodic splines with an adapted knot vector [8]. The perfect conductor and
Silver-Muller conditions are also simple to implement.
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4 Construction of the finite element spaces

An important feature of the functional spaces we chose for the variational formulation is that they
form an exact sequence. Depending of the variational formulation we choose, we need to work with
different exact sequences. In the case of (6)-(7), the following function spaces are involved

grad curl
H1(Ω) −→ H(curl,Ω) −→ L2(Ω)

∪ ∪ ∪
V −→ Wcurl −→ X

(10)

In the case of (8)-(9), the following function spaces are involved

curl div
H1(Ω) −→ H(div,Ω) −→ L2(Ω)

∪ ∪ ∪
V −→ Wdiv −→ X

(11)

In order to keep the specific features of Maxwell’s equations at the discrete level we need to
construct finite dimensional subspaces endowed with the same structure. The involved discrete
spaces are denoted by X ⊂ H1(Ω), Wcurl ⊂ H(curl ,Ω), Wdiv ⊂ H(div,Ω) and V ⊂ L2(Ω). When
discretizing the first variational formulation (6)-(7), we shall look for (Eh, Hh) ∈ Wcurl × V and
when discretizing the second variational formulation (8)-(9), we shall look for (Eh, Hh) ∈Wdiv×X.

4.1 Spline finite elements on patch grids

We shall now start constructing the actual subspaces X ⊂ H1(Ω), Wcurl ⊂ H(curl,Ω), Wdiv ⊂
H(div,Ω) and V ⊂ L2(Ω).

Our discrete space will be constructed using B-splines.
The key point of our method is the use of the recursion formula for the derivatives:

Np
i
′
(t) = p

(
Np−1

i (t)

ti+p − ti
−

Np−1
i+1 (t)

ti+p+1 − ti+1

)
. (12)

It will be convenient to introduce the notation Dp
i = p

N
p−1

i (t)
ti+p−ti

. Then the recursion formula for

derivative simply becomes
Np

i
′
(t) = Dp

i (t)−Dp
i+1(t). (13)

Discrete vector fields on a rectangular domain. Let us first consider a rectangular domain
Ω. We consider the following discrete functional spaces

V = span{Np
i (x)N

p
j (y), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny},

Wdiv = span

{(
Np

i (x)D
p
j (y)

0

)
,

(
0

Dp
i (x)N

p
j (y)

)
, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}

}
,

Wcurl = span

{(
Dp

i (x)N
p
j (y)

0

)
,

(
0

Np
i (x)D

p
j (y)

)
, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}

}
,

X = span{Dp
i (x)D

p
j (y), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}.

As proved in the article by Buffa et al, [4] these spaces verify the same exact property as the
spaces they approximate.
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Vector field transformations. Let us now define coordinate changes conserving either the curl
or the divergence of a vector field.

Let us start from a vector field Ψ(ξ, η) = (Ψ(1)(ξ, η),Ψ(2)(ξ, η))T defined on the parametric
domain Q̃.

Using the transformation formula (18) for the vector fields of Wdiv which conserves the di-
vergence, using the diffeomorphism G = F−1, we get Ψ(1) = 1

∆(α2Ψ
(2) + α1Ψ

(1)) and Ψ(2) =
1
∆(β2Ψ

(2) + β1Ψ
(1)) .

So let Ψ = (Ψ(1),Ψ(2))T be a function in Wdiv, and Ψ = (Ψ(1),Ψ(2))T be a function in W̃div.

To save the divergence property, the corresponding space of W̃div on the physical domain is

Wdiv = {Ψ := (
1

∆
(α1Ψ

(1) + α2Ψ
(2)),

1

∆
(β1Ψ

(1) + β2Ψ
(2)))T , Ψ ∈ W̃div}

therefore,

Wdiv = span

{
1

∆
Ñp

i (ξ)D̃
p
j (η)

(
α1

β1

)
,
1

∆
D̃p

i (ξ)Ñ
p
j (η)

(
α2

β2

)}
.

4.2 The Discrete Equations

Let us now express the equation satisfied by the approximations Eh, Hh when using each of the
variational formulations we introduced. Let’s start with (8)-(9). In this case we look for Eh ∈Wdiv

and Hh ∈ H1(Ω). We first notice that due to the exact sequence property we have divEh ∈ X.
Let us denote by

ψ1
i,j =

(
Np

i (x)D
p−1
j (y)

0

)
, ψ2

i,j =

(
0

Dp−1
i (x)Np

j (y)

)

we have
Wdiv = span

{
ψ1

i,j ,ψ
2
i,j , 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny}

}
,

Denoting the components of Eh by (Ex
h , E

y
h), we have

Ex
h(t, x, y) =

Nx∑

i=1

Ny∑

j=1

exi,j(t)N
p
i (x)D

p
j (y), Ey

h(t, x, y) =

Nx∑

i=1

Ny∑

j=1

eyi,j(t)D
p
i (x)N

p
j (y),

and

Hz
h(t, x, y) =

Nx∑

i=1

Ny∑

j=1

hzi,j(t)N
p
i (x)N

p
j (y).

Using these expansions on the finite element bases, we can compute explicitly, for

curlHh =

Nx∑

i=1

Ny∑

j=1

hzi,j(t)

(
Np

i (x)N
p
j
′
(y)

−Np
i
′
(x)Np

j (y)

)

we now use the formula (12),

curlHh =

Nx∑

i=1

Ny∑

j=1

hzi,j(t)

(
Np

i (x)(D
p−1
j (y)−Dp−1

j+1(y))

−(Dp−1
i (x)−Dp−1

i+1 (x))N
p
j (y)

)

=

Nx∑

i=1

Ny∑

j=1

hzi,j(t){ψ
1
i,j −ψ

1
i,j+1 −ψ

2
i,j +ψ

2
i+1,j}

10



We will use the following convention: for a knot vector T = (ti)16i6N+k generating the ”N”
B-splines of order k, {Nk

i , 1 6 i 6 N}, we put Nk
j := 0 for any j > N .

By making a change of index in the sum, we get

curlHh =

Nx∑

i=1

Ny∑

j=1

hzi,j{ψ
1
i,j −ψ

2
i,j} −

Nx∑

i=1

Ny+1∑

j=2

hzi,j−1ψ
1
i,j +

Nx+1∑

i=2

Ny∑

j=1

hzi−1,jψ
2
i,j

therefore,

curlHh =

Nx∑

i=2

Ny∑

j=2

(hzi,j − hzi,j−1)ψ
1
i,j − (hzi,j − hzi−1,j)ψ

2
i,j

+

Ny∑

j=2

{hz1,j − hz1,j−1}ψ
1
1,j +

Nx∑

i=2

{hzi−1,1 − hzi,1}ψ
2
i,1 + hz1,1ψ

1
1,1 − hz1,1ψ

2
1,1

in case of periodic boundary conditions, we get a strong form of the discrete Ampere’s law (8)
which can be written

−ė+Rhz =M−1
W j, (14)

where hz, ex, ey the vectors of spline coefficients, MW is the mass matrix for Wdiv and R consists
of two blocks of the discrete derivatives in the x and y directions of these vectors.

Remark We’ve shown that we can write KT = MWR, where K is the matrix involved in the
classical formulation (without courant field) :

{
MW ė = Kh

MV ḣ = −KTe

A discrete Faraday’s law can be obtained from the variational formulation (7) which can be
written

ḣz + dxe
y − dye

x = 0, (15)

where dx and dy the discrete derivatives in the x and y directions.
We have thus obtained matrix differential equations on the vectors of spline coefficients that

can be solved by any appropriate ODE solver. For example, for a second order time discretization,
a leap-frog or Verlet scheme is well adapted.

4.3 Solving strategy

The use of Isogeometric analysis for solving the Maxwell’s equations is not immediate. The problem
is the De Rham diagram that requires certain regularity of the domain which is logic. Let us
illustrate our purpose.

Let T
(1)
p , T

(2)
p , 1 6 i, j 6 N + p+ 1 be two open vectors knots, where we choose N1 = N2 = N and

p1 = p2 = p for simplicity. To get the discrete De Rham diagram, the discrete spaces involved in
our scheme must be:

Sp,p
α,α(P) ⊂ H1(Ω), Sp,p−1

α,α−1 × Sp−1,p
α−1,α(P) ⊂ H(div,Ω)

where α = {−1,m, · · · , p − m,−1} is the smoothness of the Spline space at the breakpoints, i.e
each interior knot has a multiplicity m.
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Let us assume that the domain, using appropriate control points, is generated by the knots vectors

T
(1)
p−1, T

(2)
p−1. If we denote by m the multiplicity of interior knots, we see that after the elevation

degree process, we will have the vectors T
(1)
p , T

(2)
p with a multiplicity m+ 1 of the interiors knots.

therefore, some parts ( at the interior knots ) of our domain must be of a regularity p −m. This
can be done by suppressing the redundant knot. Remark, that when using NURBS this is a more
difficult process.
We now present the strategy for solving Maxwell’s equation using B-splines:

• we model exactly our domain, using NURBS, B-splines or any other mapping, which can
maps the physical domain into a rectangular domain ”patch”,

• if the domain can not be exactly represented, we can interpolate, or approximate the physical
domain using B-splines or NURBS, [20, 13],

• the discrete spaces are generated by B-splines such they can respect the exact discrete De
Rham sequence.

5 Leap Frog scheme’s stability

In this section we will give a preview of the time discretization scheme we used to solve the linear
system obtained and some classical results. Let us first, just recall the general formulation of the
LF scheme. For the linear system {

MW ė = Kh

MV ḣ = −KTe

the LF time discretization of order N is given by
{

MW
En+1−En

∆t
= KNH

n+ 1

2

MV
Hn+3

2−Hn+1
2

∆t
= −KT

NE
n+1

where {
KN = K ,N = 2

KN = K(I − ∆t2

24 M
−1
W KM−1

V KT ) , N = 4

We define the global energy by En := 1
2{(E

n)TMWE
n+(Hn− 1

2 )TMVH
n+ 1

2 } We have the following
lemma:

Lemma 1 The global energy is stationary, i.e En+1 = En

Proof Let us put En+ 1

2 = En+1+En

2 . Then we have,

En+1 − En =
1

2
((En+1)TMWE

n+1 + (Hn+ 1

2 )TMVH
n+ 3

2 −
1

2
((En)TMWE

n − (Hn− 1

2 )TMVH
n+ 1

2 )

= (En+1)TMWE
n+ 1

2 − (En)TMWE
n+ 1

2 +
1

2
(Hn− 1

2 )TMV (H
n+ 3

2 −Hn+ 1

2 )

= (En+ 1

2 )TMW (En+1 − En) +
1

2
(Hn− 1

2 )TMV (H
n+ 3

2 −Hn+ 1

2 )

using the time discretization scheme, we have:

En+1 − En = ∆t(En+ 1

2 )TKNH
n+ 1

2 −∆t(Hn+ 1

2 )TKNE
n+ 1

2

12



Therefore, we have En+1 − En = 0
The stability of the scheme depends on the global energy, it must be a positive quadratic form

Lemma 2 En is a positive quadratic form if ∆t 6 2
dN

, where dN = ‖M
− 1

2

V KT
NM

− 1

2

W ‖

Proof

En =
1

2
(En)TMWE

n +
1

2
(Hn− 1

2 )TMVH
n+ 1

2 =
1

2
(En)TMWE

n + (Hn− 1

2 )TMVH
n− 1

2 −
∆t

2
(Hn− 1

2 )TMVE
n

>
1

2
‖M

1

2

W ‖2 +
1

2
‖M

1

2

V ‖
2 −

∆

2
|(Hn− 1

2 )TM
1

2

V M
− 1

2

V
TKNM

− 1

2

W M
1

2

WE
n|

>
1

2
‖M

1

2

W ‖2 +
1

2
‖M

1

2

V ‖
2 −

∆dN
2

{‖M
1

2

V H
n− 1

2 ‖2 + ‖M
1

2

WE
n‖2}

>
1

2
‖M

1

2

W ‖2 +
1

2
‖M

1

2

V ‖
2 −

∆dN
4

‖M
1

2

V H
n− 1

2 ‖‖M
1

2

WE
n‖

>
1

2
(1−

∆tdN
2

){‖M
1

2

W ‖2 + ‖M
1

2

V ‖
2}

The last quantity is positive if 1 >
∆tdN

2 .
Finally, we can take CFLth

N = 2
hdN

. As proved in [12], we have CFLth
4 ≃ 2.85CFLth

2 .

6 Numerical results

The theoretical convergence rate is ”p+1” for the magnetic field Hz and ”p” for the electrical field
E, where p = min(p1, p2).

6.1 Test case 1: square

The analytical solution in this case is:

Hz = cos(k1x+ φ1) cos(k2y + φ2) cos(ωt)

Ex = −
k2
ω

cos(k1x+ φ1) sin(k2y + φ2) sin(ωt)

Ey =
k2
ω

sin(k1x+ φ1) cos(k2y + φ2) sin(ωt)

For our test we took a computational domain of size [0, 2π]× [0, 2π] and

k1 = k2 = 1, φ1 = φ2 = 0, ω = π

This test enables to check the L2 norm of the error (in log scale) between the numerical and
analytical solution, with respect to the parameter h = max{diam(Q̃)}, for different orders of the
basis functions (from order 3 to order 6). This is shown in figure 5. We verify that the slopes
of the different curves correspond to the order of the basis functions. In particular, for high
orders, the machine precision is achieved. For validation, we solved the Maxwell’s equation for
N = 16, 32, 64, 128, with dt = 1

100 ,
1

200 ,
1

400 ,
1

800 . The L2 error is then computed after respectively
5, 10, 20, 40 iterations so as to keep the same final time.

Thanks to the regularity of the basis functions, we see that we can achieve a good precision
with a lower number of meshes. In other words, the k-refinement strategy helped as to reduce

13



Figure 5: Square test: the L2 norm error for (left) the magnetic field , (right) the electric field

Figure 6: Square test: (left) the dimension of the discrete spaces Wh and Vh , (right) the L2 norm
error for the electric field, where the vector knots are multiplicity m = 1, 2 for quadratic B-splines

the number of degrees of freedom as we can see it in the figure 6, where the number of degrees of
freedom was reduced by a factor of 6. The price to pay, is that we increased the support of the
basis functions compared to the classical finite element method. But as we said before, this is the
best we can do using splines functions, the B-splines have the minimal support that we can get if
we try to increase the regularity of our basis.

Tables (1,2) show the CFL numbers for different B-splines degree p = 2, · · · , 5. We see that the
CFL decreases with the B-splines degree and the knots multiplicity.

6.2 Test case 2: circular wave guide

The analytical solution, in the polar coordinates, in this case is:

14



LF2Th LF2num LF4Th LF4num

p = 2 0.3044 0.3056 0.8676 0.8720

p = 3 0.2058 0.1840 0.5866 0.5872

p = 4 0.1496 0.1520 0.4265 0.4272

p = 5 0.1151 0.1168 0.3281 0.3280

Table 1: Test case 1: CFL numbers (theoretic and numerical values), for splines of degree p =
2, · · · , 5

m=1 m=2

p = 2 0.8720 0.5200

p = 3 0.5872 0.4224

p = 4 0.4272 0.3056

p = 5 0.3280 0.2304

Table 2: Test case 1: CFL, using LF4, for splines of degee p = 2, · · · , 5 for singular knots (m = 1),
and doubled knots (m = 2)

Hz(r, θ) = − cos(ωt+ θ){J1(ωr) + aY1(ωr)}

Eθ(r, θ) =
1

2
sin(ωt+ θ){J0(ωr)− J2(ωr) + a(Y0(ωr)− Y2(ωr))}

Er(r, θ) = −
1

ωr
cos(ωt+ θ){J1(ωr) + aY1(ωr)}

where Jn, Yn are the first and the second Bessel functions of order n.
For our test we took

rmin = 0.65138750344695903414, rmax = 0.99000418530735846839, a = 1.0, ω = 3π

We used uniform periodic B-splines in the theta direction and uniform B-splines with open knots
in the radial direction. The use of uniform B-splines allows as to reduce the number of degrees of
freedom. therefore, we can achieve an error of 10−11, using quintic B-splines, with only 64 × 64
meshes, and dimWh = 8640, dimVh = 4352. A precision of 10−7 is achieved, using quintic B-splines,
with only 16× 16 meshes.

6.3 Test case 3: Silver-Muller condition

In the case of the Silver-Muller condition the discrete Faraday’s equation of (9) is written

∂tMV h
z +Ke+ Γhz = 0

where Γ is the mass matrix of the discrete Vh on the boundary that checks Silver-Muller condition
i.e
∫
∂ΩSM

Ni,jNi′,j′

In this test we see the evolution of an electromagnetic wave (figure 6.3 ), under Silver-Muller
condition on both the internal and external boundary. At t = 0 we took Ex = u(x)u(y)′ and

EY = u(x)′u(y), with u(x) = exp(− (x−m)2

2σ2 ).
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Figure 7: Circular wave guide test: (left) at t = 0, (right) after 20 iterations, for N = 64, p = 3

7 Conclusions and perspectives

We presented a new scheme for Maxwell’s equation using B-splines functions, which enables as to
reduce the number of degrees of freedom thanks to the k-refinement. Our method can be easy
used with an integrated CAD system. However, the use of the Isogeometric idea requires to verify
the De Rham diagram, so, we can not always use an exact modeling. therefore, we will need to
approximate or interpolate domains using either splines or NURBS functions. Another idea, which
can be a great help is the use of GB-Splines. GB-Splines are a general basic splines, and verify a
closed relation to (12):

G′
i,k(t) =

Gi,k−1(t)

ci,k−1
−
Gi+1,k−1(t)

ci+1,k−1
, k > 3

with

Gi,2(t) =





ψ
(n−2)
i,n (t), t⋆i 6 t 6 t⋆i+1

φ
(n−2)
i+1,n (t), t⋆i+1 6 t 6 t⋆i+2

0, t /∈ (t⋆i , t
⋆
i+2)

and ci,k−1 =
∫ t⋆

i+k−1

t⋆i
Gi,k−1(t)dt, ψ

(n−2)
i,n , φ

(n−2)
i,n are assumed to be strictly monotone on (t⋆i , t

⋆
i+1)

and (t⋆i+1, t
⋆
i+2) respectively. We can get the classical polynomial spline of order n by taking

φi,n(t) = −
(t− t⋆i )

n−1

(n− 1)!hi
, ψi,n(t) =

(t− t⋆i )
n−1

(n− 1)!hi
, hi = t⋆i+1 − t⋆i
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Figure 8: Circular wave guide test: the L2 norm error for, first line Ex (left) and Ey (right)
components of the electric field, second line the magnetic field
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Figure 9: Evolution of an electromagnetic wave in circular domain under Silver-Muller boundary
condition
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A Transformation compatible with grad, div and curl operators

In order to define our basis functions on the parametric domain, which is a rectangular domain
of R2 with cartesian coordinates and then to map them onto a patch of the physical domain, we
need to define a transformation of scalar and vector fields which is compatible with our differential
operators (grad, div and curl). This is provided to us by the pullback operator for differential forms
which is designed to commute with the exterior derivative. Hence compatible transformations will
be provided to us by associating our scalar or vector fields to a well chosen differential form and
using the pullback.

In our case, we have differential forms defined on Q and need to construct the associated
differential forms on K. For this we need a C1 diffeomorphism G : K → Q. Let us recall the
pullback formula for 0, 1 and 2-forms. A 0-form on Q is a function (or a scalar field) ϕ(ξ, η). The
pullback of ϕ on K is in this case simply ϕ = ϕ ◦G.

A 1-form on the parametric space can be written ω = ω1(ξ, η)dξ + ω2(ξ, η)dη. Denoting by G1

and G2 the components of the diffeomorphism G, the pullback of ω on K is then defined by

ω = G∗ω = ω1 ◦GdG1 + ω2 ◦GdG2

=

(
ω1
∂G1

∂x
+ ω2

∂G2

∂x

)
dx+

(
ω1
∂G1

∂y
+ ω2

∂G2

∂y

)
dy, (16)

where we denote by ω1(x, y) = ω1 ◦G(x, y) and ω2(x, y) = ω2 ◦G(x, y).
A 2-form on the parametric space can be written σ(ξ, η) dξ ∧ dη and its pullback on K by the

diffeomorphism G is defined by

σ(x, y) dx ∧ dy = G∗(σ dξ ∧ dη) = σ ◦GdG1 ∧ dG2

= σ(x, y)

(
∂G1

∂x

∂G2

∂y
−
∂G2

∂x

∂G1

∂y

)
dx ∧ dy, (17)

where we denote by σ(x, y) = σ ◦G(x, y).
Now a vector field in a 2D space is associated to a differential 1-form. This 1-form depends on

the sequence of spaces we are working on and is chosen such that its exterior derivative corresponds
either to the curl or the divergence of the vector field. Note that in both cases a function ϕ (or scalar
field) can be associated to either a 0-form which is the function itself or the two form ϕdξ ∧ dη.

Let us start with the case of (10). In this case the exterior derivative of a 0-form should be
associated to the grad operator and the exterior derivative of a 1-form should be associated to the
curl operator. This is the case if we associate a generic vector field Ψ(ξ, η) = (Ψ(1)(ξ, η),Ψ(2)(ξ, η))T

to the differential form
ωc = Ψ(1)(ξ, η) dξ +Ψ(2)(ξ, η) dη.

Indeed, take a function (or 0-form) ϕ. Then, on the one hand

gradϕ = (∂ξϕ, ∂ηϕ)
T

which is associated to the one form

∂ξϕdξ + ∂ηϕdη = dϕ,

an on the other hand

curlΨ(ξ, η) dξ ∧ dη = (∂ξΨ
(2) − ∂ηΨ

(1)) dξ ∧ dη = dωc.
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Let us now consider the case of (11). Then the exterior derivative of a 0-form should be
associated to the curl operator and the exterior derivative of a 1-form should be associated to the
div operator. This is the case if we associate a generic vector field Ψ(ξ, η) = (Ψ(1)(ξ, η),Ψ(2)(ξ, η))T

to the differential form
ωd = Ψ(1)(ξ, η) dη −Ψ(2)(ξ, η) dξ.

Indeed, take a function (or 0-form) ϕ. Then, on the one hand

curlϕ = (∂ηϕ,−∂ξϕ)
T

which is associated to the one form

∂ηϕdη − (−∂ξϕdξ) = dϕ,

an on the other hand

divΨ(ξ, η) dξ ∧ dη = (∂ξΨ
(1) + ∂ηΨ

(2)) dξ ∧ dη = dωd.

Having now associated our functions and vector fields to differential forms, we can use the
expression of the pullbacks to define the adequate scalar and vector field transformations.

In particular, when using the spaces associated to (11). We need to transform the basis functions
associated to V , this is straightforward as they are functions associated to 0-forms, and to Wdiv.
To defined the transformation of a vector field Ψ(ξ, η) = (Ψ(1)(ξ, η),Ψ(2)(ξ, η))T ∈Wdiv we use the
pullback formula (16) for the1-form ωd = Ψ(1)(ξ, η) dη −Ψ(2)(ξ, η) dξ. This yields

ωd =

(
−Ψ(2) ◦G

∂G1

∂x
+Ψ(1) ◦G

∂G2

∂x

)
dx+

(
−Ψ(2) ◦G

∂G1

∂y
+Ψ(1) ◦G

∂G2

∂y

)
dy,

which is associated to the vector field

Ψ =

(
(−Ψ(2) ◦G

∂G1

∂y
+Ψ(1) ◦G

∂G2

∂y
), (Ψ(2) ◦G

∂G1

∂x
−Ψ(1) ◦G

∂G2

∂x
)

)T

. (18)
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