
HAL Id: inria-00508436
https://hal.inria.fr/inria-00508436

Submitted on 3 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable XML Collaborative Editing with Undo
Stéphane Martin, Pascal Urso, Stéphane Weiss

To cite this version:
Stéphane Martin, Pascal Urso, Stéphane Weiss. Scalable XML Collaborative Editing with Undo.
[Research Report] RR-7362, INRIA. 2010, pp.23. �inria-00508436�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50064967?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00508436
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
3

6
2

--
F

R
+

E
N

G

Thème COG

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Scalable XML Collaborative Editing with Undo

Stéphane Martin — Pascal Urso — Stéphane Weiss

N° 7362

August 2010

Centre de recherche INRIA Nancy – Grand Est
LORIA, Technopôle de Nancy-Brabois, Campus scientifique,

615, rue du Jardin Botanique, BP 101, 54602 Villers-Lès-Nancy (France)
Téléphone : +33 3 83 59 30 00 — Télécopie : +33 3 83 27 83 19

Scalable XML Collaborative Editing with Undo

Stéphane Martin ⋆ , Pascal Urso⋆⋆ , Stéphane Weiss⋆⋆

Thème COG — Systèmes cognitifs
Équipes-Projets SCORE

Rapport de recherche n° 7362 — August 2010 — 20 pages

Abstract: Commutative Replicated Data-Type (CRDT) is a new class of algorithms
that ensure scalable consistency of replicated data. It has been successfully applied to
collaborative editing of texts without complex concurrency control.

In this paper, we present a CRDT to edit XML data. Compared to existing ap-
proaches for XML collaborative editing, our approach is more scalable and handles all
the XML editing aspects : elements, contents, attributes and undo. Indeed, undo is rec-
ognized as an important feature for collaborative editing that allows to overcome system
complexity through error recovery or collaborative conflict resolution.

Key-words: XML, Collaborative Editing, P2P, Group Undo, Scalability, Optimistic
Replication, CRDT

⋆ stephane.martin@lif.univ-mrs.fr, Laboratoire d’Informatique Fondamentale, MoVe
⋆⋆ {pascal.urso,stephane.weiss}@loria.fr, Université de Lorraine - LORIA - SCORE

Edition Collaborative passant à l’échelle pour les

documents XML avec Annulation

Résumé : Le type de données répliqué commutatives (CRDT) est une nouvelle classe
d’algorithmes qui assurent la cohérence des données répliquées tout en passant à l’échelle.
Il a été appliqué avec succès à l’édition collaborative de textes sans mécanisme de
contrôle de la concurrence complexe.

Dans cet article, nous présentons un CRDT pour éditer des données XML. Par rap-
port aux approches existantes pour l’édition collaborative d’XML, notre approche offre
un meilleur passage à l’échelle et gère tous les aspects de l’édition de document XML:
éléments, le contenu, les attributs et l’annulation. En effet, l’annulation est reconnue
comme un élément important pour l’édition collaborative qui permet de surmonter la
complexité du système de collaboration grâce à la récupération d’erreur ou de résolution
des conflits.

Mots-clés : XML, Edition Collaborative, P2P, Annulation de groupe, Passage à l’échell,
Réplication Optimiste, CRDT

Scalable XML Collaborative Editing with Undo

Stéphane Martin1, Pascal Urso2, and Stéphane Weiss2

1 stephane.martin@lif.univ-mrs.fr

Laboratoire d’Informatique Fondamentale
39 rue F. Jolio-Curie,

13013 Marseille, France
2 (pascal.urso,stephane.weiss)@loria.fr

Université de Lorraine
LORIA, Campus Scientifique,

54506 Vandoeuvre-lès-Nancy, France

Commutative Replicated Data-Type (CRDT) is a new class of algorithms that en-
sure scalable consistency of replicated data. It has been successfully applied to collab-
orative editing of texts without complex concurrency control.

In this paper, we present a CRDT to edit XML data. Compared to existing ap-
proaches for XML collaborative editing, our approach is more scalable and handles all
the XML editing aspects : elements, contents, attributes and undo. Indeed, undo is rec-
ognized as an important feature for collaborative editing that allows to overcome system
complexity through error recovery or collaborative conflict resolution.

Keywords: XML, Collaborative Editing, P2P, Group Undo, Scalability, Optimistic
Replication, CRDT.

1 Introduction

In large-scale infrastructures such as clouds or peer-to-peer networks, data are repli-
cated to ensure availability, efficiency and fault-tolerance. Since data are the heart of
the information systems, the consistency of the replicas is a key feature. Mechanisms to
ensure strong consistency levels – such as linear or atomic – do not scale, thus modern
large-scale infrastructures now rely on eventual consistency [29].

Commutative Replicated Data Types [21] (CRDT) is a promising new class of algo-
rithms used to build operation-based optimistic replication [24] mechanisms. It ensures
eventual consistency of replicated data without complex concurrency control. It has
been successfully applied to scalable collaborative editing of textual document [31,19]
but not yet on semi-structured data type.

EXtensible Markup Language (XML) is used in a wide range of information sys-
tems from semi-structured data storing to querying. Moreover, XML is the standard
format for exchanging data, allowing interoperability and openness.

XML data editing is mainly done through domain specific applications or general
purpose editors. Collaborative editing (CE) provides several advantages such as obtain-
ing different viewpoints or reducing task completion time to obtain a more accurate

⋆ stephane.martin@lif.univ-mrs.fr, Laboratoire d’Informatique Fondamentale, MoVe
⋆⋆ {pascal.urso,stephane.weiss}@loria.fr, Université de Lorraine - LORIA - SCORE

4 Martin, Urso & Weiss

final result. Undo has been recognized as an important feature of single and collabo-
rative editors [2,6]. The undo feature provides a powerful way to recover from errors,
edit conflicts and vandalism acts. So, it helps the user to face the complexity of the
system [16].

Nowadays, collaborative editing becomes massive and part of our every day life.
The online encyclopedia Wikipedia users have produced 15 millions of articles in a few
years. Another example is Google Wave, the new Google service based on XML docu-
ments that mixes real-time collaborative editing and communication. Despite its success
lower than excepted 3, it already has one million users. These examples stress the scal-
ability requirement that will eventually face an XML collaborative editing system that
should be deployed on clouds or peer-to-peer networks.

In the research field of collaborative editing, some approaches are generic enough to
deal with XML documents [27,11,23]. However they suffers for their lack of scalabil-
ity that makes them unsuitable for clouds or peer-to-peer networks. There exists other
approaches that are specifically designed for peer-to-peer XML collaborative editing.
[8] uses tombstones that makes the document growing without limits; while [17] does
not treat XML attributes. Moreover, none of these specific approaches propose an undo
feature.

We propose to design an XML CRDT. This CRDT handles both aspects of XML
trees : elements’ children and attributes. The order in the list of the elements’ children
are treated as in linear structure CRDT. Elements’ attributes are treated using a last-
writer-wins rule.

Designing an undo feature is a non-trivial task. First, in collaborative editing this
feature must allow to undo any operation – and not only the last one – from any
user [2,3]. This is called global selective undo (or anyundo). Second, this undo must
be correct from the user point of view. The system must return in a state such as the
undone operation was never been performed [25]. Our undo is obtained by keeping the
previous value given to attributes and delete operations on elements, and then counting
concurrent undo and redo operations. A garbage collection mechanism is presented to
garbage old undo values.

This paper is structured as follows. Section 2 presents a brief overview of compa-
rable approaches. Section 3 introduces the notion of a distributed XML collaborative
editor. Section 4 describes an XML CRDT without undo. Section 5 describes an XML
CRDT with undo. Section 6 formally establishes the correctness of our approach ac-
cording to eventual consistency. Section 7 discusses about the theoretical scalability
of the approach and describes a garbage collection mechanism. And finally, Section 8
briefly concludes the paper.

2 State of the art

There exists several approaches that can be used for ensuring eventual consistency of
XML data. Most of them issue from the field of collaborative editing.

3 Maybe due to some missing features including undo

INRIA

Scalable XML Collaborative Editing with Undo 5

The Operational Transformation (OT) [23] approach is an operation-based replica-
tion mechanism. OT relies on a generic integration algorithm and a set of transforma-
tion functions specific to the type of replicated data. Some integration mechanism use
states vectors – or context vectors [27] in presence of undo – to detect concurrency
between operations; such mechanisms are not adapted to large-scale infrastructures. Ig-
nat et al. [8] couples an integration mechanism [5] that uses anti-entropy, with some
specific transformation functions [20] to obtain P2P XML collaboration. However, this
proposition replaces deleted elements by tombstones in the edited document to ensure
consistency, making the document eventually growing without limits and proposes no
undo.

Other generic approaches can be adapted to edit XML document. Some reconcili-
ation mechanisms [11,28] allow to define the specific constraints that must satisfy the
editing and undo operations [18]. However, the complexity of the reconciliation mech-
anism is exponential in term of number of editing operations or replicas.

Martin et al. [17] proposes an XML-tree reconciliation mechanism very similar to
a CRDT since concurrent operations commute without transformation. However, this
approach does not treat XML element’s attributes which require a specific treatment
since they are unique and unordered. Also, it uses state vector that limits its scalability
and proposes no undo feature.

In the field of Data Management, some works give attention to XML replication.
Some of them [12,1] suppose the existence of some protocol to ensure consistency of
replicated content without defining it. Finally, [15] proposes a merging algorithm for
concurrent modifications that can only be used in a centralized context.

In the field of distributed systems, several well-known methods exist to obtain
replica consistency. Consensus [4] or quorum [9] algorithms can be used to obtain
transaction atomicity on data updates. Their limited scalability makes them less suit-
able for large-scale applications where only eventual consistency is required. Lastly,
the Thomas-Write-Rule (aka Last-Writer-Wins) [10], allows to obtain an agreement
on a value, but is much more scalable. We uses a variation of it for updating attribute
values.

3 XML Collaborative Editing

An XML document is an ordered tree of elements. Element’s content, including text,
forms the ordered list of children of the element. Elements have a map that associates
name to value. This map represents the unordered attributes of the element.

<article xmlns=”http: // docbook.org/ns/docbook”>
< title>Extensible Markup Language</title>

<para>

<acronym>XML</acronym>

</para>

</article>

RR n° 7362

6 Martin, Urso & Weiss

More formally XML documents are defined by the grammar :

T ::= < tag Attributes > T ′ < /tag > T

| ε

T ′ ::= text

| T

Attributes ::= attribute = ”value” Attributes

| ε

Where attribute,value, text and tag are non-null strings. All attribute in same ele-
ment are unique. Even if they appear in an XML file in a certain order, attributes are
unordered, i.e., their appearance order has no meaning.

In a collaborative editor, to ensure scalability and high-responsiveness of local mod-
ifications, data must be replicated [7]. This replication is optimistic [24] since local
modifications are immediately executed. The replicas are allowed to diverge in the short
time, but the system must ensure eventual consistency. When the system is idle (i.e., all
modifications are received), the replicas must have the same content.

Thus, we see an XML collaborative editor as a set of network nodes that host a
set of replicas (up to one per node) of the shared XML document. Local modifications
are immediately executed and disseminated to all other replicas. We assume that every
replica will eventually receive every modification.

A Commutative Replicated Data Type [21] is a data type where all operations com-
mute. I.e., whatever the delivery order of operations, the resulting document is identical.
The basic operations that affect an XML tree are :

– Add(ep,e) : Adds a new edge e under the edge ep

– Del(e) : Deletes the edge e

– SetAttr(e,attr,val) : Sets the value val to the attribute attr of the edge e. The dele-
tion of an attribute is done by setting is value to nil.

4 XML CRDT

In this section, we define an XML CRDT without undo. We define the set of operations
that modify the XML tree and their effect. This CRDT is a generalized version of [17]
extended with attributes management.

4.1 Add and delete edges

To allow Add and Del operations to commute, we use a unique timestamp identifier.
Timestamp identifiers are defined as follows: each replica is identified by a unique
SiteNb and each operation generated by this site is identified by a numbering NbOp.
An identifier id is a pair (NbOp : SiteNb). For instance (3 : 2) identifies the operation 3
of the site number 2. The set of the identifiers is denoted by ID. Thus, two edges added
concurrently at the same place in the tree have different identifiers.

Add and delete operations becomes :

INRIA

Scalable XML Collaborative Editing with Undo 7

– Add(idp, id) : Adds a edge with identifier id under the edge idp. This edge is empty,
it has no tag-name, child or attribute.

– Del(id) : Deletes the edge identified by id.

The tag-name and the position of an edge regarding to sibling edges, are treated as
attributes. Thus they can be modified without deleting and creating a new edge.

The position of an edge is not a standard number. Indeed, to ensure that the order
among edges is the same on all replicas, this position must be unique, totally ordered

and dense. Positions are dense if a replica can always generate a position between two
arbitrary positions. This position can be a priority string concatenated with an identi-
fier [17], a sequence of integers [31], or a bitstring concatenated with an identifier [21]
all with a lexicographic ordering.

4.2 Update attributes

To allow SetAttr operations to commute, we use a classical last-writer-wins technique.
We associate to each attribute a timestamp ts. A remote SetAttr is applied if and only if
its timestamp is higher than the timestamp associated to the attribute. This timestamp is
formed by a clock h (logical clock or wall clock) and a replica number SiteNb. Times-
tamps are totally ordered. Let ts1 = (h1 : s1) and ts2 = (h2 : s2), we have ts1 > ts2 if
and only if h1 > h2, or h1 = h2 and s1 > s2. Timestamps are loosely synchronized, i.e.,
when a replica receives an operation with a timestamp (h2 : s2), it sets its own clock h1

to max(h1,h2).
The SetAttr operation becomes :

– SetAttr(id,attr,val, ts) : Sets the value val with the timestamp ts to the attribute
attr of the edge identified by id. The deletion of an attribute is done by setting is
value to nil.

The special attributes @tag and @position that contains the tag-name and the po-
sition of an edge cannot be nil. Without loss of generality, the add operation can be
Add(idp, id, tag, pos) that adds the edge and sets the tag-name and position. To mod-
elize the textual edges we use another special attribute @text. If this attribute has a
value v, whatever the value of other attributes, the edge is considered as a textual edge
with content v.

4.3 Algorithms

We consider an XML tree as an edge e with three elements :

– e.identi f ier : the unique identifier of the edge (a timestamp)
– e.children : the children of the edge (a set of edge)
– e.attributes : the attributes of the edge (a map string to value). The key of the map

are the attribute’s name (a string), and a value value whose has two elements

• av.value : the current value of the attribute (a string)
• av.timestamp : the current timestamp of the attribute.

RR n° 7362

8 Martin, Urso & Weiss

The function deliver(op, t) applies an operation op on an XML tree t. The function
find(t, id) returns the edge identified by id. The function findFather(t, id) returns the
father of the edge identified by id.

deliver (Add(idp, id), t) :

edge p = find(idp, t), e = new edge(id);

if p 6= nil then p.children = p.children∪{e};

end

deliver (Del(id), t) :

edge p = findFather(id, t), e = find(id, p);

if p 6= nil then p.children = p.children\{e};

end

deliver (SetAttr(id,attr,val, ts), t) :

edge e = find(id, t);
if e 6= nil and (e.attribute[attr] = nil or e.attribute[attr].timestamp < ts) then

e.attribute[attr].value = val;

e.attribute[attr].timestamp = ts;

endif

end

Example 1. This example is the begin of XML example of Section 3. We start with
edge “article”. First, each user adds an edge using the Add(idp, id) operation, where idp

is the identifier of the edge “article”. Second, each user renames concurrently the tag of
one of the previously inserted edge. Using the SetAttr(id,@tag,v, ts) operation. User1
renames the tag to “title” while User2 changes the tag of the same edge to “para”. The
operation with the higher timestamp sets the tag of the element4. The result of these
concurrent operation is presented Figure 1.

4.4 Semantic dependency

The semantic dependency is a relation which relies the operation with those necessary
to its executions.

– Add(idp, id)≻s Del(id): an edge can be deleted only if it has been created.
– Add(id′, idp)≻s Add(idp, id): adding edge id under edge idp requires that edge idp

has been created.
– Add(idp, id)≻s SetAttr(id,Attr,Value, ts, idop): Creating or modifying edge attribute

requires edge id has been created.

To respect these semantic dependencies, we can use a scalable causal broadcast [13].
Moreover, causality preservation is often cited as a user requirement for collaborative
editing [26].

4 For simplicity reason, positions are omitted.

INRIA

Scalable XML Collaborative Editing with Undo 9

Replica 1 Replica 2

(5 : 3, [”@tag” → (”Article”,6 : 3)],{} (5 : 3, [”@tag” → (”Article”,6 : 3)],{}

Add(5 : 3,1 : 1)

**VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
Add(5 : 3,1 : 2)

ttiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

(5 : 3, [”@tag” → (”Article”,6 : 3)],
{(1 : 1,{}, [])})

(5 : 3, [”@tag” → (”Article”,6 : 3)],
{(1 : 2,{}, [])})

Add(5 : 3,1 : 2) Add(5 : 3,1 : 1)

(5 : 3, [”@tag” → (”Article”,6 : 3)],
{(1 : 1,{}, []),(1 : 2,{}, [])})

(5 : 3, [”@tag” → (”Article”,6 : 3)],
{(1 : 1,{}, []),(1 : 2,{}, [])})

SetAttr(1 : 1,”para”,1 : 2)

**VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV
SetAttr(1 : 1,”title”,2 : 2)

ttiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

(5 : 3, [”@tag” → (”Article”,6 : 3)],
{(1 : 1,{}, [”@tag” → (”para”,1 : 2)]),(1 : 2,{}, [])})])

(5 : 3, [”@tag” → (”Article”,6 : 3)],
{(1 : 1,{}, [”@tag” → (”title”,2 : 2)]),(1 : 2,{}, [])})])

SetAttr(1 : 1,”title”,2 : 2) SetAttr(1 : 1,”para”,1 : 2)

(5 : 3, [”@tag” → (”Article”,6 : 3)],
{(1 : 1,{}, [”@tag” → (”title”,2 : 2)]),(1 : 2,{}, [])})])

(5 : 3, [”@tag” → (”Article”,6 : 3)],
{(1 : 1,{}, [”@tag” → (”title”,2 : 2)]),(1 : 2,{}, [])})])

Fig. 1. Concurrent attribute update

5 XML CRDT with undo

Obtaining a correct undo from the user’s point of view is a non-trivial task [22,6,30].
In this section, we informally describe how to deal with undo operations, and then
we formally describe our mechanism. This mechanism allows to undo and redo any
operation that affects the XML tree.

5.1 Undoing add and delete

The operation that undoes an Add is not strictly a Del. Let’s have the following scenario
(see Figure 2).

1. A user adds an element
2. A user deletes this element
3. The add is undone
4. The delete is undone concurrently by 2 different users.

Using Del to undo Add leads to different result according to the reception order of
the operations. The element is visible if an un-delete is received in last or not if it is a
un-add. This behavior violates eventual consistency.

So, we must keep the information about deleted elements as tombstones. Moreover,
simply counting the number of “appearing” operations (add and undelete) minus the
number of “disappearing” operations (delete and unadd) is not sufficient. In the above

RR n° 7362

10 Martin, Urso & Weiss

User 1 User 2 User 3

Add(idp, id) Add(idp, id) //oo Add(idp, id)

Del(id) Del(id)oo undo(Add(idp, id))

yy

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

undo(Del(id))

))TTTTTTTTTTTTT
undo(Del(id))

zzvvvvvvvvvvvvvvvvvvv

undo(Add(idp, id)) undo(Del(id))

undo(Del(id)) undo(Add(idp, id))

Fig. 2. Concurrent undos.

example, we have 3 appearing operations minus 2 disappearing ones, thus, the element
may be visible. However, there are two operations (one add and one delete) and both of
them are undone. According to undo definition, none of their effect must be performed
and the element must not be visible.

To obtain a satisfying undo, we keep the information about the add and every delete
operations associated to each edge. Then we count the effect counter of an operation :
one minus the number of undo plus the number of redo. If this effect counter is greater
than 0, the operation has an effect. Finally, an element is visible if the add has an effect
counter greater than 0, and no delete with an effect counter greater than 05.

5.2 Undoing attribute updates

Similarly to undo of add and delete operation, we need to keep the operations affecting
an attribute (i.e., previous update values). We have for each value an effect counter.
The value of an attribute is determined by the more recent value with an effect counter
greater than 0. Thus we need to keep into the map of attributes, the list of values –
including nil value – associated to an effect counter. The list is ordered by the decreasing
timestamp.

5 One may argue that all the delete operations are identical, and thus keep only one effect counter
for all of them. On the other hand, one can also argue that undo operations are normal oper-
ations and require their own counter in order to obtain a real undo of undo whose is sightly
different than redo. All these alternatives are possible in our framework. For shake of efficiency
and clarity we present the above one that has a limited overhead with a good respect of user’s
intentions.

INRIA

Scalable XML Collaborative Editing with Undo 11

5.3 Algorithms

With undo, the attributes of an edge becomes an ordered list of value, each value con-
tains 3 elements :

– v.value : a value of the attribute (a string)
– v.timestamp : the timestamp associated to this value
– v.e f f ect : the effect counter of this value (a integer)

The list is ordered by the timestamp. The function add(l,v) adds a value v in the list l at
its place according to v.timestamp. The function get(l, ts) returns the value associated to
ts in the list l. The special @add attribute has only one value associated to the timestamp
equal to the edge identifier. The special @del attribute store the list of timestamp of
delete operation that affect the edge.

Thus, the original edit operation delivery becomes :

deliver (Add(idp, id), t) :

edge p = find(t, idp), e = new edge(id);

p.children = p.children∪{e}
add(e.attributes[@add], new value (nil, id,1));

end

deliver (Del(id, ts), t) :

edge e = find(t, id);

add(e.attributes[@del], new value (nil, ts,1));

end

deliver (SetAttr(id,attr,val, ts), t) :

edge e = find(t, id);

add(e.attributes[attr], new value (val, ts,1));

end

Undo of an operation is simply achieved by decrementing the corresponding effect
counter. When a Redo is delivered, the increment function is called with a delta of +1.

deliver (Undo(Add(idp, id)), t) :

increment(t, id,@add, id,−1);

end

deliver (Undo(Del(id, ts)), t) :

increment(t, id,@del, ts,−1);

end

deliver (Undo(SetAttr(id,attr,val, ts)), t) :

increment(t, id,attr, ts,−1);

end

function increment(t, id,attr, ts,delta)

RR n° 7362

12 Martin, Urso & Weiss

edge e = find(t, id);

value v = get(e.attributes[attr], ts);

v. effect += delta;

end

Figure 3 presents the application of our function on the introducing scenario with
concurrent undo and redo. At the end, on every replica, the add and del operations have
an effect counter lesser or equal to 0, thus the node is invisible.

Replica 1 Replica 2 Replica 3

(idp, [. . .],{}) (idp, [. . .],{}) (idp, [. . .],{})

Add(idp, id) Add(idp, id) //oo Add(idp, id)

(idp, [. . .],
{(id,{}, [@add → (nil, id,1)])})

(idp, [. . .],
{(id,{}, [@add → (nil, id,1)])})

(idp, [. . .],
{(id,{}, [@add → (nil, id,1)])})

Del(id, ts) Del(id, ts)oo undo(Add(idp, id))

xx

uu

(idp, [. . .],{(id,{}, [@add → (nil, id,1),
@del → (nil, ts,1)])})

(idp, [. . .],{(id,{}, [@add → (nil, id,1),
@del → (nil, ts,1)])})

undo(Del(id, ts))

''PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
undo(Del(id, ts))

��

(idp, [. . .],{(id,{}, [@add → (nil, id,1),
@del → (nil, ts,0)])})

(idp, [. . .],{(id,{}, [@add → (nil, id,1),
@del → (nil, ts,0)])})

undo(Add(idp, id)) undo(Del(id, ts))

(idp, [. . .],{(id,{}, [@add → (nil, id,0),
@del → (nil, ts,0)])})

(idp, [. . .],{(id,{}, [@add → (nil, id,1),
@del → (nil, ts,−1)])})

undo(Del(id, ts)) undo(Add(idp, id))

(idp, [. . .],{(id,{}, [@add → (nil, id,0),
@del → (nil, ts,−1)])})

(idp, [. . .],{(id,{}, [@add → (nil, id,0),
@del → (nil, ts,−1)])})

Fig. 3. Concurrent undos with effect counters.

INRIA

Scalable XML Collaborative Editing with Undo 13

5.4 Model to XML

As the model described above includes tombstones and operation information, it cannot
be used directly by applications. Indeed, applications must not see tombstones. First, we
need to define which element belongs to the view, i.e., which element is visible. A node
is visible if the effect counter of the attribute “@add” is at least one, and if all values
of the attribute “@del” have an effect counter of at most 0. As a result, we must know
if the attribute “@del” has an active value. For that purpose, we define the visible(e)

function that returns true if the edge e is visible.

function visible (e):

if get(e.attribute[@add],e.identi f ier).e f f ect < 1 then return false;

for d in e.attribute[@del] do

if d.e f f ect > 0 then return false;

done

return true;

end

We can now determine whether a node is visible or not. However, each attribute still
contains several “values”, indeed, the value list associated to each attribute contains old
and undone values. Therefore, we need to compute the current value of the attributes.
The function getValue(vlist) is designed to find the newest non-undone value of a value
list. Since elements the list vlist is ordered according to their timestamp, we assume that
the loop “for” walks the list from the newest to the oldest. Therefore, the first element
with an effect counter greater than 1 is the current value of this element.

function getValue(vlist):

for v in vlist do

if v.e f f ect ≥ 1 then return v.value;

done

return nil ;

end

Finally, we can write the function model2XML(e) that exports the model in an XML
format. First, the function model2XML(e) checks whether the edge e is visible or not.
If not, the function does nothing. Otherwise, we need to write this element in the XML
Document. For that purpose, we assume the existence of a function out(str) that writes
the XML document. If the edge is a text, i.e., the attribute @text has a value, we write
this value in the XML Document. If the edge is visible and is not a text, we write the tag
and the attributes corresponding to that edge. We assume that child2List(s) is a function
that returns a list of the edge of the set s sorted according to their attribute @position.
Finally, the function model2XML calls itself to treat the children of the edge e.

function model2XML(e):

if visible (e) then

t = getValue(e.attributes[@text]);
if t 6= nil then out(t);

else

RR n° 7362

14 Martin, Urso & Weiss

out(”< ” + e.tag);

for (attr,vlist) in e.attributes do out(” ”+attr+”=”+getValue(vlist));

out(” > ”);

list l = child2List (e.children);

for n in l do model2XML(n);

out(”</”+e.tag+”>”);

endif

endif

end

5.5 Semantic dependency

– Add(id′, idp)≻
′
s Add(idp, id): adding edge id under edge idp requires that edge idp

has been created.
– Add(idp, id) ≻

′
s SetAttr(id,Attr,Value, ts)(n(t)): Creating or modifying edge at-

tribute requires edge id has been created.
– Add(idp, id)≻

′
s Undo/Redo(Add(idp, id)) : Undoing or Redoing of edge creating

require edge id has been created.
– SetAttr(id,Attr,Value, ts, idop)≻

′
s Undo/Redo(SetAttr(id,Attr,Value, ts, idop)) Undo

or Redoing attribute setting, require creation of this attribute.
– by definition we have :

• Add(idp, id)≻
′
s Del(id, idop)

• Del(id, idop)≻
′
s Redo/Undo(Del(id, idop))

With undo, semantic dependency can be achieve by a very simple mechanism. An
Del/SetAttr/Add operation affecting an edge can only be delivered if an edge is already
present (visible or not). A Undo/Redo operation can only be delivered if the edge and
the corresponding timestamped value is present.

6 Correctness

In this section we show that our operations commutes, and thus, that our data type is a
CRDT and eventual consistency is ensured6.

Theorem 1. Let Op1 = {Add,Del,SetAttr} without undo. The set (Op1,≻s) is an in-

dependent set of operations.

We define ≻∗
s by: op1 ≻s op2 ∧op2 ≻s op3 ⇒ op1 ≻

∗
s op3 and ‖∗s by op1 6≻

∗
s op2 ∧

op2 6≻
∗
s op1 ⇔ op1 ‖

∗
s op2

We define a sequence of operation: Do(opn,Do(opn−1, ...Do(op1, t)...))= [op1, ...,opn](t).

Proof. We prove that if op1 ‖
∗
s op2 then [op1,op2](t) = [op2,op1](t) by a case analysis

on all possible pairs op1,op2.

6 The Do(op, t) function used in the proof is the state of t after applying deliver(op, t).

INRIA

Scalable XML Collaborative Editing with Undo 15

1. op1 = Add(id1, idp1)

(a) op2 = Add(id2, idp2)
– if idp1 = idp2 in same set we add n1 followed by n2 or vice versa. the only one

set which be modified is identified by id = idp1 = idp2 and t ′i d = tid ∪{n1}∪
{n2}

– else the two effect are in two independent subtrees or op1 6‖
∗
s op2

(b) op2 = Del(id2)
– id2 = idp1 or idp1 is in subtree id2:

let t a tree. t1 = Do(Del(id2), t) by definition idp is deleted.
Do(Add(id1, idp1), t) = t1. t2 = Do(Add(id2, idp1), t) and Do(Del(id2), t2) = t1
because a subtree is erased.

– id2 = id1: because Add(id1, idp1)≻s Del(id1).
– other : the edge id1 has been created and id2 has been deleted whatever order.

(c) op2 = SetAttr(id2,attr2,val2, ts2)
– id2 = id1 : the edge be created before attribute settings because Add(id1, idp1)≻s

SetAttr(id1,attr2,val2, ts2).
– other, the add has no effect on SetAttr and vice versa. ⋄

2. op1 = Del(id1)

(a) op2 = Add(id2, idp2) : It’s 1b case.
(b) op2 = Del(id2) If id1 is a subtree id2 then [Del(id1),Del(id2)](t) there are no edge

to delete with Del(id1) because it was deleted with Del(id2) . And [Del(id2),Del(id1)](t)
the the edge and subedge of id1 were deleted at first time and id2 with id1 was
deleted too. else two subtree are distinct .

(c) op2 = setAttr(id2,attr2,value2, ts2)

– id1 = id2

Let t ′ = Do(Del(id1), t). Do(SetAttr(id1,attr2,value2, ts2)(t
′) = t ′ because id1

is not present in t ′.
Do(Del(id1),Do(SetAttr(id1,attr2,value2, ts2), t))= t ′ because id1 and its sub-
tree was deleted. Whatever its attribute.

– Other : there are no problems.
⋄

3. op1 = SetAttr(id1,attr1,value1, ts1)

(a) op2 = Add(id2, idp2) : It’s 1c case.
(b) op2 = Del(id2) : It’s 2c case.
(c) op2 = SetAttr(id2,attr2,value2, ts2) :

– id1 6= id2: The edge is different.
– attr1 6= attr2 by definition the list is same, because it is ordered by the lexico-

graphic order.
– id1 = id2 ∧attr1 = attr2

• ts1 < ts2 let t1 = op1(op2(t))
(1)

let t2 = op2(op1(t))
(2)

In (1) the attribute of id1 is value2 and not changed by op1 (definition). in
(2) the attribute of id1 is value1 and changed by op2 to value2 (definition).
therefore t1 = t2.

RR n° 7362

16 Martin, Urso & Weiss

• ts2 < ts1: idem with values number inverted.
• ts1 = ts2 By definition ts1 6= ts2 ⋄

In undo case the Del(id, ts) operation becomes equivalent to a SetAttr(id,@del,nil, ts)
operation.

Theorem 2. Let Op2 = {Add,SetAttr,Undo/Redo(SetAttr)} with undo.The set (Op2,≻
′
s

) is an independent set of operations.

Proof. We prove that if op1 ‖
∗
s op2 then [op1,op2](t) = [op2,op1](t) by a case analysis

on all possible pairs op1,op2.

1. op1 = Add(id1, idp1)

(a) op2 =Add(id2, idp2) the operation just add the special attribute @add, the previous
proof is still valid.

(b) op2 = SetAttr(id2,attr2,val2, ts2)
– id2 = id1 : the edge is created before attribute settings because Add(id1, idp1)≻s

SetAttr(id1,attr2,val2, ts2).
– other, the add has no effect on SetAttr and vice versa. ⋄

(c) op2 = Redo/Undo(SetAttr(id2,attr2,val2, ts2))
– if id1 = id2 by definition, op1 6‖

∗
s op2

– else: the creation of edge is independent of another edge modification.

2. op1 = SetAttr(id1,attr1,value1, ts1)

(a) op2 = Add(id2, idp2) : It’s 1b case.
(b) op2 = SetAttr(id2,attr2,value2, ts2) :

– id1 6= id2: The edge is different.
– attr1 6= attr2 by definition the list is same, because it is ordered by the lexico-

graphic order.
– id1 = id2 ∧attr1 = attr2

• ts1 6= ts2: by definition we add in list of values ordered by timestamp.
The add in ordered list is independent of adding order. The two values
are present.

• ts1 = ts2 By definition ts1 6= ts2 ⋄
(c) op2 = undo/redo(SetAttr(id2,attr2,value2, ts2))

– if id1 6= id2 or attr1 6= attr2: by definition, op1 6‖
∗
s op2

– else op1 create a value item and op2 increase or decrease effect on another
value item. It is independent.

3. op1 = undo/redo(SetAttr(id1,attr1,value1, ts1))

(a) op2 = Add(idp, id) is same of case 1c.
(b) op2 = SetAttr(id2,attr2,value2, ts2) is same of case 2c
(c) op2 = undo/redo(SetAttr(id2,attr2,value2, ts2))

– if id1 = id2 ∧ attr1 = attr2∧ ts1 = ts2: by definition each operation increases
or decreases the same effect field, it is commutative operation.

– else each operation decreases or increases two different counters.

The other operations – Del, Undo/Redo(Add), Undo/Redo(Del) – can be defined us-
ing operations in op2 set – SetAttr and Undo/Redo(SetAttr).

INRIA

Scalable XML Collaborative Editing with Undo 17

7 Scalability discussion

In this section we discuss about the scalability of the approach. The XML CRDT with
and without undo scales in term of replicas number. The replicas number in not a factor
in every elements of the CRDT. There is no consensus, central point or state vector
embedded on messages.

The only requirement to ensure consistency of the XML CRDT without undo is
to receive delete operation after insert of a node. With undo, this constraint is not re-
quired to ensure consistency since a delete can be received before an insert. The delete
produces directly a tombstone.

7.1 Complexity

Here is the time complexity of the functions used in our approach.

– find, findFather : the worst time complexity is O(n) with n the number of edge in
the tree (including invisible ones in case of undo). Using path to an edge – as list of
identifier – instead of identifier in operation, the average time complexity becomes
O(hc) with h the average height of the tree and c the average number of children per
edge. If we use hash table that associate identifier to edge, the average complexity
becomes O(1) for find. If we store the father id in the edge, the average complexity
using hash table becomes also O(1) for findFather.

– add, del : since the list are ordered the average time complexity is O(log(s)) with s

the average number of SetAttr operation applied to an attribute. Using hash tables
whose key are timestamp, the average complexity becomes O(1).

– model2XML : in case of undo, the theoretical time complexity is O(o) with o the
number of operations – except undos/redos – applied to the whole tree. However
all children and attributes of invisible edges will not be visited. Also, this function
can be called incrementally, i.e. only on a node that becomes visible. A node that
becomes invisible is simply removed from the view7, and an operation on a non-
special attributes has only a local affect.

Finally, concerning the scalability in term of operations number, the XML CRDT
without undo requires tombstones for attributes as the Thomas Write Rule [10]. Also,
there is an overhead effect observed experimentally by [31] : the CRDT position identi-
fiers like @position may grows if there is a big number of insert operations at a partic-
ular position, thus affecting the complexity of the function child2List that sort children
of an edge. This less likely to happen in an XML CRDT since insertion positions might
be distributed among the whole tree.

7.2 Garbage collection

Undo requires to keep deleted elements (identifier and content) and the list of previous
update values for attributes. Not surprisingly, the undo feature is provided as the cost

7 For that, we need a function that computes the path in the view from the edge identifier with a
complexity of O(hc).

RR n° 7362

18 Martin, Urso & Weiss

of keeping old operations. However, a garbage collecting mechanism can be designed.
Such a garbage collection is similar to the one already present in the RFC 667 [10].
Each replica i maintains a vector vi of the last clock timestamp received by all other
replicas (including its own clock). From this vector i, computes mi the minimum of these
clocks. This minimum is sent regularly to the other replicas. It can be piggybacked to
operation’s message or sent regularly in a specific message. From the minimum received
(including mi), each replica maintains an other vector Vi. The minimum of Vi is Mi. The
point is that, if communication are FIFO, a replica know that every replica have received
all potential message with a timestamp less or equal to Mi. Thus any tombstone with
a timestamp less or equal to Mi can be safely remove. This mechanism can be directly
used in the XML CRDT without undo to remove old deleted attributes.

In the XML CRDT with undo, we only authorize to produce an undo of an operation
whose timestamp is greater than mi. Thus operations with a timestamp lesser than Mi

will never see their effect modified. So, elements such as follow can be safely and
definitively purged :

– attribute – including deletes – value v with v.timestamp < Mi and v.e f f ect < 1
– attribute – including deletes – value v with v.timestamp < Mi and there exists v′

with v.timestamp < v′.timestamp < Mi and v′.e f f ect > 0
– edge with any delete value d with d.timestamp < Mi and d.e f f ect > 0 or with the

add value a with a.timestamp < Mi and a.e f f ect < 1.

Thus, the time and space complexity of the approach is greatly reduced to be propor-
tional to the size of the view. Moreover, differently to the RFC 677, replicas send mi−k

with k a global constant instead of mi. Thus, even if replica are tightly synchronized –
having mi very close to their own clock –, the replicas can always undo the last opera-
tions.

For a replicas number of s, the garbage collection mechanism only requires addi-
tional storage space of size O(s) and send additional message of size O(1). However,
it requires to knows the number of replica in the networks. This makes the mechanism
unsuitable for P2P networks with a high degree of churn but still suitable for cloud
infrastructures.

8 Conclusion

We have presented a commutative replicated data type that supports XML collaborative
editing including a global selective undo mechanism. Our commutative replicated data
type is designed to scale since the replicas number never impacts the operations execu-
tion complexity. Obviously, the undo mechanism requires to keep information about the
operations we allow to undo. We presented a garbage collection mechanism that allows
to purge old operation information.

Other tombstone-based approaches requires tombstones even for deleting element
without undo. Also, the garbage collecting mechanism that can be adapted to them is
much less scalable since based on a consensus-like method [14].

We still have much work to achieve on this topic. Firstly, we need to make exper-
iments to establish the actual scalability and efficiency of the approach in presence of

INRIA

Scalable XML Collaborative Editing with Undo 19

huge data. Secondly, we plan to study replication of XML data typed with DTD or
XSD. This is difficult task, never achieved in a scalable way.

References

1. S. Abiteboul, A. Bonifati, G. Cobéna, I. Manolescu, and T. Milo. Dynamic xml documents
with distribution and replication. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD

international conference on Management of data, pages 527–538, New York, NY, USA,
2003. ACM.

2. G. D. Abowd and A. J. Dix. Giving undo attention. Interacting with Computers, 4(3):317–
342, 1992.

3. T. Berlage. A selective undo mechanism for graphical user interfaces based on command
objects. ACM Trans. Comput.-Hum. Interact., 1(3):269–294, 1994.

4. M. Burrows. The chubby lock service for loosely-coupled distributed systems. In OSDI,
pages 335–350. USENIX Association, 2006.

5. M. Cart and J. Ferrie. Asynchronous reconciliation based on operational transformation
for P2P collaborative environments. In Proceedings of the 2007 International Conference

on Collaborative Computing: Networking, Applications and Worksharing, pages 127–138.
IEEE Computer Society, 2007.

6. R. Choudhary and P. Dewan. A general multi-user undo/redo model. In ECSCW’95: Pro-

ceedings of the fourth conference on European Conference on Computer-Supported Cooper-

ative Work, pages 231–246, Norwell, MA, USA, 1995. Kluwer Academic Publishers.
7. C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. In J. Clifford, B. G.

Lindsay, and D. Maier, editors, SIGMOD Conference, pages 399–407. ACM Press, 1989.
8. C.-L. Ignat and G. Oster. Peer-to-peer collaboration over xml documents. In Y. Luo, editor,

CDVE, volume 5220 of Lecture Notes in Computer Science, pages 66–73. Springer, 2008.
9. R. Jiménez-Peris, M. Patiño-Martı́nez, B. Kemme, and G. Alonso. How to select a replication

protocol according to scalability, availability, and communication overhead. In SRDS, pages
24–33. IEEE Computer Society, 2001.

10. P. R. Johnson and R. H. Thomas. RFC 677: Maintenance of duplicate databases, January
1975, (Septembre 2005). http://www.ietf.org/rfc/rfc677.txt.

11. A.-M. Kermarrec, A. I. T. Rowstron, M. Shapiro, and P. Druschel. The IceCube approach
to the reconciliation of divergent replicas. In Proceedings of the twentieth annual ACM

symposium on Principles of distributed computing - PODC’01, pages 210–218. ACM Press,
2001.

12. G. Koloniari and E. Pitoura. Peer-to-peer management of xml data: issues and research
challenges. SIGMOD Rec., 34(2):6–17, 2005.

13. A. D. Kshemkalyani and M. Singhal. Necessary and sufficient conditions on information
for causal message ordering and their optimal implementation. Distributed Computing,
11(2):91–111, 1998.

14. M. Letia, N. Preguiça, and M. Shapiro. CRDTs: Consistency without concurrency control.
In SOSP W. on Large Scale Distributed Systems and Middleware (LADIS), pages 29–34, Big
Sky, MT, USA, October 2009. sigops, acm.

15. T. Lindholm. Xml three-way merge as a reconciliation engine for mobile data. In MobiDe

’03: Proceedings of the 3rd ACM international workshop on Data engineering for wireless

and mobile access, pages 93–97, New York, NY, USA, 2003. ACM.
16. J. Maeda. The laws of simplicity. MIT Press, 2006.
17. S. Martin and D. Lugiez. Collaborative peer to peer edition: Avoiding conflicts is better than

solving conflicts. In H. Weghorn and P. T. Isaı́as, editors, IADIS AC (2), pages 124–128.
IADIS Press, 2009.

RR n° 7362

http://www.ietf.org/rfc/rfc677.txt

20 Martin, Urso & Weiss

18. J. O’Brien and M. Shapiro. Undo for anyone, anywhere, anytime. In EW 11: Proceedings

of the 11th workshop on ACM SIGOPS European workshop, page 31, New York, NY, USA,
2004. ACM.

19. G. Oster, P. Urso, P. Molli, and A. Imine. Data Consistency for P2P Collaborative Editing.
In Proceedings of the ACM Conference on Computer-Supported Cooperative Work - CSCW

2006, pages 259–267, Banff, Alberta, Canada, nov 2006. ACM Press.
20. G. Oster, P. Urso, P. Molli, and A. Imine. Tombstone transformation functions for ensur-

ing consistency in collaborative editing systems. In The Second International Conference

on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom

2006), Atlanta, Georgia, USA, November 2006. IEEE Press.
21. N. M. Preguiça, J. M. Marquès, M. Shapiro, and M. Letia. A commutative replicated data

type for cooperative editing. In ICDCS, pages 395–403. IEEE Computer Society, 2009.
22. M. Ressel and R. Gunzenhäuser. Reducing the problems of group undo. In GROUP ’99:

Proceedings of the international ACM SIGGROUP conference on Supporting group work,
pages 131–139, New York, NY, USA, 1999. ACM.

23. M. Ressel, D. Nitsche-Ruhland, and R. Gunzenhäuser. An integrating, transformation-
oriented approach to concurrency control and undo in group editors. In CSCW, pages 288–
297, 1996.

24. Y. Saito and M. Shapiro. Optimistic replication. ACM Computing Surveys, 37(1):42–81,
2005.

25. C. Sun. Undo as concurrent inverse in group editors. ACM Transactions on Computer-

Human Interaction (TOCHI), 9(4):309–361, December 2002.
26. C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving convergence, causality preserva-

tion, and intention preservation in real-time cooperative editing systems. ACM Transactions

on Computer-Human Interaction (TOCHI), 5(1):63–108, March 1998.
27. D. Sun and C. Sun. Operation Context and Context-based Operational Transformation. In

Proceedings of the ACM Conference on Computer-Supported Cooperative Work - CSCW

2006, pages 279–288, Banff, Alberta, Canada, November 2006. ACM Press.
28. D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J. Spreitzer, and C. H. Hauser.

Managing update conflicts in Bayou, a weakly connected replicated storage system. In Pro-

ceedings of the fifteenth ACM symposium on Operating systems principles - SOSP’95, pages
172–182. ACM Press, 1995.

29. W. Vogels. Eventually consistent. Communications of the ACM, 52(1):40–44, 2009.
30. S. Weiss, P. Urso, and P. Molli. An Undo Framework for P2P Collaborative Editing . In

CollaborateCom, Orlando, USA, November 2008.
31. S. Weiss, P. Urso, and P. Molli. Logoot-Undo: Distributed Collaborative Editing System on

P2P Networks. IEEE Trans. Parallel Distrib. Syst., 21(8):1162–1174, 2010.

INRIA

Centre de recherche INRIA Nancy – Grand Est
LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Centre de recherche INRIA Futurs : Parc Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex

Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Scalable XML Collaborative Editing with Undo

