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THE HILBERT SCHEME OF POINTS AND ITS LINK

WITH BORDER BASIS

M.E. ALONSO(1), J. BRACHAT, AND B. MOURRAIN

Abstract. This paper examines the effective representation of the punc-
tual Hilbert scheme. We give new equations, which are simpler than
Bayer and Iarrobino-Kanev equations. These new Plücker-like equations
define the Hilbert scheme as a subscheme of a single Grassmannian and
are of degree two in the Plücker coordinates. This explicit complete set
of defining equations for Hilbµ(Pn) are deduced from the commutation
relations characterising border bases and from generating equations. We
also prove that the punctual Hilbert functor Hilb

µ
Pn

can be represented
by the scheme Hilbµ(Pn) defined by these relations and the well-known
Plücker relations on the Grassmanian. A new description of the tan-
gent space at a point of the Hilbert scheme, seen as a subvariety of the
Grassmannian, is also given in terms of projections with respect to the
underlying border basis.

1. Introduction

A natural question when studying systems of polynomial equations is how
to characterize the family of ideals which defines a fixed number µ of points
counted with multiplicities. It is motivated by practical issues related to the
solution of polynomial systems, given with approximate coefficients. Un-
derstanding the allowed deformations of a zero-dimensional algebra, which
keep the number of solutions constant, is an actual challenge, in the quest
for efficient and stable numerical polynomial solvers. From a theoretical
point of view, this question is related to the study of the Hilbert Scheme of
µ points, which is an active area of investigation in Algebraic Geometry.

The notion of Hilbert Scheme was introduced by [9]: it is defined as a
scheme representing a contravariant functor from the category of schemes
to the one of sets. This functor associates to any scheme S the set of flat
families χ ⊂ P

r × S of closed subschemes of Pr parametrized by S, whose
fibers have Hilbert polynomial µ.

Many works were developed to analyze its geometric properties (see eg.
[17]), which are still not completely understood. Among them, it is known
to be reducible for n > 2 [16], but the components are not known for µ ≥ 8
[3]. Its connectivity firstly proved by Hartshorne (1965), is studied in [22]
with a more constructive approach.

(1) Partially supported by, Spanish MEC Sab-PR2007-0133, and MTM2008-00272, and
by CCG07-UCM-2160.
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Though the Hilbert functor Hilb
µ
Pn is known to be representable [25], its

effective representation is under investigation. Using the persistence theorem
of [6], a global explicit description of the Hilbert scheme as a subscheme of
a product of two Grassmannians is given in [15], and in [11] for a multi-
graded extension. Equations defining Hilbµ(Pn) in a single Grassmannian
are also given in [15]. These equations, obtained from rank conditions in
the vector space of polynomials in successive “degrees”, have a high degree
in the Plücker coordinnates, namely the number of monomials of degree µ
in n+ 1 variables minus µ.

In [1], a different set of equations of degree n in the Plücker coordinates is
proposed. It is conjectured that these equations define the Hilbert scheme,
which is proved in [11]. Nevertheless, these equations are not optimal, as
noticed in an example in dimension 3 in [11][p. 756]: they are of degree
3 whereas the corresponding Hilbert scheme can be defined in this case by
quadratic equations.

The problem of representation is also studied through subfunctor con-
structions and open covering of charts of the Hilbert scheme. Covering
charts corresponding to subsets of ideals with a fixed initial ideal for a given
term ordering are analysed in several works, starting with [5], and including
more recent one like [19]. These open subsets can be embedded into affine
open subsets of the Hilbert scheme, corresponding to ideals associated to
quotient algebras with a given monomial basis. Explicit equations of these
affine varieties are developped in [10] for the planar case, [13], [14], using
syzygies or in [24].

In this paper, we concentrate on the Hilbert scheme of µ points in the
projective space P

n
K
and on its effective representation. We give new equa-

tions for the punctual Hilbert scheme, which are simpler than Bayer and
Iarrobino-Kanev equations. They are quadratic in the Plücker coordinnates,
and define the Hilbert scheme as a subscheme of a single Grassmannian.
We give a new proof that Hilbert functor can be represented by this scheme
Hilbµ(Pn) given by this explicit quadratic equations. Reformulating a re-
sult in [20], we recall how the open chart corresponding to quotient algebras
with fixed (monomial) basis connected to 1 can simply be defined by the
commutation relations characterising border basis (see also [23], [18]). We
show how these commutation relations can be further exploited to provide
an explicit complete set of defining equations for Hilbµ(Pn) as a projective
variety. Following a dual point of view, this approach yields new Plücker-like
equations of degree two in the coordinates on the Grassmannian, which are
explicit and of smaller degree than those in [1], [15]. We show moreover that
the scheme Hilbµ(Pn) defined by these relations and the Plücker relations on
the Grassmanian represents the punctual Hilbert functor Hilb

µ
Pn . It has a

natural structure of projective variety, as a subvariety of the Grassmannian.
Finally, we give a new description of the tangent space to this variety in
terms of projections with respect to the underlying border basis.
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After setting our notations, we analyse in section 2 the Hilbert functor,
starting with a local description based on commutation relations, followed
by and subfunctor constructions. In Section 3, we describe the new qua-
dratic equations in the Plücker coordinnates, related them with the commu-
tation and generating relation for border basis, prove that they characterise
completely elements of the punctual Hilbert scheme and deduce an explicit
representation of the Hilbert functor. Finally in Section 4, we show how the
tangent space to the Hilbert scheme at a given point can be defined in terms
border basis computation. Standard results on functors and on genericity
are collected in an appendix for the seek of self-contain.

1.1. Notations. Let K be an algebraically closed field of characteristic 0
and R = K[x1, . . . , xn] = K[x] be the set of polynomials in the variables
x1, . . . ., xn and coefficients in K. We also denote by S = K[x0, . . . , xn] =
K[x] the polynomial ring in x0, . . . , xn for a new variable x0 ”of homog-
enization”. For any α ∈ N

n+1 (resp. N
n), let xα = xα0

0 · · · xαn
n (resp.

xα = xα1
1 · · · xαn

n ). The canonical basis of Nn+1 is denoted by (ei)i=0,...,n, so
that xα+ei = xα xi (α ∈ N

n+1, i = 0, . . . , n). For α = (α0, . . . , αn) ∈ N
n+1,

we denote by α = (α1, . . . , αn) ∈ N
n.

For a given set B = {xα1 , . . . ,xαD} of monomials in x0, . . . , xn, we will
identify B with its set of exponents {α1, . . . , αD}. For a set of exponents E =
{α1, . . . , αD} ⊂ N

n+1, we denote by xE the corresponding set of monomials
with exponents in E: {xα1 , . . . ,xαD}.

For B ⊂ N
n, we say that B is connected to 1 if 0 ∈ B (i.e 1 ∈ xB) and

for all β ∈ B \ {0}, there exist β′ ∈ B and i ∈ 1 . . . n such that β = β′ + ei
(i.e xβ = xβ

′
xi).

Given an ideal I of S, we denote by Id the vector space of homogeneous
polynomials of degree d that belong to I. We also denote sd the dimension
of the vector space Sd of polynomials ∈ S of degree d.

For B ⊂ N
n, we denote by B+ = e1+B∪· · ·∪en+B∪B and ∂B = B+−B.

A rewriting family associated to a set B ⊂ R of monomials is a set of
polynomials of the form (hα)α∈∂B with:

hα(x) = xα −
∑

β∈B

zα,β x
β

with zα,β ∈ K for all α ∈ ∂B, β ∈ B. We call it a border basis of B if
moreover B is a basis of A = R/(hα(x)).

If B = (β1, . . . , βm) is a sequence of elements of Nn and β ∈ N
n, Bβi|β is

the sequence (β1, . . . , βi−1, β, βi+1, . . . , βm) obtained from B, by replacing
βi by β. Finally we denote by 〈B〉 the vector space generated by B.

We study the set of K-algebras A generated by x1, . . . , xn, that admit
B as a monomial basis. For any a ∈ A, we consider the operator Ma of
multiplication by a in A:

Ma : A → A

b 7→ ab
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As A is a commutative algebra, the multiplication operators by the variables
xi commute. Thus for any p ∈ R, we can define the operator p(Mx1 , . . . ,Mxn)
obtained by substitution of the variable xi by Mxi (i = 1, . . . , n).

We define I(A) := {p ∈ R; p(Mx1 , . . . .,Mxn) = 0} and call it the ideal
associated to A.

The “dehomogenization by x0” is the application from S to R that maps
a polynomial p ∈ S to p(1, x1, . . . , xn) ∈ R. For any subset I ⊂ S, we denote
I its image by the dehomogenization.

Let A be a ring and I an ideal of A[x0, . . . , xn], we will say that a poly-
nomial P is not a zero divisor of I if I : P = I.

2. Hilbert functor representation

In this section we give a new proof of the existence of the Hilbert scheme
Hilbµ(Pn) using border basis relations. We will focus on open subfunctors of
the Hilbert functorHilb

µ
Pn that are represented by affine schemes and consist

of a covering of Hilbµ(Pn). We will use border bases and commutation
relations to define these open affine subschemes of Hilbµ(Pn).

2.1. Border basis representation. Let A be a local noehterian ring with
maximal ideal m and residue field k := A/m. Suppose that A is a quotient
algebra of A[x1, . . . , xn] that is a free A-module. Assume that A has a
monomial basis B of size µ, connected to 1. Then for any α ∈ ∂B, the
monomial xα is a linear combination in A of the monomials of B: For
any α ∈ ∂B, there exists zα,β ∈ K (β ∈ B) such that hzα(x) := xα −∑

β∈B zα,β x
β ≡ 0 in A. The equations hzα(x) will be called, hereafter, the

border relations of A in B.
Given these border relations, we define a projection Nz : 〈B+〉 → 〈B+〉

by:

• Nz(xβ) = xβ if β ∈ B,
• Nz(xα) = xα − hzα(x) =

∑
β∈B zα,β xβ if α ∈ ∂B.

This construction is extended by linearity to 〈B+〉.
Similarly, the tables of multiplication Mz

xi
: 〈B〉 → 〈B〉 are constructed

using Mz
xi
(xβ) = Nz(xix

β) for β ∈ B. Notice that the coefficients of the
matrix of Mz

xi
in the basis B are linear in the coefficients z.

More generally, a monomial m can be reduced modulo the polynomials
(hzα(x))α∈∂B to a linear combination of monomials in B, as follows: decom-
pose m = xi1 · · · xil and compute Nz(m) = Mz

i1
◦ · · · ◦Mz

il
(1). We easily

check that m−Nz(m) ∈ (hzα(x))α∈∂B .
Given a free quotient algebra of A[x1, . . . , xn] with basis B connected to 1

of size µ, we have seen that there exist coefficients (zα,β ∈ K)α∈∂B,β∈B which
describe completely an ideal defining µ points with multiplicity. Conversely,
we are interested in characterizing the coefficients z := (zα,β)α∈∂B,β∈B such
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that the polynomials (hzα(x))α∈B are the border relations of some quotient
algebra Az in the basis B.

The following result [20], also used in [23, 18] for special cases of base B
and adapted to local rings, answers the question:

Theorem 2.1. Let B be a set of µ monomials connected to 1. The poly-
nomials hzα(x) are the border relations of some free quotient algebra Az of
A[x1, . . . , xn] of basis B iff

(1) Mz

xi
◦Mz

xj
−Mz

xj
◦Mz

xi
= 0 for 1 6 i < j 6 n.

Proof. See [20]. �

In the next propositions, we consider z = (zα,β)α∈∂B,β∈B as variables.
Then, note that the relations (1) induce polynomial equations of degree 6 2
in z that we will denote:

(2) Mxi(z) ◦Mxj(z)−Mxj (z) ◦Mxi(z) = 0 for 1 6 i < j 6 n.

Proposition 2.2. Let B ⊂ A[x1, . . . , xn] be a set of µ monomials connected
to 1. Let N be the size of ∂B, then

{I ⊂ A[x1, . . . , xn] | A = R/I is free with basis B}

is a variety of K
µ×N in the variables z ∈ A

µ×N
K

defined by HB := {z ∈

K
µ×N ;Mxi(z) ◦Mxj(z)−Mxj (z) ◦Mxi(z) = 0, 1 6 i < j 6 n}. We call it

the variety of free quotient algebras with basis B.

These varieties depending on monomial sets B are used in [14] to define
the global punctual Hilbert scheme, via a glueing construction.
Hereafter, we will give a direct and explicite construction of the Hilbert
scheme, based on these relations.

Example 2.3. To illustrate the construction, we consider the very simple
case where B = (1, x) connected to 1 in K[x, y]. Then we have ∂B =
(y, xy, x2) and the formal border relations are:

fy = y − zy,1 + zy,x x

fxy = xy − zxy,1 + zxy,x x

fx2 = x2 − zx2,1 + zx2,x x

where zy,1, zy,x, zxy,1, zxy,x, zx2,1, zx2,x are the 6 variables of the border rela-
tions. The multiplication matrices are:

Mx =

(
0 zx2,1
1 zx2,x

)
, My =

(
zy,1 zxy,1
zy,x zxy,x

)
.
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The equations of HB are then given by MxMy −MyMx = 0. This yields
the following equations of degree 2 in the 6 variables (zα,β):




zxy,1 − zx2,1 zy,x = 0,
zxy,x − zy,1 − zy,x zx2,x = 0,
zx2,1 zy,1 + zx2,x zxy,1 − zxy ,x zx2,1 = 0,
zx2,1 zy,x − zxy,1 = 0

defining the ideal generated by the two polynomials zxy,1 − zx2,1 zy,x, zxy,x −
zy,1 − zy,x zx2,x, which define a (parameterized) variety of dimension 4.

2.2. The Hilbert functor. Let µ ∈ N and I be and ideal of S. The Hilbert
function of I associates to k ∈ N the dimension of Sk/Ik. It coincides with
a polynomial called the Hilbert polynomial of I, for k large enough.
We consider the category C of noetherian schemes over K. Let P

n be the
projective scheme Proj(S). Let A be a commutative ring and p be a prime
of A. We will denote by Ap the localization of A by p. Letmp be its maximal
ideal. We will denote by k(p) the residue field Ap/Apmp.

Definition 2.4. Let I be a graded ideal of S. I is said to be saturated if for
all integers k and d such that k ≤ d, Id : Sk = Id−k.

Definition 2.5. Let X and Y be schemes and f : X → Y be a morphism
of schemes. X is said to be flat over Y if OX is f -flat over Y i.e for every
x ∈ X, OX,x is a OY,f(x) flat module (see [12][Chap.III, p.254]).

Definition 2.6. The Hilbert functor of Pn relative to µ denoted Hilb
µ
Pn is

the contravariant functor from the category C to the category of Sets which
maps an object X of C to the set of flat families Z ⊂ X × P

n of closed
subschemes of Pn parametrized by X with fibers having Hilbert polynomial µ
(flat families Z ⊂ X × P

n means that Z is flat over X).

Example 2.7. IfX = Spec(A), whereA is a noetherianK-algebra, Hilb
µ
Pn(X)

is given by the set of saturated homogeneous ideals I of A[x0, . . . , xn] such
that Proj(A[x0, . . . , xn]/I) is flat over Spec(A) and for every prime ideal
p ⊂ A, the Hilbert polynomial of the k(p)-graded algebra (A[x0, . . . , xn]/I)⊗A

k(p) is equal to µ where k(p) is the residue field Ap/pAp.

Definition 2.8. Let A be a noetherian K-algebra. Let p ∈ Spec(A) be a
prime of A with residue field k(p) := Ap/pAp. Let I be a homogeneous ideal
of A[x0, . . . , xn]. Consider the following exact sequence:

0 // I // A[x0, . . . , xn] // A[x0, . . . , xn]/I // 0

Tensoring by k(p) we get the exact sequence

I ⊗ k(p) // k(p)[x0, . . . , xn] // A[x0, . . . , xn]/I ⊗ k(p) // 0

Then, we will denote by I(p) the homogeneous ideal of k(p)[x0, . . . , xn] which
consists of the image of I ⊗ k(p) in k(p)[x0, . . . , xn]. Thus we have

A[x0, . . . , xn]/I ⊗ k(p) ∼ k(p)[x0, . . . , xn]/I(p).
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Remark 2.9. Note that in general I(p) is not isomorphic to I⊗k(p) because
tensoring by k(p) is not a left exact functor i.e the morphism:

I ⊗ k(p) // k(p)[x0, . . . , xn]

is surjective but not injective.

In our analysis, we will use the affine setting described in Section 2.1.
In order to identify the good affinizations which lead to this setting, we
introduce the following definition and characterization:

Definition 2.10. Given an homogeneous ideal J in Hilb
µ
Pn(k), one has from

the Nullstellensatz theorem that J has the following primary decomposition:

J =
⋂

i

qi

with qi homogeneous mk,Pi
-primary ideal, for some points Pi in the projective

space P
n
k
. The set {Pi} will be called the set of points defined by J in P

n
k
.

More generaly, let J be an homogeneous ideal (not necessarily saturated)
of S with Hilbert polynomial equal to the constant µ. The set of points
defined by J in P

n
k
is the set of points defined below by its saturation (denoted

Sat(J)):

Sat(J) :=
⋃

j∈N

J : (mk)
j

in P
n
k
.

Proposition 2.11. Let X = spec(A) be a scheme in C and Z = Proj(A[x0,
. . . , xn]/I) be an element of Hilb

µ
Pn(X). Let u be a linear form in K[x0, . . . , xn]

and Zu be the open set associated to u considered as an element of H0(Z,OZ(1))
(see [7][(0.5.5.2), p.53]). Let π be the natural morphism from Z to X. Let
p ∈ Spec(A) be a prime of A and k(p) := Ap/pAp its residue field. Then,
π∗(OZu)p is a free OX,p-module of rank µ if and only if u does not vanish

at any of the points defined by I(p) = I(p)⊗k(p) k(p) in P
n

k(p)
(see definition

2.10 and 2.8), with k(p) the algebraic closure of k(p).

Proof. By a change of variables in K[x0, . . . , xn] we can assume that u = x0.
Moreover, without loss of generality, we can assume that A is a local ring
with maximal ideal p.
Let I ⊂ A[x1, . . . , xn] be the affinization of I by x0 (set x0 = 1). One has
that I(p) = I(p) and that

(A[x0, . . . , xn]/I)⊗A k(p) = k(p)[x0, . . . , xn]/I(p)

and
(A[x1, . . . , xn]/I)⊗A k(p) = k(p)[x1, . . . , xn]/I(p).

We also know that Zx0 = D+(x0) (see [8][Prop (2.6.3), p.37]) and that
Z|D+(x0) = Spec(A[x1, . . . , xn]/I). Thus π∗(OZ |D+(x0)) is the sheaf of OX -
module associated to the A-module A[x1, . . . , xn]/I on Spec(A). Finally,
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π∗(OZx0
)p is a free OX,p-module of rank µ if and only if A[x1, . . . , xn]/I is

free of rank µ.

First let us prove that there exists an integer N > 0 such that for all
d ≥ N , the multiplication by x0:

(3) k(p)[x0, . . . , xn]d/I(p)d
∗x0 // k(p)[x0, . . . , xn]d+1/I(p)d+1

is injective if and only if x0 does not vanish at any of the points defined by
I(p) in P

n

k(p)
.

As a matter of fact, I(p) defines µ points in k(p)[x0, . . . , xn], there exists and
integer N ≥ µ such that the dimension of k(p)[x0, . . . , xn]d/I(p)d is equal to
µ for all degree d ≥ N . One has from [15][C.28] that I(p)d+1 : S1 = I(p)d
for all d ≥ N i.e:

Sat(I(p)) =
∑

1≤i≤d

I(p)d : Si + (I(p)d) ∀d ≥ N.

with Sat(I(p)) :=
⋃
d∈N I(p) : (Sd) (i.e I(p) is saturated in degree greater

than N).
Thus the multiplication by x0 is injective (and by dimension bijective) for
all d ≥ N if and only if x0 is not a zero divisor of the saturation Sat(I(p))
of I(p). By proposition D.4 and definition 2.10, this is equivalent to x0 does

not vanish at any of the points defined by I(p) = k(p)⊗ I(p) in P
n

k(p)
.

Consider now the following commutative diagram for all d ≥ N :

(4) (A[x0, . . . , xn]d/Id)⊗ k(p)
∼ //

φ
����

k(p)[x0, . . . , xn]d/I(p)d

δ
����

(A[x1, . . . , xn]≤d/I≤d)⊗ k(p)
ψ

// //

j

��

k(p)[x1, . . . , xn]≤d/I(p)≤d

i

��
(A[x1, . . . , xn]/I)⊗ k(p)

= // k(p)[x1, . . . , xn]/I(p)

First, as k(p)[x1, . . . , xn]/I(p) is a k(p)-algebra of dimension less or equal
to µ, one has that

(5) k(p)[x1, . . . , xn]≤d/I(p)≤d
i // k(p)[x1, . . . , xn]/I(p)

is an isomorphism for all d ≥ N ≥ µ (this comes from the fact that the
Hilbert function of k(p)[x1, . . . , xn]/I(p) is strictly increasing until it is the
constant function equal to the dimension of k(p)[x1, . . . , xn]/I(p) ≤ µ ).
Thus, for all d ≥ N , j is surjective.
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Let us prove the equivalence between A[x1, . . . , xn]/I is a free A-module

of rank µ and x0 does not vanish at any point defined by I(p) in Pn
k(p)

.

First, assume x0 does not vanish at any point defined by I(p) in P
n

k(p)
.

Thus, the multiplication by x0

(6) k(p)[x0, . . . , xn]d/I(p)d
x0 // k(p)[x0, . . . , xn]d+1/I(p)d+1

is a bijection for all d ≥ N i.e the morphism δ in diagram (4) is an iso-
morphism. Thus all the morphisms in diagram (4) are isomorphisms for all
d ≥ N ≥ µ. Consequently, using the multiplication (6) from degree d to
d+ 1, one has that the natural morphism

(7) (A[x1, . . . , xn]≤d/I≤d)⊗ k(p) // (A[x1, . . . , xn]≤d+1/I≤d+1)⊗ k(p)

is an isomorphism for all d ≥ N . By Nakayama Lemma, the natural inclu-
sion:

(8) A[x1, . . . , xn]≤d/I≤d // A[x1, . . . , xn]≤d+1/I≤d+1

is an isomorphism and
(9)
A[x1, . . . , xn]≤d/I≤d = A[x1, . . . , xn]≤d+1/I≤d+1 = . . . = A[x1, . . . , xn]/I.

Finally, A[x1, . . . , xn]/I is a flat A-module of finite type such that A[x1, . . . , xn]/I⊗
k(p) is of dimension µ. Using [26][lem.7.51, p.55], we deduce that A[x1, . . . , xn]/I
is a free A-module of rank µ.

Reciprocally, assume that A[x1, . . . , xn]/I is a free A-module of rank µ.
Then the dimension of A[x1, . . . , xn]/I ⊗ k(p) is equal to µ . Thus all the
morphisms in diagram (4) (in particular δ) are isomorphisms for all d ≥ N .
Consequently x0 is not a zero divisor of Sat(I(p)) and thus does not vanish

at any point defined by I(p) in P
n

k(p)
. �

Example 2.12. Let A = K[s, t]/(s t) and I = (s x20+x0x1+t x
2
1) ⊂ A[x0, x1].

For each prime ideal p of A, the quotient k(p)[x0, x1]/I is of dimension 2.
Thus, I ∈ Hilb2

P1(A). If we take the prime ideal p = (s) of A, then Ap =

k(p) = K(t) and the roots of I(p) in K(t) are (1 : 0), (−t : 1) ∈ P
1(K(t)).

If we take u = x0 + x1, it does not vanish at the roots of I(p). By a
change of variables, X0 = x0 + x1,X1 = x1 and taking X0 = 1, we obtain
I = (s+ (1 + 2 s)X1 + (1 + s+ t)X2

1 ). Thus

π∗(OZX0
)p = Ap[X1]/Ip = Ap[X1]/(X1 + (1 + t)X2

1 )

is a free Ap module of rank 2 generated by {1,X1}, since (1+ t) is invertible
in Ap.

If we take p = (s, t), then k(p) = K and the roots of I(p) are (1 : 0), (0 :
1) ∈ P

1(K). By the same change of variables, we obtain

π∗(OZX0
)p = Ap[X1]/Ip = Ap[X1]/(s + (1 + 2 s)X1 + (1 + s+ t)X2

1 )
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which is also a free Ap module of rank 2 generated by {1,X1}, since (1+s+t)
is invertible in Ap.

Notice that the localisation is needed: A[X1]/(X1+(1+t)X2
1 ) or A[X1]/(s+

(1 + 2 s)X1 + (1 + s+ t)X2
1 ) are not free A-modules nor of finite type.

Corollary 2.13. Let A be a local ring with maximal ideal m and a noether-
ian K-algebra. Then

Hilb
µ
Pn(A) =

{Saturated ideal I ⊂ A[x0, . . . , xn]| A[x0, . . . , xn]d/Id is free of rank µ for d ≥ µ}.

Proof. First, let I ⊂ A[x0, . . . , xn] be a saturated homogeneous ideal such
that A[x0, . . . , xn]d/Id is free of rank µ for all degree d ≥ µ, then I belongs
to Hilb

µ
Pn(A).

We deduce I(p) defines an affine zero dimensional algebra of multiplicity µ
in k(p)[x1, . . . , xn]. Thus, using homogenization by x0 on I(p) we obtain an
homogeneous ideal in Hilb

µ
Pn(k(p)). Then, by the Gotzmann’s persistence

theorem [15][C.17, p.297] we deduce that for all degree d ≥ µ the natural
inclusion

i : k(p)[x1, . . . , xn]≤d/I(p)≤d −→ k(p)[x1, . . . , xn]/I(p)

is an isomorphism (by dimension). Thus, the morphism

j : (A[x1, . . . , xn]≤d/I≤d)⊗ k(p) −→ (A[x1, . . . , xn]/I)⊗ k(p)

is surjective for all d ≥ µ. Then, by Nakayama’s Lemma, we get that

A[x1, . . . , xn]≤µ/I≤µ = A[x1, . . . , xn]≤µ+1/I≤µ+1 = · · · = A[x1, . . . , xn]/I.

Finally, as x0 is not a zero divisor of I, we get that A[x1, . . . , xn]≤d/I≤d ≃
A[x0, . . . , xn]d/Id is a free A-module of rank µ for all degree d ≥ µ. �

Corollary 2.14. Let A be a local ring with maximal ideal m and a noethrian
K-algebra. Let I ⊂ A[x0, . . . , xn] be a homogeneous ideal in Hilb

µ
Pn(A).

Then I is generated in degree µ:

Iµ+k = A[x0, . . . , xn]k Iµ

for all k ≥ 0.

Proof. As in the proof of corollary 2.13, we can assume x0 is not a zero divisor
of I and does not vanish at any point defined by I(m) (see definitions 2.8
and 2.10). Then, from proposition 2.11, A[x1, . . . xn]/I is a free A-module
of rank µ and we get the following diargam:

(A[x1, . . . , xn]≤d/I≤d)⊗ k(p)
ψ

// //

j

��

k(p)[x1, . . . , xn]≤d/I(p)≤d

i

��
(A[x1, . . . , xn]/I)⊗ k(p)

∼ // k(p)[x1, . . . , xn]/I(p)

for which we proved in corollary 2.13 that i, j (and thus ψ) are isomor-
phism for all d ≥ µ. As k(p)[x1, . . . , xn]/I(p) is of dimension µ, we can find
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a basis B with polynomials of degree less or equal to µ − 1 (take for in-
stance B connected to 1). Thus, B is a basis of k(p)[x1, . . . , xn]≤d/I(p)≤d ∼
(A[x1, . . . , xn]≤d/I≤d) ⊗ k(p) for all d ≥ µ. By Nakayama’s lemma, we de-
duce that B is a basis of the free A-module A[x1, . . . , xn]≤d/I≤d for all
d ≥ µ. As the degree of all the polynomials in B is less or equal to
µ − 1 < µ ≤ d, we can define operators of multiplication by the variables
(xi)1≤i≤n in A[x1, . . . , xn]≤d/I≤d for all d ≥ µ. Then, using these operators
of multiplication, we can easily prove that I≤d+1 = A[x1, . . . , xn]≤1.I≤d for
all d ≥ µ. As x0 is not a zero divisor of I, we deduce

Id+1 = S1 Id

for all d ≥ µ. �

Remark 2.15. Let A be a noetherian K-algebra. Let X = Spec(A) and Z
be a closed subscheme of X × P

n and let I ⊂ OX×Pn be the sheaf of ideals
that defines Z. Corollary 2.14 means that if Z belongs to Hilb

µ
Pn(X), then

the natural map

H0(X × P
n,I(d))⊗K OX×Pn(1) −→ H0(X × P

n,I(d+ 1))

is surjective.

2.3. Open covering of the Hilbert functor. Let A be a ring andM is an

A-module. We denote by M̃ the quasi-coherent sheaf of modules associated
to M in Spec(A). We will say that M is locally free on Ω ⊂ Spec(A) if for
all p ∈ Ω, Mp is a free Ap-module. We will say that M is locally free if it is

locally free on Spec(A). Thus, M is locally free if and only if M̃ is locally
free on Spec(A) as a sheaf of modules.
We recall some definitions about functors (see eg. [25][Appendix E]):

Definition 2.16. A contravariant functor F from the category C to the
category of Sets is representable if there exists an object Y in C such that
the functor Hom(−, Y ) is isomorphic to the functor F . In particular for
every X in C,

F (X) ≃ Hom(X,Y ).

Definition 2.17. A contravariant functor F from the category C to the
category of Sets is called a sheaf if for every scheme X in C, the presheaf of
sets on the topological space associated to X given by:

U → F (U)

is a sheaf. Namely, if for all schemes X in C and for every open covering
{Ui} of X, the following is an exact sequences of sets:

0 → F (X) →
∏

i

F (Ui) →
∏

i,j

F (Ui ∩ Uj)

Notice that by construction, representable functors are sheaves.
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Definition 2.18. Let F be a contravariant functor from C to the category
of Sets. A subfunctor G of F is said to be an open subfunctor if for every
scheme X in C and for every morphism of functors

Hom(−,X) → F

the fiber product Hom(−,X) ×F G (which is a subfunctor of Hom(−,X))
is represented by an open subscheme of X.
A family of open subfunctors {Gi} of F is a covering if for every scheme X in
C, the family of subschemes that represent the subfunctors {Hom(−,X)×F

Gi} is an open covering of X.

Definition 2.19. Let u be a linear form in K[x0, . . . , xn]. Let Hu be the
subfunctor of Hilb

µ
Pn which associates to X in C the set Hu(X) of flat

families Z ⊂ X × P
n of closed subschemes of Y parametrized by X with

fibers having Hilbert polynomial µ and such that π∗(OZu) is locally free sheaf
of rank µ of X, where π is the natural morphism from Z to X and Zu is
the open set associated to u considered as an element of H0(Z,OZ(1)) (see
[7][(0.5.5.2) p.53]).

Proposition 2.20. The family of subfunctors (Hu)u∈K[x0,...,xn]1 consists of

an open covering of subfunctors of Hilb
µ
Pn.

Proof. From proposition A.2, it is enough to consider affine schemes X =
Spec(A) (with A a noetherian K-algebra) and to prove that, given a mor-
phism of functors from Hom(−,X) to Hilb

µ
Pn (i.e given an element Z ∈

Hilb
µ
Pn(X)) the functor

G := Hom(−,X)×Hilb
µ

Pn
Hu

restricted to the category of affine noetherian schemes over K is represented
by an open subscheme of X.
Let X ′ = Spec(A′) be an affine noetherian scheme over K. Let f be a
morphism of K-algebras from A to A′. Let φ be the morphism of schemes
from X ′ = Spec(A′) to Spec(A) associated to f . Let Z be an element of
Hilb

µ
Pn(X) and I be its associated saturated homogeneous ideal ofA[x0, . . . , xn].

Let Z ′ be the element of Hilb
µ
Pn(X ′) given by (φ × IdPn)∗(Z). Let I ′ be

the homogeneous ideal of A′[x0, . . . , xn] associated to the quotient algebra
(A[x0, . . . , xn]/I)⊗A A

′.
By a change of variables in K[x0, . . . , xn], we can assume u = x0. Then,
Z ′
x0

= (φ× IdPn)∗(Zx0) is equal to Spec(A′[x1, . . . , xn]/I
′) (where I ′ denote

the affinization of I ′).
Then, we need to prove that for all A′ and f , the sheaf of module of Spec(A′)
associated to the A′-module A′[x1, . . . , xn]/I

′ is locally free of rank µ if and
only if the morphism

φ : Spec(A′) → Spec(A)

factors through an open subscheme Ωx0 of Spec(A).
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Let q be a prime of A′ and p be its image in Spec(A). From proposition
2.11, A′

q[x1, . . . , xn]/I
′
q is free of rank µ if and only if x0 does not vanish at

any point defined by I ′(q) = I ′(q) ⊗k′(q) k′(q) in P
n

k′(q)
(see Definition 2.8).

Note that we have:

I ′(q) = I(p)⊗k(p) k
′(q).

Thus, by Proposition D.5, the points defined by I ′(q) are the same as those

defined by I(p) = I(p)⊗k(p) k(p) in P
n

k(p)
using the natural field inclusions

k(p)
i //

��

k′(q)

��

k(p)
i // k′(q)

Thus, x0 does not vanish at the points defined by I ′(q) if and only if x0
does not vanish at the points defined by I(p). Equivalently: A′

q[x1, . . . , xn]/I
′
q

is free of rank µ if and only if Ap[x1, . . . , xn]/Ip is free of rank µ (with

p = φ(q)). Thus, A′[x1, . . . , xn]/I
′ is locally free of rank µ if and only if

φ factors through the subset Ωx0 ⊂ Spec(A) on which A[x1, . . . , xn]/I is
locally free of rank µ.
Let p ∈ Spec(A) be a prime of A. Then, using diagram 4, one has the
following equivalence:
(i) A[x1, . . . , xn]/I ⊗A Ap = Ap[x1, . . . , xn]/Ip is an Ap free module,

(ii) A[x1, . . . , xn]/I⊗AAp = Ap[x1, . . . , xn]/Ip is an Ap-module of finite type,

(iii) Ap[x1, . . . , xn]≤d/Ip
≤d

= Ap[x1, . . . , xn]≤d+1/Ip
≤d+1

for all d ≥ µ,

(iv) there exists an integer d ≥ µ such that

Ap[x1, . . . , xn]≤d/Ip
≤d

= Ap[x1, . . . , xn]≤d+1/Ip
≤d+1

.

Thus, the set Ω ⊂ Spec(A) on which A[x1, . . . , xn]/I is locally free is equal
to the subset of Spec(A) on which the morphism of inclusion

i : A[x1, . . . , xn]≤µ/I≤µ −→ A[x1, . . . , xn]≤µ+1/I≤µ+1

is surjective. Let M be the cokernel of i, then Ω is equal to the subset of

Spec(A) on which M̃ is equal to zero. As M is of finite type (i.e M̃ is a
coherent scheaf of module), Ω is an open subset of Spec(A).
Finally, Ωx0 is an open subset of Ω and A′[x1, . . . , xn]/I

′ is locally free of
rank µ if and only if φ factors through the open subscheme associated to
Ωx0 . Consequently, Hx0 is an open subfunctor of Hilb

µ
Pn .

Let us prove that (Hu)u∈K[x0,...,xn]1 consists of a covering of Hilb
µ
Pn . By

definition 2.18, we need to prove that (Ωu)u∈S1 consists of a covering of
Spec(A). Let p be a point of Spec(A). Consider the points of Pn

k(p) defined

by I(p). One can find a linear form u ∈ S1 = K[x0, . . . , xn]1 that does not
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vanish at any of these points. By proposition 2.11, p belongs to Ωu.
Thus the family (Ωu)u∈K[x0,...,xn]1 consists of a covering of Spec(A) and the

family of open subfunctors Hu is a covering of Hilb
µ
Pn . �

2.4. Representation of the Hilbert functor. We are now going to prove
that the Hilbert functor is representable.

Definition 2.21. Let B be a family of µ monomials of degree d in K[x0, . . . , xn].
Let HB

x0
be the subfunctor of Hx0 which associates to X in C the set HB

x0
(X)

of flat families Z ⊂ X×P
n of closed subschemes of Y parametrized by X with

fibers having Hilbert polynomial µ such that π∗(OZx0
) is a locally free sheaf

of rank µ of X with basis B := B/xd0 considered as elements of H0(Z,OZx0
).

Lemma 2.22. Let d ≥ µ be an integer. Let Bd be the set of families B
of µ monomials of degree d in K[x0, . . . , xn] such that the affinization B is
connected to one in K[x1, . . . , xn]. Then, the family of contravariant functors
(HB

x0
)B∈Bd

consists of open covering of representable subfunctors of Hx0.

Proof. First, let us prove that HB
x0

is an open subfunctor. By proposition
A.2, we can reduce to the case of affine schemes. Let A and A′ be noetherian
K-algebras. Let f be any morphism of K-algebras from A to A′ and φ its
corresponding morphism from Spec(A′) to Spec(A).
Let Z be an element of Hilb

µ
Pn(X) and I be its associated saturated homo-

geneous ideal of A[x0, . . . , xn]. Let Z
′ be the element of Hilb

µ
Pn(X ′) given by

(φ×IdPn)∗(Z). Let I ′ be the homogeneous ideal of A′[x0, . . . , xn] associated
to the quotient algebra (A[x0, . . . , xn]/I) ⊗A A

′.
Then, Z ′

x0
= (φ× IdPn)∗(Zx0) is equal to Spec(A′[x1, . . . , xn]/I

′) (where I ′

denote the affinization of I ′). Thus, we need to prove that for all noether-
ian K-algebras A′ and for all morphisms of K-algebras f from A to A′, the
sheaf of modules of Spec(A′) associated to the A′-module A′[x1, . . . , xn]/I

′

is locally free of rank µ with basis B if and only if the morphism

φ : Spec(A′) → Spec(A)

factors through an open subscheme ΓB of Spec(A).
From proposition 2.20, one has that ΓB exists and is equal to the open sub-
scheme of Ωx0 associated to the open subset on which the sheaf of module
given by the A-module A[x1, . . . , xn]/I is locally free of rank µ with basis
B. Thus, HB

u is an open subfunctor of Hx0 .
To prove that the family (HB

u )B∈Bd
is a covering, we need to prove that

the family (ΓB)B∈Bd
is a covering of Spec(A). This is a straightforward

consequence of the fact that any zero dimensional k-algebra k[x1, . . . , xn]/J
(where k is a field and J an ideal of k[x1, . . . , xn]) has a basis of monomials
connected to one (take for instance the complement of the initial ideal of J
for a monomial ordering).

Finally we need to prove that HB
x0

is representable. By proposition A.3,
we can reduce to affine schemes.
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Let A be a noetherian K-algebra and X = Spec(A). Recall that HB
x0
(X)

is the set of saturated homogeneous ideals I of A[x0, . . . , xn] such that for
all d ≥ µ (A[x0, . . . , xn]/I)d is a flat A module, for every prime ideal p ⊂ A,
the Hilbert polynomial of the k(p)-graded algebra (A[x0, . . . , xn]/I)⊗A k(p)
is equal to µ and Ap[x1, . . . , xn]/Ip is a free Ap-module of basis B.

Let F be the contravariant functor from the category of affine schemes
to the category of Sets which associates to X the set FB(X) of ideals J of
A[x1, . . . , xn] such that A[x1, . . . , xn]/J is a free A module of basis B.

Let ψ be the morphism of functors from HB
x0

to F given by

ψ : HB
x0
(X) −→ FB(X)

I 7−→ I

The map ψ is a bijection whose inverse consists of the homogenization. Then
the functors FB and HB

x0
are isomorphic.

By proposition 2.2, FB is represented by Spec(K[(zα,β)α∈δB,β∈B ]/R),
where R is the ideal generated by the commutation relations (2). Thus
HB
x0

is representable in the category of affine schemes. By proposition A.3,

HB
x0

is representable in C. �

Theorem 2.23. The contravariant functor Hilb
µ
Pn from C to the category

of Sets is representable.

Proof. From lemma 2.22 and proposition A.1, Hx0 is a representable func-
tor. More generally, by a change of variables in K[x0, . . . , xn], Hu is a
representable functor for all u ∈ K[x0, . . . , xn]1.
Thus, from propositions 2.20 and A.1, Hilb

µ
Pn is a representable contravari-

ant functor.
�

Remark 2.24. Note that the K-rational points of Hilbµ(Pn) are by defini-
tion in bijection with the set of homogeneous saturated ideal I of K[x0, . . . , xn]
such that the quotient algebra S/I has Hilbert polynomial equal to µ.

3. Global equations of the Hilbert Scheme

Let A be K-algebra and a noetherian local ring of maximal ideal m and
residue field k := A/m. Recall that if a /∈ m then a is invertible in A. Let
X := Spec(A) be the affine scheme associated to A and µ be an integer.
Let T := A[x0, . . . , xn] be the polynomial over A in n + 1 variables and
V := A[x1, . . . , xn] the polynomial ring over A in n variables.

3.1. Gotzmann’s persistence and regularity theorems. Recall that
from corollary 2.13, Hilb

µ
Pn(X) is equal to set of homogeneous ideals I of T

such that Td/Id is a free A-module of rank µ for all d ≥ µ.
Finally, recall the definition of the Grasmmannian functor (see eg. [25][Chap.4.3.3,
p.209]):
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Definition 3.1. Let V be a K-vector space of finite dimension N and n ≤ N
an integer. Let X be a noetherian scheme over K. The n Grassmannian
functor of V is the contravariant functor from the category C to the category
of Sets which associates to X the set GrnV (X) of locally free sheaves ǫ of
rank n such that ǫ is a quotient of V ∗ ⊗K OX on X.

The following theorems come from [6]:

Theorem 3.2 (Persistence theorem). Let d, µ be integers such that d ≥
µ. Let B be any noetherian ring and F = B[x0, . . . , xn]. Let I be an
homogeneous ideal of F generated by Id and let M = F/I. If Mi is a
flat B-module of rank µ for i = d, d+ 1, then Mi is so for all i ≥ d.

Theorem 3.3 (Gotzmann’s regularity theorem). Let I be an homogeneous
ideal of S with Hilbert polynomial µ. Then I is µ regular:

Hi(Pn, Ĩ(µ− i)) = 0

for i > 0, where Ĩ is the quasi-coherent sheaf associated to I.

For definition of H i(Pn,−), see [12][Chap.III, §8].

Using Persistence theorem 3.2 and corollary 2.14, we deduce the following
propositions:

Proposition 3.4. Given an integer d such that d ≥ µ, Hilb
µ
Pn(X) is in

bijection with the subset W of Gr
µ
S∗
d
(X) ×Gr

µ
S∗
d+1

(X) defined by

W = {(Td/Id, Td+1/Id+1) ∈ Gr
µ
S∗
d
(X) ×Gr

µ
S∗
d+1

(X) | T1.Id = Id+1}.

Proposition 3.5 ([15]). Given an integer d such that d ≥ µ, Hilb
µ
Pn(X) is

in bijection with the subset G of Gr
µ
S∗
d
(X) given by

G = {Td/Id ∈ Gr
µ
S∗
d
(X) | Td+1/(T1.Id) is a free A-module of rank µ}.

Actually, proposition 3.4 can be reformulated this way:

Proposition 3.6. Given an integer d such that d ≥ µ, Hilb
µ
Pn(X) is in

bijection with the subset W of Gr
µ
S∗
d
(X) ×Gr

µ
S∗
d+1

(X) defined by

W = {(Td/Id, Td+1/Id+1) ∈ Gr
µ
S∗
d
(X) ×Gr

µ
S∗
d+1

(X) | T1.Id ⊂ Id+1}.

Proof. Thanks to proposition 3.4, we only need to prove that if (Id, Id+1),
with Id.S1 ⊂ Id+1, belongs to Gr

µ
S∗
d
(X) ×Gr

µ
S∗
d+1

(X) then Id.S1 = Id+1.

Consider Id(m) and Id+1(m) introduced in definition 2.8. Then one has

(A[x0, . . . , xn]j/Ij)⊗ k ∼ k[x0, . . . , xn]/Ij(m)

for j = d, d+1. Thus, one has that S1.Id(m) ⊂ Id+1(m) and dimkk[x0, . . . , xn]/Id(m) =
dimkk[x0, . . . , xn]/Id+1(m) = µ with d ≥ µ. Then, by minimal growth of
an ideal in k[x0, . . . , xn] (see [15][Cor.C.4, p.291]), we deduce S1.Id(m) =
Id+1(m). Let I(m) (resp. M) be the ideal generated by Id(m) (resp. S1)
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in k[x0, . . . , xn]. Thus, by the persistence theorem 3.2 and minimal growth
[15][Cor.C.4, p.291], we get that

Sat(I(m)) :=
⋃

j∈N

I(m) : (M)j = Id(m)

with Id(m) equal to I(m)+(Id(m) : S1)+(Id(m) : S2)+ . . .+(Id(m) : Sd−1),

and that Id(m) belongs to Hilb
µ
Pn(k). Then, as Id(m) is saturated, we can

assume by a change of coordinates in K[x0, . . . , xn] that x0 is not a zero

divisor of Id(m). It implies that the multiplication by x0:

∗x0 : k[x0, . . . , xn]/Id(m) −→ k[x0, . . . , xn]/Id+1(m)

is injective (and by dimension is an isomorphism).
Thus one has the following diagram:

(A[x0, . . . , xn]d/Id)⊗ k
∼ //

∗x0
��

k(p)[x0, . . . , xn]d/Id(m)

∗x0
��

(A[x0, . . . , xn]d+1/Id+1)⊗ k
∼ // k(p)[x0, . . . , xn]d+1/Id+1(m)

in which the morphisms of multiplication by x0 are isomorphisms. Thus,
as A[x0, . . . , xn]j/Ij are free A-module for j = d, d + 1, the morphism of
multiplication by x0:

A[x0, . . . , xn]d/Id
∗x0 // A[x0, . . . , xn]d+1/Id+1

is an isomorphism.
Then, we proceed by dehomogenization by x0. One has that the natural
inclusion

A[x1, . . . , xn]≤d/Id −→ A[x1, . . . , xn]≤d+1/Id+1

is an isomorphism. As d ≥ µ = rankAA[x1, . . . , xn]≤d/Id, we can find a basis
B of A[x1, . . . , xn]≤d/Id of polynomials of degree stricly less than d and define
operators of multiplications by the variables (xi)1≤i≤n in A[x1, . . . , xn]≤d/Id.
Finally, we conclude as in proof of corollary 2.14 that S1 Id = Id+1. �

Remark 3.7. Note that the bijection introduced in proposition 3.6 is the
following:

{(Id, Id+1)|T1.Id ⊂ Id+1 and Tk/Ik is free of rank µ for k = d, d+ 1} → Hilb
µ
Pn(X)

(Id, Id+1) 7→ Id

where Id = (Id) + (Id : T1) + (Id : T2) + . . . + (Id : Td−1).

The same way, the bijection introduced in proposition 3.5 is the following:

{Id ⊂ Td| Td/Id is a free A-module of rank µ} → Hilb
µ
Pn(X)(10)

(Id) 7→ Id
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Remark 3.8. Note that the previous bijections induce the following com-
mutative diagram:

(11) Hilb
µ
Pn(X)

ψ
//

φ

''OOOOOOOOOOOO
W ⊂ Gr

µ
S∗
d
(X)×Gr

µ
S∗
d+1

(X)

π
uujjjjjjjjjjjjjjj

G ⊂ Gr
µ
S∗
d
(X)

where φ and ψ are bijections and π is the natural projection on the first
Grassmannian Gr

µ
S∗
d
(X). Thus, we deduce π is also a bijection and G

′
is

exactly the projection of W
′
on Gr

µ
S∗
d
(X).

3.2. Global description. From the previous section, we can considerHilb
µ
Pn(X)

as a subset W of the product of the two Grassmannians: Gr
µ
S∗
d
(X) ×

Gr
µ
S∗
d+1

(X) or as a subset G of the single Grassmannian: Gr
µ
S∗
d
(X) for d ≥ µ.

In this section we will prove that Hilb
µ
Pn(X) can actually be considered as an

algebraic subvariety of this product of two Grassmannians or as an algebraic
subvariety of this single Grassmannian. We will get the global equations of
these subvarieties in the Plücker coordinates and will connect it to the bor-
der basis description of Section 2.1.

We consider the well known embedding ofGr
µ
S∗
d
(X) into the projective space

P(∧µT ∗
d ) given as follow: let ∆ := Td/Id be an element of Gr

µ
S∗
d
(X) and

(e1, . . . , eµ) be any basis of the free A-module ∆. For any ordered family
(xα1 , . . . ,xαµ) of µ monomials of degree d (for some monomial ordering <)
write:

xα1 ∧ · · · ∧ xαµ = ∆α1,...,αµe1 ∧ · · · ∧ eµ

in ∧µ(Td/Id) which is free of rank 1 and has basis e1∧· · ·∧eµ with ∆α1,...,αµ

in A. Finally, let us associate to ∆ ∈ Gr
µ
S∗
d
(X) the point in P(∧µT ∗

d ) corre-

sponding to the family (∆α1,...,αµ)α1<...<αµ (note that this construction does
not depend on the choice of the basis (e1, . . . , eµ) of ∆).
The (∆α1,...,αµ) will be called the Plücker coordinates. They satisfy the well
known Plücker relations.

Let ∆ be an element of Gr
µ
S∗
d
(X). Let (δ1, . . . , δµ) in T ∗

d be the dual

basis of (e1, . . . , eµ) in the dual space ∆∗ = HomA(∆, A) which is also a free
A-module of rank µ. Then the Plücker coordinates of ∆ as an element of
P(∧µT ∗

d ) are given by:

∆β1,...,βµ =

∣∣∣∣∣∣∣

δ1(x
β1) · · · δ1(x

βµ)
...

...
δµ(x

β1) · · · δµ(x
βµ)

∣∣∣∣∣∣∣
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for βi ∈ N
n+1, |βi| = d and β1 < · · · < βµ.

More generally, consider the following determinant:
∣∣∣∣∣∣∣

δ1(p1) · · · δ1(pµ)
...

...
δµ(p1) · · · δµ(pµ)

∣∣∣∣∣∣∣

for (p1, . . . , pµ) any family of polynomials in Sd (not necessarily mono-
mials and not necessarily ordered). Using the multilinearity properties
of the determinant and the equality above, it is easy to prove that this
determinant can be written as a linear form in the Plücker coordinates
(∆β1,...,βµ)|βi|=d,β1<···<βµ . We will denote it ∆p1,...,pµ or ∆E where E =
(p1, . . . , pµ) is a family of polynomials in T .
For example, let F = (xα1 , . . . ,xαµ) be a family of µ monomials in Td (not

necessarily ordered). Then ∆F = ǫ.∆F
′ where F

′
is the family of monomials

associated to F ordered by the monomial ordering <, and ǫ ∈ {±1} is the

signature of the permutation which transforms F into F
′
.

From now on, if ∆ ∈ Gr
µ
S∗
d
(X), we will denote by ker(∆) the A-submodule

Id of Td such that ∆ = Td/Id.
We are going to describe the border relations with respect to a basis

B ⊂ Sd of ∆ := Td/Id in terms of these Plücker coordinates.

Lemma 3.9. Let ∆ := Td/Id be an element of Gr
µ
S∗
d
(X). Let B = (b1, . . . , bµ)

be a family of polynomials of degree d. Then we have the following relation:

∆B a−

µ∑

i=1

∆B[bi|a] bi = 0 in ∆, for a ∈ Td

where B[bi|a] = (b1, . . . , bi−1, a, bi+1, . . . , bµ).

Proof. The previous relation is a straightforward consequence of basic prop-
erties of determinants. Consider the following matrix

M :=




δ1(a) δ1(b1) · · · δ1(bµ)
...

...
δµ(a) δµ(b1) · · · δµ(bµ)
1 1 · · · 1




and develop its determinant along the last row of M . Then one has the
following relation

M




∆B

∆B[b1|a]

...
∆
B[bµ|a]


 =




0
0
...

det(M)


 .

From this relation, we conclude that ∆B a−
∑µ

i=1∆B[bi|a] bi = 0 in ∆. �



20 M.E. ALONSO(1), J. BRACHAT, AND B. MOURRAIN

Theorem 3.10. Let d ≥ µ be an integer. Hilb
µ
Pn(X) is the projection on

Gr
µ
S∗
d
(X) of the variety of Gr

µ
S∗
d
(X) ×Gr

µ
S∗
d+1

(X) defined by the equations

(12) ∆B∆
′

B′,xka
−
∑

b∈B

∆B[b|a] ∆
′

B′,xkb
= 0,

for all families B (resp. B′) of µ (resp. µ− 1) monomials of degree d (resp.

d + 1), all monomial a ∈ Td and for every k (where B
′
, xka is the family

(b
′

1, . . . , b
′

µ−1, xka)).

Proof. From remark 3.8 about the commutative diagram (11), G is equal
to the projection of W onto Gr

µ
S∗
d
(X). Thus it is enough to prove that

W ⊂ Gr
µ
S∗
d
(X)×Gr

µ
S∗
d+1

(X) is the subvariety defined by the equations (12).

By proposition 3.6, W is defined by the single condition: T1. ker∆ ⊂ ker∆
′
.

Thus we need to prove (12) is equivalent to T1. ker∆ ⊂ ker∆
′
.

First of all, let (∆,∆
′
) be an element of Gr

µ
S∗
d
(X)×Gr

µ
S∗
d+1

(X) satisfying the

equations (12). We need to prove that T1 · ker∆ ⊂ ker∆
′
. Let B be a basis

of ∆ (so that ∆B 6∈ m is invertible), and let p be an element of ker∆. By

linearity, equations (12) imply that ∆
′

B′,xkp
= 0 for all k = 1, . . . , n and all

subset B′ of µ−1 monomials of degree d+1 (because ∆B[b|p] = 0). Thus, by

lemma 3.9, xk · p belongs to ker∆
′
for all k = 1, .., n and S1 ·ker∆ ⊂ ker∆

′
.

Conversely, let (∆,∆
′
) satisfy T1. ker∆ ⊂ ker∆

′
. Thus by proposition

3.6, (∆,∆
′
) is in W

′
and corresponds to a homogeneous saturated ideal I

in Hilb
µ
Pn(X) so that Id = ker∆ and Id+1 = ker∆

′
. We are going to prove

that the equations (12) are satisfied for (∆,∆
′
).

This is a straightforward consequence to lemma 3.9: for any family (bi) of µ
polynomials in Td and any polynomial a ∈ Td, one has the following formula:

a∆B =
∑

i

∆B[bi|a] bi

in ∆. As T1. ker∆ ⊂ ker∆
′
, one also has

a xk∆B =
∑

i

∆B[bi|a] bi xk

in ∆
′
for any 0 ≤ k ≤ n.

Then by linearity, for any family B′ of µ− 1 monomials,

∆B∆
′

B′,xka
= ∆

′

B′,xk ∆Ba
=
∑

b∈B

∆B[b|a] ∆
′

B′,xkb

which are precisely equations (12).
�

Hereafter, we describe the equations of Hilb
µ
Pn(X) as a variety of the

single Grassmannian Gr
µ
S∗
d
(X) (i.e the equations of G introduced in propo-

sition 3.5). This is also equal to the projection on Gr
µ
S∗
d
(X) of the variety
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defined by the equations (12) in Gr
µ
S∗
d
(X)×Gr

µ
S∗
d+1

(X). Let us introduce a

generic linear form u = u0x0 + · · ·+ unxn where ui are parameters in A.
For any family B = (b1, . . . , bµ) in Sd−1, we define

∆u·B = det(δi(u · bj)) =
∑

I∈{0,...,n}µ

u(I)∆I·B,

where ∆I·B = ∆xI1b1,...,xIµbµ
and (I) is the element of N

n+1 such that

u(I) = uI1 · · · uIµ for all I ∈ {0, . . . , n}µ. In this context, Ii will also be
denoted Ibi and more generaly Ib for b ∈ B.

For two families of monomials B,B′ ⊂ Td−1, we have

∆u·B ∆u·B′ =
∑

K∈Nn+1,|K|=2µ

uK
∑

I,J∈{0,...,n}µ, (I)+(J )=K

∆I·B∆J ·B.

Proposition 3.11. Let d ≥ µ be an integer ∆ ∈ Gr
µ
S∗
d
(X) be an element of

Hilb
µ
Pn(X). Then for all families B of µ monomials of degree d− 1, for all

K ∈ N
n+1 with |K| = 2µ, for all b, b′′ ∈ B and all 1 ≤ i < j ≤ n, we have

(13)∑

(I)+(J )=K

∑

b′∈B

(∆
I·B

[xI
b′

b′|xib]
∆

J ·B
[xJ

b′′
b′′|xjb

′]−∆
I·B

[xI
b′

b′|xjb]
∆

J ·B
[xJ

b′′
b′′|xib

′]) = 0.

Proof. Note that the relations (13) are obtained (using previous notations)
as the coefficients in u of the relations:

(14)
∑

b′∈B

(∆
u·B [ub′|xib]

∆
u·B [ub′′|xjb

′] −∆
u·B [ub′|xjb]

∆
u·B [ub′′|xib

′]) = 0.

By proposition C.1, proving (13) is thus equivalent to proving (14) for generic
values of u in S1 = K[x0, . . . , xn].

Let I be the homogeneous ideal inHilb
µ
Pn(X) associated to ∆ ∈ Gr

µ
S∗
d
(X).

Let ∆′ = Td+1/Id+1. As d ≥ µ, we know by propositions 3.5 and 3.6 that ∆
and ∆′ are free A modules of rank µ. Let F := (e1, . . . , eµ) be a basis of ∆.
Let P1 ∈ A[u] be the polynomial in u given by:

P1(u) := ∆′
u·F .

As I is saturated, one can find v ∈ T1 such that v is not a zero divisor of I
and thus P1(v) /∈ m. Thus the polynonial P1 in T ⊗ (A/m) = k[x0, . . . , xn]
is not equal to zero. Consequently, ∆′

u.F /∈ m for generic values of u in
S1. Let us choose a generic u such that ∆′

u.F /∈ m. Finally by a change of
variables in K[x0, . . . , xn], we can assume that u = x0.
Then F := (e1, . . . , eµ) and x0 · F := (x0 e1, . . . , x0 eµ) are basis of respec-
tively ∆ and ∆′. Thus, for any family B of µ monomials of degree d− 1 one
has:

∆x0·B

∆F
=

∆′
x20·B

∆′
x0·F
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because for any homogeneous polynomial a of degree d the following decom-
position in ∆:

a =
∑

i

zi ei

(zi ∈ A) induces this decomposition in ∆′ (since x0Ker∆ ⊂ ker∆′):

x0 a =
∑

i

zi x0 ei

For, any family B of µ monomials of degree d − 1 and any b′, b, b′′ ∈ B, we
have
∑

b′∈B

∆
x0·B [x0b

′|xib]
∆
x0·B

[x0b
′′|xjb

′] =
∆F

∆′
x0F

∑

b′∈B

∆
x0·B [x0b

′|xib]
∆′

x20·B
[x2

0
b′′|x0xjb

′]

But by lemma 3.9 we have
∑

b′∈B

x0 xjb
′
∆
x0·B [x0b

′|xib]
= xj xib∆x0·B.

in ∆′.
Finally, by linearity we get

∑

b′∈B

∆
x0·B [x0b

′|xib]
∆
x0·B

[x0b
′′|xjb

′] =
∆F

∆′
x0·F

∆x0·B∆′

x20·B
[x20b

′′|xixjb]

As this expression is symmetric in i and j, we get
∑

b′∈B

∆
u·B [ub′|xib]

∆
u·B [ub′′|xjb

′] =
∑

b′∈B

∆
u·B [ub′|xjb]

∆
u·B [ub′′|xib

′] ,

which proves the relations (14). �

Remark 3.12. Note that if B is a basis of ∆ and u = x0 is not a zero
divisor of I, then B is a basis of the quotient:

A := A[x1, . . . , xn]/I

and equations (14) are equivalent to the commutation relations between the
operators of multiplication by the variable (xi) in the quotient algebra A.

Proposition 3.13. Let d ≥ µ be an integer and ∆ ∈ Gr
µ
S∗
d
(X) be an element

of Hilb
µ
Pn(X). Then for all families B of µ monomials of degree d− 1, for

all K ∈ N
n+1 with |K| = 2µ, for all monomial a ∈ Sd−1, for all b ∈ B and

for all k = 0, . . . , n, we have
(15)

∑

(I)+(J )=K

(
∆

I·B
[xIb

b|xka] ∆J ·B −
∑

b′∈B

∆
I·B

[xIb
b|xkb′] ∆

J ·B
[xJ

b′
b′|xJ

b′
a]

)
= 0.
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Proof. Here also the relations (15) are obtained as the coefficients in u of
the relations

(16) ∆
u·B[ub|xka] ∆u·B −

∑

b′∈B

∆
u·B[ub|xkb′] ∆u·B[ub′|ua] = 0.

By proposition C.1, proving (15) is equivalent to proving (16) for generic
values of u ∈ S1.

Let I be the homogeneous ideal inHilb
µ
Pn(X) associated to ∆ ∈ Gr

µ
S∗
d
(X).

Let ∆′ = Td+1/Id+1. As d ≥ µ, we know by propositions 3.5 and 3.6 that
∆ and ∆′ are free A modules of rank µ. Let F := (e1, . . . , eµ) be a basis of
∆′′.
As we did in the proof of proposition 3.11, we can assume u = x0 and
F := (e1, . . . , eµ) and x0.F := (x0 e1, . . . , x0 eµ) are basis of respectively ∆
and ∆′. Then, for any family B of µ monomials of degree d− 1 one has:

∆x0·B

∆F
=

∆′
x20·B

∆′
x0·F

Thus for any family B of µ monomials of degree d− 1, any monomials a of
degree d− 1 and any k ∈ N:

∆
x0·B

[x0·b|xkb′] =
∆F

∆′
x0·F

∆′

x20·B
[x20b|xkx0b

′]
.

By lemma 3.9 we also have:
∑

b′∈B

∆
x0·B[x0b

′|x0a]
x0 b

′ xk = ∆x0·B xk a

in ∆′.
Finally, by linearity we have:
∑

b′∈B

∆
x0·B [x0b|xkb′] ∆x0·B [x0b

′|x0a]
=

∆F

∆′
x0·F

∆x0B∆′

x20·B
[x2

0
b|xkx0a]

= ∆
x0·B

[x0b|xka] ∆x0·B

�

Remark 3.14. Note that if B is a basis of ∆ and u = x0 is not a zero
divisor of I, then B is a basis of the affinization of T/I:

A := A[x1, . . . , xn]/I

and equations (16) are equivalent to the fact that the decomposition of xka
on B in A is obtained by computing the decomposition of a on B and
applying to it the operator of multiplication by xk.

Example 3.15. Here is an example of equations that are obtained from
propositions 3.11 and 3.13 in the case n = 2, S = K[x, y, z] and µ = 2.
We will give the equations given by (14) and (16) in the case u = x. There
are three families of two monomials of degree µ− 1 = 1:

B1 = (x, y), B2 = (x, z), B3 = (y, z).
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Thus,

x · B1 = (x2, xy), x · B2 = (x2, xz), x · B3 = (xy, xz).

The variables of multiplications are y and z. Let us focus on the case B =
B1. By homogeneisation of the equations of example 2.3:

∆x·B1 My =

(
0 ∆xy,y2

∆x2,xy ∆x2,y2

)
, ∆x·B1 Mz =

(
∆xy,xz ∆xy,yz

∆x2,xz ∆x2,yz

)
.

we obtain a first set of equations of type (14) given by the commutation
property:

{
∆y2,xy∆x2,xz −∆xy,yz∆x2,xy = 0,
∆y2,xy∆x2,yz −∆xy,xz∆xy,y2 −∆xy,yz∆x2,y2 = 0,

Notice that these equations are not enough to define the Hilbert scheme,
since it is irredicble of dimension 4 but these equations vanish when ∆y2,xy =
0,∆x2,xy = 0,∆x2,y2 = 0. The second set of equations of type (16) in the
case u = x and B = B1, is given by the decomposition in x · B1 of the
monomials v a and by the operator of multiplication by v applied to x a with
a = x, y, z and v = y, z. For instance, for v = y and a = z we have:

∆2
x·B1

yz ≡

(
∆x2,xy∆xy,yz

∆x2,xy∆x2,yz

)

and

∆x·B1xz ≡

(
∆xy,xz

∆x2,xz

)
.

Then, we write

∆2
x·B1

yz −∆2
x·B1

My(xz) ≡ 0

and we get {
∆

x2,xy
∆xy,yz − ∆

x2,xz
∆

y2,xy
= 0,

∆
x2,xy

∆
x2,yz

− ∆xy,xz∆x2,xy
− ∆

x2,xz
∆

x2,y2
= 0.

We do the same for v = z and obtain:
{

∆
x2,xy

∆
z2,xy

− ∆xy,xz∆xy,xz − ∆
x2,xz

∆xy,yz = 0,

∆
x2,xy

∆
x2,z2

− ∆xy,xz∆x2,xz
− ∆

x2,xz
∆

x2,yz
= 0.

If we do the same for a = x, y we do not get any new equations. Con-
sequently, the equations obtained from relations (14) and (16) in the case
u = x and B = B1 = (x, y) are:





∆
y2,xy

∆
x2,xz

− ∆xy,yz∆xy,x2 = 0,

∆
y2,xy

∆
x2,yz

− ∆xy,xz∆xy,y2
− ∆xy,yz∆x2,y2

= 0,

∆
x2,xy

∆xy,xz + ∆
x2,y2

∆
x2,xz

− ∆
x2,yz

∆
x2,xy

= 0,

∆
x2,xy

∆
xy,z2

− ∆
2

xy,xz
− ∆

x2,xz
∆xy,yz = 0,

∆
x2,xy

∆
x2,z2

− ∆xy,xz∆x2,xz
− ∆

x2,xz
∆

x2,yz
= 0.

In the case B = B2, we get the equations by permutation of y and z.
Finally, in the case B = B3, we get:





∆
y2,xz

∆yz,xz + ∆yz,xz∆xy,yz − ∆yz,xz∆y2,xz
− ∆

z2,xy
∆

xy,y2
= 0,

∆
xy,y2

∆yz,xz + ∆
2

xy,yz
− ∆xy,yz∆y2,xz

− ∆
xy,z2

∆
xy,y2

= 0,

∆
y2,xz

∆
xy,z2

+ ∆xz,yz∆xy,z2
− ∆

2

xz,yz
− ∆

xy,z2
∆xy,yz = 0,

∆
xy,y2

∆
z2,xy

+ ∆xy,yz∆xy,z2
− ∆xy,yz∆yz,xz − ∆

xy,z2
∆xy,yz = 0.
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from relation (14), and




∆
2

xy,xz
− ∆

y2,xz
∆

x2,xz
− ∆yz,xz∆xy,x2 = 0,

∆
xy,y2

∆
x2,xz

+ ∆xy,yz∆xy,x2 = 0,

∆yz,xz∆x2,xz
+ ∆

z2,xz
∆

xy,x2 = 0,

∆
2

xy,xz
− ∆xy,yz∆x2,xz

− ∆
xy,z2

∆
xy,x2 = 0.

from relation (16).
Finally, the equations that are obtained from (14) and (16) in the case u = x
are: 




∆
y2,xy

∆
x2,xz

− ∆xy,yz∆x2,xy
= 0,

∆
y2,xy

∆
x2,yz

− ∆xy,xz∆y2,xy
− ∆xy,yz∆x2,y2

= 0,

∆
x2,xy

∆xy,xz + ∆
x2,y2

∆
x2,xz

− ∆
x2,yz

∆
x2,xy

= 0,

∆
x2,xy

∆
z2,xy

− ∆
2

xy,xz
− ∆

x2,xz
∆xy,yz = 0,

∆
x2,xy

∆
x2,z2

− ∆xy,xz∆x2,xz
− ∆

x2,xz
∆

x2,yz
= 0,

∆
z2,xz

∆
x2,xy

− ∆xz,yz∆x2,xz
= 0,

∆
z2,xz

∆
x2,zy

− ∆xy,xz∆z2,xz
− ∆zy,xz∆x2,z2

= 0,

∆
x2,xz

∆xy,xz + ∆
x2,z2

∆
x2,xy

− ∆
x2,zy

∆
x2,xz

= 0,

∆
x2,xz

∆
y2,xz

− ∆
2

xy,xz
− ∆

x2,xy
∆xz,yz = 0,

∆
x2,xz

∆
x2,y2

− ∆xy,xz∆x2,xy
− ∆

x2,xy
∆

x2,zy
= 0,

∆
y2,xz

∆yz,xz + ∆yz,xz∆xy,yz − ∆yz,xz∆y2,xz
− ∆

z2,xy
∆

xy,y2
= 0,

∆
xy,y2

∆yz,xz + ∆xy,yz∆xy,yz − ∆xy,yz∆y2,xz
− ∆

xy,z2
∆

xy,y2
= 0,

∆
y2,xz

∆
z2,xy

+ ∆yz,xz∆xy,z2
− ∆yz,xz∆yz,xz − ∆

z2,xy
∆xy,yz = 0,

∆
xy,y2

∆
z2,xy

+ ∆xy,yz∆xy,z2
− ∆xy,yz∆yz,xz − ∆

xy,z2
∆xy,yz = 0,

∆
2

xy,xz
− ∆

xz,y2
∆

x2,xz
− ∆xz,yz∆x2,xy

= 0,

∆xz,yz∆xz,x2 + ∆
xz,z2

∆
xy,x2 = 0,

∆
2

xy,xz
− ∆xy,yz∆x2,xz

− ∆
xy,z2

∆
xy,x2 = 0.

A complete set of equations of Hilb2
P2 is obtained by permutation of x, y

and z in these equations. Notice that such quadratic equations have also
been computed by Gröbner basis techniques for Hilb2

P2 in [2, p. 3].

Theorem 3.16. Let d ≥ µ. An element ∆ ∈ Gr
µ
S∗
d
(X) is in Hilb

µ
Pn(X) iff

it satisfies the relations (13) and (15).

Proof. First, let us prove that there exists a family B of µ monomials of
degree d− 1 and a linear form u such that u ·B is a basis of ∆.

Let Id = ker∆ ⊂ Td. Tensoring by the residue field k, we can reduce
to the case A = k and thus T = S = k[x0, . . . , xn]. To prove that there
exists a family B of µ monomials of degree d − 1 and a linear form u such
that u ·B is a basis of ∆, it is enough to prove this result for ∆in := Sd/Jd
with J equal to the initial ideal of (Id) (for the degree reverse lexicographic
ordering < such that xi > xi+1, i = 0, . . . , n − 1). From [4][Thm. 15.20, p.
351], by a generic change of variables, we can assume that J is Borel-fix i.e
if xix

α ∈ J then xjx
α ∈ J for all j > i.

Let us prove now that there exists a family B of µ monomials of degree
d − 1 such that x0 · B is a basis of Sd/Jd. It is enough to prove Jd +
x0 Sd−1 = Sd. Consider J

′
d := (Jd+x0 Sd−1)/x0 Sd−1 as a subvector space of

S′
d := Sd/x0 Sd−1 (which is isomorphic to k[x1, . . . , xn]d). We need to prove

that S′
d = J ′

d. Let L ⊂ Sd−1 be the following set

L := {x ∈ Sd−1| x0x ∈ Jd} = (Jd : x0).

One has the exact sequence

0 // Sd−1/L
∗x0 // Sd/Jd // S′

d/J
′
d

// 0.



26 M.E. ALONSO(1), J. BRACHAT, AND B. MOURRAIN

Assume that dim(S′
d/J

′
d) > 0, then dim(L) > sd−1 − µ. Thus, as d ≥ µ, by

[6][(2.10), p.66], dim(S1 · L) > sd − µ. As J is Borel-fix, S1 · L ⊂ Jd. Thus,
dim(Jd) ≥ dim(S1 · L) > sd − µ. By assumption, this is impossible, thus
J ′
d = S′

d. we deduce that there exists a family B of µ monomials of degree
d− 1 such that x0 · B is a basis of Sd/Jd.

Let B be a family of µ monomials of degree d−1 such that x0 ·B is a basis
of ∆ = Td/Id. Let Id ⊂ V≤d = A[x1, . . . , xn]≤d be the dehomogenization
of Id (the free A submodule of rank µ of V≤d defined by putting x0 = 1 in
Id). Let π : Td/Id → 〈B〉 be the natural isomorphism of A modules between
Td/Id and 〈B〉 (the free A-module of basis B). The dehomogenization is
also an isomorphism of A-modules between V≤d/Id and Td/Id. Thus V≤d/Id
is naturally isomorphic to 〈B〉. Let ψ be this isomorphism, we have the
following commutative diagram:

V≤d/Id
∼ //

ψ

##G
GG

GG
GG

GG
Td/Id

π
||xxx

xxx
xx

〈B〉

We introduce the linear operators (Mi)i=1,...,n operating on 〈B〉. From
remarks 3.12 and 3.14, relations (14) and (16) for u = x0 give us that the
operators (Mi)i=1,...,n commute and that, for every α ∈ N

n+1 with |α| = d−1
and every i = 1, . . . , n, π(xα xi) =Mi(π(x

α x0)) (i.e ψ(x
α xi) =Mi(ψ(x

α))).
Note that, by definition in section Notations 1.1, for all α ∈ N

n+1 such that
|α| = d we have

π(xα) = ψ(xα).

We define σ, an application from V = A[x1, . . . , xn] to 〈B〉, as follows:
∀p ∈ V, σ(p) = p(M)(π(xd0)) (or p(M)(ψ(1))) where xα(M) =Mα1

1 · · ·Mαn
n .

As the operators (Mi)i=1,...,n commute, p(M) is well defined and J = ker σ is
an ideal of V . Let us prove by induction on the degree k of p that σ(p) = ψ(p)
for polynomials p in V≤d. For k = 0, σ(1) = ψ(1) by definition. From k to
k + 1, we assume that p is a monomial of degree k + 1 i.e p is of the form:

p = xi x
α

with i ∈ 1 . . . n and α ∈ N
n+1 such that |α| = d and degree of xα is equal

k. Then, σ(xi x
α) = Mi(σ(x

α)). By induction on k, σ(xα) = ψ(xα). Thus,
we have σ(xi x

α) = Mi(ψ(x
α)) = Mi(π(x

α)). From the end of the previous
paragraph, this is equal to ψ(xα xi) = ψ(p).

Then it follows that σ is surjective because for all xα ∈ B,σ(xα) =
ψ(xα) = π(xα) = xα. Thus we get that V/J is a free A-module of rank
µ = |B|. Moreover, since σ and ψ coincide on V≤d, J≤d = Id. Let J be the

homogenization of J, then by proposition 3.6 J belongs to Hilb
µ
Pn(X) and

Jd = Id (because J≤d = Id).
�
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Now, using theorem 3.16, we can finally give equations for the Hilbert
scheme Hilbµ(Pn).

By definition Hilbµ(Pn) represents the Hilbert functor Hilb
µ
Pn . We can

reduce to the case of affine schemes X = Spec(A), with A a noetherian
K-algebra. In the following, we will say that an A module M is locally free

of rank r if the quasi coherent sheaf of modules denoted M̃ on X = Spec(A)
is locally free of rank r.

Recall that the Hilbert functor associates to X in the category C of noe-
therian schemes over K, the set Hilb

µ
Pn(X) of saturated homogeneous ideals

I of A[x0, . . . , xn] such that (A[x0, . . . , xn]/I)d is a flat A-module for every
d ≥ µ and for every prime p ⊂ A,the Hilbert polynomial of the k(p)-graded
algebra (A[x0, . . . , xn]/I) ⊗A k(p) is equal to µ.

By [26][Lem.7.51, p.55] and the bijection (10) introduced in subsection
3.1, for d ≥ µ, Hilb

µ
Pn(X) is the set of A-submodules Id of A[x0, . . . , xn]d

such that A[x0, . . . , xn]d/Id and A[x0, . . . , xn]d+1/Id+1 are locally free of rank
µ, where Id+1 = A[x0, . . . , xn]1.Id.

We can rewrite it as the set of ǫ locally free sheaves of modules of rank µ on
X along with g := K[x0, . . . , xn]d⊗KOX → ǫ→ 0 such that A[x0, . . . , xn]d+1/Id+1

is locally free of rank µ, where Id+1 = A[x0, . . . , xn]1.Ker(g).
Thus, we get a morphism of functors for d ≥ µ

Φ := Hilb
µ
Pn −→ Gr

µ
S∗
d

and a morphism of schemes

φ := Hilbµ(Pn) −→ Grµ(S∗
d).

Theorem 3.17. The morphism φ is a closed immersion whose equations are
(13) and (15). Equivalently, we have the following commutative diagram:

Hilbµ(Pn)
φ

//

∼

**TTTTTTTTTTTTTTTT
Grµ(S∗

d) = Proj(K[∧µS∗
d ]/(#))

Proj(K[∧µS∗
d ]/(#, (13), (15)))

ι
33ggggggggggggggggggggg

where ι is the natural closed immersion from Proj(K[∧µS∗
d ]/(#, (13), (15)))

to Proj(K[∧µS∗
d ]/(#)).

Proof. Let us prove thatProj(K[∧µS∗
d ]/(#, (13), (15))) represents the Hilbert

functor. Again we can reduce to the case of affine schemes X = Spec(A)
with A a noetherian K algebra.

Consider an element (ǫ, g) of Hilb
µ
Pn(X) with ǫ locally free sheaf of rank

µ on X and
g : K[x0, . . . , xn]d ⊗K OX → ǫ→ 0.

Let Id be the A submodule of A[x0, . . . , xn]d such that Ĩd = Ker(g) (thus ǫ
is the quasi coherent sheaf associated to A[x0, . . . , xn]d/Id). Let Id+1 be the
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submodule of A[x0, . . . , xn]d+1 equal to A[x0, . . . , xn]1.Id. By By proposition
3.4, A[x0, . . . , xn]d+1/Id+1 is locally free of rank µ. As we did in the case of
the Grassmannian functor, let sα ∈ ǫ(X) for α ∈ N

n such that |α| = d, be
the image of the monomial xα ∈ Sd by g. For B = (xα1 , . . . , xαµ) a family
of µ monomials of degree d in Sd, we will denote by pB ∈ ∧µǫ(X) the global
section pα1,...,αµ = sα1 ∧ · · · ∧ sαµ (see lemma B.2).

We already know from theorem B.1 that (pB), for families B of µ ordered
monomials of degree d in A[x0, . . . , xn]d (for some monomial ordering <),
satisfy the Plücker relations (#).

For all primes p of A, let (Ip)d = Id ⊗ Ap and (Ip)d+1 = Id+1 ⊗ Ap.
Then, Ap[x0, . . . , xn]d/(Ip)d is the fiber of ǫ at p ∈ Spec(A). Thus it a free
Ap-module of rank µ. By definition, Ap[x0, . . . , xn]d+1/(Ip)d+1 is also a free
Ap-module of rank µ.

One can easily check that the image of the global sections (pB), in the
stalk ∧µǫ(X)p = Ap of ∧µǫ(X) at p ∈ Spec(A), are exactly the coordinates
(∆B) of ∆ = Td/(Ip)d introduced in subsection 3.2. Thus, using one side of
the equivalence of theorem 3.16, (pB) satisfy equations (13) and (15) at any
p ∈ Spec(A). Thus, (pB) satisfies globally equations (13) and (15) and we
get a morphism

X −→ Proj(K[∧µS∗
d ]/(#, (13), (15))).

We deduce a morphism of contravariant functors

Ψ := Hilb
µ
Pn −→ Hom(−,Proj(K[∧µS∗

d ]/(#, (13), (15)))).

Ψ(X) is injective because, by definition, Φ(X) is injective and the following
diagram is commutative:

Hilb
µ
Pn(X)

Φ(X)
//

Ψ(X)

**VVVVVVVVVVVVVVVVVVVV
Gr

µ
S∗
d
(X)

Hom(X,Proj(K[∧µS∗
d ]/(#, (13), (15))))

ι

44hhhhhhhhhhhhhhhhhhhh

.

Let us prove now that Ψ(X) is surjective.
Given an element ofHom(X,Proj(K[∧µS∗

d ]/(#, (13), (15)))), we get (through
its image in Gr

µ
S∗
d
(X)) an element (ǫ, g) of Hilb

µ
Pn(X) with ǫ locally free

sheaf of rank µ on X and

g : K[x0, . . . , xn]d ⊗K OX → ǫ→ 0.

Using the same notations as above, for all primes p ∈ Spec(A), as (pB) sat-
isfy (13) and (15), (∆B) also satisfy (13) and (15). Using the other side of
the equivalence of theorem 3.16, we get that Ap[x0, . . . , xn]d+1/(Ip)d+1 is lo-
cally free of rank µ for all primes p ∈ Spec(A). Thus, A[x0, . . . , xn]d+1/Id+1

is locally free of rank µ and (ǫ, g) belongs to Hilb
µ
Pn(X).
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Finally Ψ(X) is a bijection and Ψ is an isomorphism of contravariant
functors. We conclude Proj(K[∧µS∗

d ]/(#, (13), (15))) represents the Hilbert
functor. �

4. Tangent space

Our objective in this section is to determine the tangent space at a K-
rational point I0 of the Hilbert scheme Hilbµ(Pn). From Theorem 3.17,
Hilbµ(Pn) is a projective scheme whose equations are the equations (13),
(15) and the Plücker relations (#).

For u in S1, let Hu be the open subscheme of Hilbµ(Pn) associated to
the open subfunctor Hu introduced in definition 2.19. Let v ∈ S1 be a
linear form such that the open subscheme Hv contains I0 (ie. v is not a
zero divisor of I0). After a change of coordinates (v = x0) we can assume
this open subset is of the form Hx0 . Let B ∈ Bd (see lemma 2.22) be a
family of µ monomials in Sd (for d ≥ µ) connected to 1. Let HB

x0
be the

open affine subscheme associated to the open subfunctor HB
x0

of the Hilbert
scheme Hilbµ(Pn) (see definition 2.21). Using proposition 2.2 and lemma
2.22, HB

x0
is the affine scheme associated to the affine variety

HB := {z ∈ K
µ×N ;Mxi(z) ◦Mxj (z)−Mxj (z) ◦Mxi(z) = 0, 1 6 i < j 6 n}.

The system of coordinates of this variety is the set of parameters z =
(zα,β)α∈∂B,β∈B such that

h0α(x) = xα −
∑

β∈B

zα,β x
β

is a border basis of I0 for B. Then, the equations of Hilbµ(Pn) in this system
of coordinates reduce to the commutation relations:

M0
i (z)M

0
j (z)−M0

j (z)M
0
i (z) = 0,

where M0
i (z) is the operator of multiplication by xi in the basis B modulo

the affine ideal I0. We will compute the tangent space of the Hilbert scheme
using the previous system of coordinates.

By definition, the tangent space of Hilbµ(Pn) at I0 is the set of vectors
h1 = (h1α,β) such that line hεα(x) = h0α(x)+εh

1
α(x) intersects Hilb

µ(Pn) with

multiplicity ≥ 2, where h1α(x) :=
∑

β∈B h
1
α,βx

β
.

Substituting in the commutation relations, we obtain

M ε
xi

◦M ε
xj

−M ε
xj

◦M ε
xi

= (M0
xi

◦M0
xj

−M0
xj

◦M0
xi
)

+ε(M1
xi

◦M0
xj

+M0
xi

◦M1
xj

−M1
xj

◦M0
xi
−M0

xj
◦M1

xi
) +O(ε2)

= ε(M1
xi

◦M0
xj

+M0
xi
◦M1

xj
−M1

xj
◦M0

xi
−M0

xj
◦M1

xi
) +O(ε2).

where M ε
xi

=M0
xi
+ εM1

xi
, M0

xi
is the operator of multiplication by xi in A0

and M1
xi

is linear in h
1. We deduce the linear equations in h

1 defining the
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tangent space of Hilbµ(Pn) at I0:

(17) M1
xi
◦M0

xj
+M0

xi
◦M1

xj
−M1

xj
◦M0

xi
−M0

xj
◦M1

xi
= 0 (1 6 i < j 6 n).

Definition 4.1. Let h
0 := (h0α)α∈∂B be a border basis for B. We denote

by Th0 , the set of h1 = (h1α)α∈∂B with h1α ∈ 〈B〉, which satisfies the linear
equations (17).

In the following, we will also denote by H0 : 〈B+〉 → 〈B+〉 the linear
map such that for β ∈ B, H0(xβ) = 0 and for α ∈ ∂B, H0(xα) = h0α.
We also denote by N0 : 〈B+〉 → 〈B〉 the normal form modulo I0, that is
the projection of 〈B+〉 on 〈B〉 along 〈h0α〉. By construction, for any p =∑

α∈B+ λαx
α ∈ 〈B+〉, H0(p) =

∑
α∈∂B λαh

0
α and we have N0 + H0 =

Id〈B+〉. Similarly, we also denote by H1 : 〈B+〉 → 〈B〉 the map defined by

H1(xβ) = 0 if xβ ∈ B, H1(xα) = h1α if α ∈ ∂B. By construction, for all
m ∈ B, M1

i (m) = H1(xim).

Theorem 4.2. Let I0 ∈ HB
x0

be an ideal, with the border relations h
0 :=

(h0α)α∈∂B for the basis B of A0 = R/I0, where I0 = I0. Then

φ : T
h
0 → HomR(I0, R/I0)

h
1 → φ(h1) : h0α 7→ h1α

is an isomorphism of K-vector spaces.

Proof. We first prove that φ(h1) is well-defined, ie. if g =
∑

i uαh
0
α =∑

α u
′
αh

0
α ∈ I0 with uα, u

′
α ∈ R, then

∑
α uαh

1
α =

∑
α u

′
αh

1
α in R/I0. In other

words, if
∑

α vαh
0
α = 0 in R, then

∑
α vαh

1
α ≡ 0 in R/I0. By [21][Theorem

4.3], the syzygies of the border basis elements h
0 := (h0α) are generated by

the commutation polynomials:

xiH
0(xi′m)− xi′H

0(xim) +H0(xiN
0(xi′m))−H0(xi′N

0(xim)),

for all m ∈ B, 1 6 i < i′ 6 n. Let us prove that these relations are also
satisfied modulo I0, if we replace H0 by H1. As h1 = (h1α) ∈ Th0 , we have

0 = M0
xi
◦M1

xi′
(m)−M0

xi′
◦M1

xi
(m) +M1

xi
◦M0

xi′
(m)−M1

xi′
◦M0

xi
(m)

= N0(xiH
1(xi′m))−N0(xi′H

1(xim)) +H1(xiN
0(xi′m))−H1(xi′N

0(xim))

= xiH
1(xi′m)−H0(xiH

1(xi′m))

−xi′H
1(xim) +H0(xi′H

1(xim))

+H1(xiN
0(xi′m))−H1(xi′N

0(xim))

≡ xiH
1(xi′m)− xi′H

1(xim) +H1(xiN
0(xi′m))−H1(xi′N

0(xim))moduloI0.

This proves that the generating syzygies are mapped by φ(h1) to 0 in R/I0
and thus the image by φ(h1) of any syzygy of h0 is 0, that is, φ(h1) is a
well-defined element of HomR(I0, R/I0).

Conversely, let us prove that if ψ0 ∈ HomR(I0, R/I0), then h
1 := (ψ0(h

0
α)) ∈

Th0 . As ψ0 ∈ HomR(I0, R/I0), the syzygies of h0 are mapped by ψ0 to 0.
Thus, for all m ∈ B, 1 6 i < i′ 6 n,
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0 ≡ ψ0(xiH
0(xi′m)− xi′H

0(xim) +H0(xiN
0(xi′m))−H0(xi′N

0(xim)))
≡ xiH

1(xi′m)− xi′H
1(xim) +H1(xiN

0(xi′m))−H1(xi′N
0(xim))moduloI0.

As H1(p) ∈ 〈B〉 and N0(H1(p)) = H1(p) for all p ∈ 〈B+〉, we have
0 = N0(xiH

1(xi′m))−N0(xi′H
1(xim)) +H1(xiN

0(xi′m))−H1(xi′N
0(xim))

= M0
i ◦M1

i′(m)−M0
i′ ◦M

1
i (m) +M1

i ◦M0
i′(m)−M1

i′ ◦M
0
i (m),

which proves that h1 ∈ T
h
0 . �

We can notice that the tangent space of the variety Hilbµ(Pn) locally
defined by the equations (17) is also isomorphic to HomR(I0/I

2
0, R/I0).

Our construction gives a new (simple) proof of this well known result [25][p.
217].

The results in the following appendix parts can be considered as “classi-
cal”, though not necessarily explicit in the literature. They are recalled here
for the sake of completeness.

Appendix A. Representable functors

We consider the category C of noetherian schemes over K. Let Ca be
the category of affine noetherian schemes over K. Let P

n be the projec-
tive scheme Proj(S). For the notions of presheaf, sheaf and scheme, see
[12][Chap. II]. The objective of this section is to find conditions to the
representation of contravariant functors from the category of schemes to
the category of sets. Most of the material used in this section comes from
appendix E of [25].

Proposition A.1. Let F be a contravariant functor from the category C to
the category of Sets. Suppose that:
- F is a sheaf
- F admits an open covering of representable functors,
then F is also representable.

Proof. See appendix E in [25][Prop.E.10, p.318] �

Proposition A.2. Let F be a contravariant functor from C to the category
of Sets and G a subfunctor of F . Assume that for every affine scheme X in
C and every morphism of functors:

Hom(−,X) → F

the functor H := Hom(−,X)×F G restricted to the category of affine noe-
therian schemes over K is represented by an open subscheme of X. Then G
is an open subfunctor of F (in C).

Proof. Let X and Y be objects of C. Let (Ui)i∈I be any affine covering
of X. Consider the morphism of functors from Hom(−,X) to F given by
an element λ ∈ F (X) (see appendix E in [25][Lem.E.1, p.313]). Then, the
contravariant functor H := Hom(−,X) ×F G is given by:

H(Y ) = {φ ∈ Hom(Y,X)|F (φ)(λ) ∈ G(Y ) ⊂ F (Y )}
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Let (Vi,j)j∈J be an affine covering of φ−1(Ui) ⊂ Y for all i. Let φi,j be the
restriction of φ to Vi,j:

φi,j : Vi,j → Ui.

As F and G are sheaves, F (φ)(λ) ∈ G(Y ) if and only if F (φi,j)(λi) ∈ G(Vi,j)
(where λi ∈ F (Ui) is the restriction of λ ∈ F (X) to F (Ui)).
As G is an open subfunctor of F in the category of affine schemes, there
exists an open subscheme Ωi of the affine scheme Ui such that:

(18) F (φ)(λ) ∈ G(Y ) ⇔ F (φi,j)(λi) ∈ G(Vi,j) ⇔ φi,j factors through Ωi :

Vi,j
φi,j

//

  B
BB

BB
BB

B
Ui

Ωi

??~~~~~~~~

If φ ∈ Hom(Y,X) belongs toH(Y ), F (φ)(λ) ∈ G(Y ) by definition. Thus,
from the previous equivalence (18), φ factors through Ω :=

⋃
iΩi ⊂ X:

Y
φ

//

$$I
IIIIIIII X

Ω =
⋃

Ωi

::uuuuuuuuu

Reciprocally, if φ factors through Ω, consider (Wi,j)j∈J an open affine cov-
ering of φ−1(Ωi) ⊂ Y for all i ∈ I. We denote now by φi,j the restriction of
φ to Wi,j:

Wi,j

φi,j
//

!!C
CC

CC
CC

C
Ui

Ωi

??~~~~~~~~

This commutative diagram and (18) imply that F (φi,j)(λi) ∈ F (Wi,j) be-
longs to G(Wi,j) for all i, j. It implies (as F and G are sheaves) that
F (φ)(λ) ∈ F (Y ) belongs to G(Y ) and thus φ belongs to H(Y ).

Thus, the functor H is isomorphic Hom(−,Ω), i.e H is represented by
the open subscheme Ω of X. We conclude that G is an open subfunctor of
F (in C). �

Proposition A.3. Let F be a contravariant functor from C to the category
of Sets. F is represented by the scheme X if and only if the functors F and
Hom(−,X) are isomorphic in the category of affine schemes over K.
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Proof. This is a straightforward consequence of the fact that every scheme
has a topological basis which consists of open affine subschemes. �

Appendix B. The Grassmannian

The objective of this section is to present a construction of the Grassman-
nian as a scheme representing a contravariant functor. Most of the material
used for this construction comes from [25][Chap.4.3.3, p.209].

Theorem B.1. For all K-vector spaces V of finite dimension N and integers
n ≤ N , the Grassmannian functor n of V is representable. It is represented
by a projective scheme we will denote Grn(V ):

Grn(V ) ∼ Proj(K[∧nV ]/(#)).

where (#) is the ideal generated by the Plücker relations.

Proof. By definition, the n Grassmannian functor of V is:

X −→ {V ∗ ⊗K OX → ǫ → 0 | ǫ is a locally free sheaf of rank n of OX}.

Let

g := V ∗ ⊗K OX → ǫ→ 0

be an element of GrnV (X). Let ∧ denote the exterior product. Then we
have

∧ng := ∧nV ∗ ⊗K OX → ∧nǫ = L → 0

where L is an invertible sheaf. Let (e0, . . . , eN ) be a basis of V . Let si ∈ ǫ(X)
be the image of ei by g and pi1,...,in := si1∧. . .∧sin ∈ L(X). (pi1,...,in) satisfies
the well-known Plücker relations

(#)
∑

λ=1,...,n+1

pi1,...,in−1,jλ ⊗ pi1,...,ĵλ,...,in = 0.

Thus, by [8][Prop.4.2.3, p.73] we have a morphism:

X −→ Proj(K[∧nV ]/(#))

Thus we constructed a morphism of functors from the Grassmannian functor
GrnV to the functor Hom(−,Proj(K[∧nV ]/(#))):

Φ := GrnV −→ Hom(−,Proj(K[∧nV ]/(#)))

Lemma B.2. The morphism Φ is an isomorphism of functors. Thus the
Grassmannian functor is represented by Proj(K[∧nV ]/(#)).

Proof. From proposition A.3, we can reduce to affine schemesX = Spec(A).
Let us prove that

Φ(X) := GrnV (X) → Hom(X,Proj(K[∧nV ]/(#)))

is a bijection.
Let locally free sheaves of rank µ ǫ and ǫ′ together with surjective morphisms

g = V ∗ ⊗OX → ǫ→ 0
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and

g′ = V ∗ ⊗OX → ǫ′ → 0

be two elements of GrnV (X). Let (si) and (pi1,...,in) (resp. (s
′
i) and (p′i1,...,in))

be the global sections of ǫ and L = ∧nǫ (resp. ǫ′ and L′ = ∧nǫ′) in-
troduced before. Assume Φ(X)(ǫ, g) ∈ Hom(X,Proj(K[∧nV ]/(#))) and
Φ(X)(ǫ′, g′) ∈ Hom(X,Proj(K[∧nV ]/(#))) are equal. Then there exists
an isomorphism φ between L and L′ such that the following diagram is
commutative:

∧nV ∗ ⊗OX
//

%%KKKKKKKKK
KK

L

φ����
��

��
��

L′

and such that φ(pi1,...,in) = p′i1,...,in .

Consider the open subset Xpi1,...,in
where pi1,...,in 6= 0 (which is equal to

Xp′i1,...,in
because φ is an isomorphism that sends pi1,...,in on p′i1,...,in). On

Xpi1,...,in
(resp. Xp′i1,...,in

), (si1 , . . . , sin) (resp. (s′i1 , . . . , s
′
in
)) is a basis of ǫ

(resp. ǫ ’) and we have

sj =
∑

k=1,...,n

aj,k.sik (resp. s′j =
∑

k=1,...,n

a′j,k.s
′
ik
)

with

(19) ajk = (−1)n−k
pi1,...,îk,...,in,j
pi1,...,in

= a′jk.

Thus, on Xpi1,...,in
, we have the natural isomorphism fi1,...,in from ǫ to ǫ′

that sends sik to s′ik for all k ≤ n. Then, by equations (19), the morphisms

(fi1,...,in) patch together to form an isomorphism f from ǫ to ǫ′ such that:

V ∗ ⊗OX

g
//

g′

$$I
II

II
II

II
I

ǫ

f
����

��
��

��

ǫ′

is commutative. Thus

g = V ∗ ⊗OX → ǫ→ 0

and

g′ = V ∗ ⊗OX → ǫ′ → 0

are equal as elements of Hom(X,Proj(K[∧nV ]/(#))). Thus Φ(X) is injec-
tive.

To prove Φ(X) is surjective, let

φ := ∧nV ∗ ⊗OX → L → 0



THE HILBERT SCHEME OF POINTS AND ITS LINK WITH BORDER BASIS 35

be an element ofHom(X,Proj(K[∧nV ]/(#))) where L is an invertible sheaf
on X and such that pi1,...,in := φ(ei1,...,in) satisfy the relations (#). On
Xpi1,...,in

let ǫi1,...,in be a free sheaf of rank n with basis (ei1 , . . . , ein). Using

relations (19) and (#), we can glue the sheaves (ǫi1,...,in) to form a locally
free sheaf ǫ of rank n together with a surjective morphism

g := V ∗ ⊗OX → ǫ→ 0

which satisfies

Φ(X)(ǫ, g) = (L, φ).

Thus Φ(X) is surjective and Φ is an isomorphism of functors. �

From lemma B.2, the Grassmannian functor is represented by

Grn(V ) ∼ Proj(K[∧nV ]/(#)).

�

Appendix C. Generic linear forms

The objective of this section is the to extend the notion of generecity in
the case of polynomial rings over a field K to the case of polynomial rings
over a K-algebra.
In the following, K will denote a field of characteristic zero.

Proposition C.1. Let A be a K-algebra and n be an integer. Let P be a
polynomial in A[x1, . . . , xn] such that P vanishes on generic values of Kn,
then P = 0.

Proof. Let Pd be the following proposition: for allm ∈ N and all polynomial
P ∈ A[x1, . . . , xm] of degree less or equal to d, if P vanishes on generic
bvalues of Km then P = 0. We will prove by induction that Pd is true for
all d ≥ 0.
For d = 0, P0 is obviously true.
Assume Pk is true for all k ≤ d, let us prove that Pd+1 is true. Let m be
an integer and P be a polynomial in A[x1, . . . , xm] of degree less or equal
to d+ 1 such that P vanishes on generic values of Km. Let U ⊂ K

m be the
zero set of P . Let Qi ∈ A[x1, . . . , xm, y1, . . . , ym] be the polynomial given by

Qi(x,y) =
P (x)− P (y)

xi − yi
.

As P = (xi−yi).Qi, Qi vanishes on V := U×U \{(x,y)| xi−yi = 0} ⊂ K
2m.

Thus Qi vanishes on generic values of K2m and is of degree less or equal to
d. By Pd, Qi is equal to 0 for all 1 ≤ i ≤ m. Thus all the partial derivatives
∂iP = Qi(x,x) of P are equal to 0. As K is of charasteristic zero, we
conclude P is equal to zero.
Thus Pd is true for all d and m in N. This proves the proposition C.1. �
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Appendix D. Zero dimensional algebra

In this section, we recall why an ideal I remains in Hilb
µ
Pn by coefficient

field extension and give a characterization of non-zero divisibility for linear
forms.

Let k be a field of characteristic zero and k its algebraic closure. Let
S = k[x0, . . . , xn] (resp. S := S ⊗k k) be the polynomial ring in n + 1 vari-
ables over k (resp. k). Recall that Hilb

µ
Pn(Spec(k)) (or simply Hilb

µ
Pn(k))

is equal to the set of homogeneous saturated ideal of S such S/I has Hilbert
polynomial equal to the constant µ.
Given a point P in the projective space P

n
k we denote by mk,P the homoge-

neous ideal of k[x0, . . . , xn] generated by

{Q homogeneous polynomial in k[x0, . . . , xn]| Q(Pi) = 0}.

Finally, denote by mk the homogeneous ideal of k[x0, . . . , xn] generated by

{P homogeneous polynomial in k[x0, . . . , xn] of degree ≥ 1}.

Definition D.1. Let I be a homogeneous ideal of Hilb
µ
Pn(k). Then, I is

the ideal of S given by
I := I ⊗k k.

Proposition D.2. Let I ⊂ S be a homogeneous ideal of Hilb
µ
Pn(k). Then,

one has
I ∩ S = I

Proof. First, one has that I ⊂ I ∩ S. Then, tensoring by k, one has that
I ⊂ (I ∩S)⊗ k ⊂ I. Thus I = (I ∩S)⊗ k. Then, looking at the dimensions
for all degree d ≤ 1, one has that

dimk(Sd/(I∩S)d) = dimk(Sd/(I∩S)d⊗k) = dimk(Sd/Id⊗k) = dimk(Sd/Id).

We conclude that
I = I ∩ S.

�

Corollary D.3. Let I ⊂ S be a homogeneous ideal of Hilb
µ
Pn(k). Then I

belongs to Hilb
µ
Pn(k).

Proof. We just need to prove that I is saturated (i.e I : mk = I). One has

that I is saturated if and only if mk is not a prime associated to I. Assume I

is not saturated. From the Nullstellensatz theorem, I has a reduce primary
decomposition of the form

I =
⋂

i

qi ∩ q

with qi homogeneous mk,Pi
-primary ideal with Pi a point in the projective

space P
n
k
, and q a homogeneous mk-primary ideal. From proposition D.2,

we have
I = I ∩ S.
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Thus, one has

I =
⋂

i

qi ∩ S
⋂
q ∩ S

with qi ∩ S homogeneous mk,Pi
∩ S-primary ideal and q ∩ S homogeneous

mk ∩ S = mk-primary ideal. As I is saturated this is impossible. Thus I is
saturated. �

Proposition D.4. Let I be a homogeneous ideal in Hilb
µ
Pn(k) and u a

linear form in S1. Then (I : u) = I if and only if u does not vanish at any
point defined by I in P

n
k
.

Proof. We already know from proposition D.3 that I has a primary decom-
position of the form:

I =
⋂

i∈E

qi

with qi homogeneous mk,Pi
-primary ideal and {Pi| i ∈ E} is the set of points

defined by I in P
n
k
. From proposition D.2, we have that

(20) I =
⋂

i∈E

qi ∩ S.

One has that qi ∩ S is a homogeneous mk,Pi
∩ S-primary ideal. Thus the

primary decomposition of I is deduced from (20) by discarding those qi ∩ S
that contain

⋂
j 6=i qj ∩ S and intersecting those qi ∩ S that are mk,Pi0

∩ S-

primary for the same Pi0 . Firstly, if
⋂
j 6=i qj ∩ S ⊂ qi ∩ S, then there exists

a j0 6= i such that mk,Pj0
∩ S = mk,Pi

∩ S, i.e Pj0 and Pi are conjugate.

Secondly, qi ∩S and qj ∩S are both mk,Pi0
∩S-primary if and only if Pi, Pj

and Pi0 are conjugate. Thus I has a primary decomposition of the form

I =
⋂

i∈F

qi ∩ S

with F ⊂ E satisfying that for all i ∈ E there exists a unique j ∈ F such
that Pi and Pj are conjugate. Thus, (I : u) = I if and only if u does not
vanish at any point Pj for all j ∈ F , i.e u does not vanish at any point Pi
for all i ∈ E. �

Proposition D.5. Consider a field extension k ⊂ L of k. Let L be the
algebraic closure of L. Let I be a homogeneous ideal in Hilb

µ
Pn(k) and let

IL = I ⊗k L. Then, the points defined by IL in P
n
L
are exactly the image by

the field extension:

k ⊂ L

of the points defined by I in P
n
k
.

Proof. The points defined by IL in P
n
L
are given by the primary decompo-

sition of IL = IL ⊗L L in S ⊗ L. We just need to prove that these points
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are the same as those obtained by the primary decomposition of I in S. In
fact, one has that

IL ⊗L L = I ⊗k L.

Thus, as

I =
⋂

i∈E

qi

with qi homogeneous mk,Pi
-primary ideal and {Pi| i ∈ E} is the set of points

defined by I in P
n
k
; we deduce that IL ⊗L L can be written

IL ⊗L L =
⋂

i∈E

qi ⊗ L

with qi⊗L homogeneous mk,Pi
⊗L-primary ideal. But one has that mk,Pi

⊗

L = mL,Pi
(Pi considered as a point of Pn

L
via the field inclusion k ⊂ L).

Thus, the points defined by IL in P
n
L

are exactly the image by the field
extension:

k ⊂ L

of {Pi ∈ P
n
k
| i ∈ E}. �
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