
HAL Id: inria-00510013
https://hal.inria.fr/inria-00510013

Submitted on 6 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supervisory Control for Modal Specifications of Services
Philippe Darondeau, Jérémy Dubreil, Hervé Marchand

To cite this version:
Philippe Darondeau, Jérémy Dubreil, Hervé Marchand. Supervisory Control for Modal Specifications
of Services. Workshop on Discrete Event Systems, WODES’10, Aug 2010, Berlin, Germany. pp.428-
435. �inria-00510013�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50063573?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00510013
https://hal.archives-ouvertes.fr

Supervisory Control for Modal

Specifications of Services

Philippe Darondeau ∗ Jérémy Dubreil ∗∗ Hervé Marchand ∗∗∗

∗ INRIA-Rennes Bretagne Atlantique, Campus universitaire de
Beaulieu, 35042 Rennes, France (email: philippe.darondeau@inria.fr)
∗∗ Laboratoire d’Informatique de l’Ecole Polytechnique (LIX), Route de

Saclay, 91128 Palaiseau, France (email: jeremy.dubreil@inria.fr)
∗∗∗ INRIA-Rennes Bretagne Atlantique, Campus universitaire de
Beaulieu, 35042 Rennes, France (email: herve.marchand@inria.fr)

Abstract: In the service oriented architecture framework, a modal specification, as defined by
Larsen in [5], formalises how a service should interact with its environment. More precisely, a
modal specification determines the events that the server may or must allow at each stage in
an interactive session. In this paper, we investigate the adaptation of the supervisory control
theory of Ramadge and Wonham to enforce a modal specification (with final states marking the
ends of the sessions) on a system modelled by a finite LTS. We prove that there exists at most
one most permissive solution to this control problem. We also prove that this solution is regular
and we present an algorithm for the effective computation of the corresponding controller.

Keywords: discrete event systens, supervisory control, modal specifications, services, partial
observation.

1. INTRODUCTION

In [11, 12, 13], Ramadge and Wonham laid the foundations
of the theory of supervisory control for discrete event
systems and proposed solutions to the Basic Supervisory
Control Problem, or BSCP, that may be stated as follows.
Let G be a finite automaton, with a subset of final
(or marked) states, over a set of events Σ with two
independent partitions Σ = Σc ∪ Σuc and Σ = Σo ∪ Σuo.
The automaton G represents a plant. The plant’s events in
Σo and Σc may be observed and controlled, respectively,
from the environment of the plant. Let Lmax be a regular
language over Σ. BSCP is the problem whether there exists
some proper controller C such that the language L(C/G)
of the controlled system satisfies the relation L(C/G) ⊆
Lmax. The plant and the controller produce joint runs,
in which the controller acts by disabling at each step a
subset of events of the plant. The set of disabled events
must be a function of the subsequence of events currently
observed. A proper controller should be admissible (it
never disables uncontrollable events) and non-blocking (it
always leaves a possibility to reach some final state of the
plant). Ramadge and Wonham’s theory characterizes the
existence of proper controllers and proposes algorithms for
computing the maximally permissive controller C under
the assumption Σc ⊆ Σo.

Ramadge and Wonham’s theory aims chiefly at enforcing
safety properties on autonomous or semi-autonomous sys-
tems, e.g. automated manufacturing systems, while taking
special care of the property of nonblocking. Our goal in this
paper is to adapt the theory and algorithms of supervisory
control for enforcing on a plant G a different type of prop-
erty, namely the conformance to the modal specifications
of a service. We assume that the plant is described by a

finite automaton G over Σ, with a set of final states QF ,
and the service expected from the plant is specified by a
modal automaton S over Σo, with a set of final states SF .
We assume moreover that Σc ⊆ Σo. Such assumptions are
quite natural in service oriented architectures where only
inputs from or outputs to servers can be observed, and only
the outputs can be controlled, even though nonblocking
depends also upon internal actions in Σ\Σo that cannot be
observed by the controller. We want to compute a proper
and maximally permissive controller C under which the
controlled system C/G conforms to S, i.e., it provides the
specified service. This means in particular that under the
considered control C, both sets of final states QF and
SF stay forever jointly reachable so that any interactive
session can terminate.

Modal specifications, also called modal transition systems,
were introduced in [5] in the form of transition systems
(S,Σ,→✷,→✸, s0), with two modal transition relations:
the must transitions denoted →✷ and the may transitions
denoted →✸, such that →✷⊆→✸. Every modal transition
system MTS determines a corresponding family M of
labelled transition system (LTS) which are called the
models of MTS. Intuitively, an LTS is a model of MTS
if there exists a relation |= between their respective sets
of states Q and S such that |= holds between the initial
states and whenever q |= s, all must transitions from s are
simulated by transitions from q, all transitions from q are
simulated by may transitions from s and |= is preserved
under simulation of transitions in both directions. We let
G |= MTS mean that G is an LTS model of MTS.

Example 1. The modal specification depicted in Figure 1,
where the relations→✷ and→✸ are represented with plain
arrows and dashed arrows respectively, expresses the fact

WeA1 Preprints of WODES 2010

August 30th – September 1st, 2010

Berlin, Germany

428

that the presence of the first transition a is mandatory
while the second one is not, and that after any a the
system must be able to trigger a b (the execution of
this b transition is not mandatory, since the system may
alternatively trigger a second a). Finally, the presence of
a transition b returning to the initial state is optional.

a
a b

b

b
a a b

b

a b

b

Figure 1. A modal specification MTS and some associated
models

a a

b

Figure 2. A labelled transition system that is not a model
of MTS

The two LTSs on the right hand side of Figure 1 are models
of the specification, whereas the one depicted in Figure 2
is not. Indeed, after the sequence aa, the specification
requires a transition labelled by b which in not present
in this LTS. ⋄

It is worthwhile noticing that a language generated by an
LTS G which is a model of a specification MTS belongs
to a language interval [Lmin, Lmax] whose endpoints Lmin

and Lmax are the languages of the labelled transition sys-
tems (S,Σ,→✷, s0) and (S,Σ,→✸, s0), respectively. How-
ever, not all the languages in the interval [Lmin, Lmax] can
be generated by models of MTS. Consider for instance the
modal transition system MTS depicted in Fig. 1. then
Lmin = {ǫ, a, ab} and Lmax is the prefix-closure of (a(ab+
b)b)∗. However, for L = {ǫ, a, ab, aa}, there exists no LTS
G generating L such that G |= MTS. This example shows
that modal specification are strictly more expressive than
tolerances considered in Ramadge and Wonham’s theory.

The expressive power of modal specifications added over
language specifications comes precisely from the possibility
they offer to formulate service requirements in a condi-
tional way, e.g. “if the system serves request a, then the
next b request will be served.” This feature makes modal
specifications very convenient for describing the interface
between a partially observed plant (service provider) and
its environment (service requester). For instance, after a
coin has been inserted into a coffee machine, the client
should always get a cup of coffee or the coin back but there
is no guarantee that coins can always be entered, which
depends on unobservable phenomena inside the machine.

In [5], determinism was required neither from the labelled
transition relations →✷ and →✸ of modal transition sys-
tems, nor from the labelled transition relations → of their
transition system models. In this paper, for simplicity, we
shall limit ourselves to deterministic transition systems
and to deterministic modal transition systems. However,

we shall extend modal transition systems in another re-
spect since we will introduce a satisfaction relation |=
between LTS’s over Σ (modelling the plant) and MTS’s
over Σo ⊆ Σ (specifying the expected service as observed
from the environment of the plant). The proposed exten-
sion is based on the assumption that the plant interacts
fairly with its environment, i.e. it does not refuse possible
interactions forever. Consequently, infinite unobservable
behaviours are considered impossible.

We shall also extend modal transition systems in a second
direction by providing them with marked or final states,
thus obtaining modal automata. In modal specifications of
services, final states serve to represent the potential points
of termination of a session from the service requester’s
perspective. In a similar way, we replace labelled transition
systems with automata for modelling plants, where final
states represent the potential points of termination of a
session from the service provider’s perspective. We end
up thus with final states in G (the plant) and S (the
specification), whose joint reachability is to be taken care
of in the search for non-blocking controllers C such that
C/G |= MTS. There, G is an automaton over Σ, S is
a modal specification over Σo ⊆ Σ, and C is a labelled
transition system over Σo that includes Σc (the set of
controllable events).

An earlier adaptation of the theory of supervisory control
to modal specifications was proposed in [3]. In that work,
total observation was assumed and nonblocking was not
considered. The contribution of the present paper is to
lift these two limitations. The working assumptions of
[3] are retrieved in the particular case where Σ = Σo

and all states of the plant automaton and the modal
specification are final states. Partial observation is the
prevailing situation in service oriented architectures, where
systems interact with their environment by input and
output actions. Hence, extending [3] in this respect is
crucial for achieving the objectives of this paper.

The remaining sections of the paper are organized as
follows. We recall in Section 2 some basic concepts and
notations concerning automata, supervisory control and
modal specifications of services. In Section 3, we inves-
tigate the supervisory control problem for modal speci-
fications. We show that when there exists a solution to
this problem, there exists a unique supremal controller
enforcing the given modal specification and we show in a
non-constructive way that this optimal supervisor is finite
state. We present in Section 4.5 an algorithm to compute
this supervisor. When there is no solution to the control
problem, the algorithm produces an empty supervisor.

2. BACKGROUND

We recall in this section basic definitions and results about
transition systems and supervisory control.

2.1 Transition Systems and Automata

A deterministic labelled transition system (or LTS) over Σ
is a 4-tuple LTS = (Q,Σ, δ, q0) where Q is a finite set of
states, q0 ∈ Q is an initial state, and δ is a partial map from
Q×Σ to Q, called the labelled transition map. This map is
extended inductively to δ : Q×Σ∗ → Q by setting δ(q, ε) =

429

q (where ε is the empty word), and δ(q, wa) = δ(δ(q, w), a)
for all q ∈ Q, w ∈ Σ∗ and a ∈ Σ. A state q ∈ Q is reachable
(from q0) if δ(q0, w) = q for some word w ∈ Σ∗. An LTS
is finite if Q and Σ are finite; it is reduced if all states in
Q are reachable and every event a ∈ Σ is enabled at some
state q, i.e. δ(q, a) is defined for the considered state q. In
the sequel, we always consider reduced transition systems
unless explicitly stated otherwise. The language of LTS is
the set of words L(LTS) = {w ∈ Σ∗ | δ(q0, w) defined }.

Given labelled transition systems LTS = (Q,Σ, δ, q0) and
LTS′ = (Q′,Σ′, δ′, q′0), their product is the (reachable re-
striction of the) labelled transition system LTS×LTS′ =
(Q × Q′,Σ ∪ Σ′, δ × δ′, (q0, q

′
0)) where (δ × δ′)((q, q′), a)

is defined as (δ(q, a), q′) for a ∈ Σ \ Σ′, (q, δ′(q′, a)) for
a ∈ Σ′ \ Σ, and (δ(q, a), δ′(q′, a)) for a ∈ Σ ∩ Σ′.

A deterministic automaton over Σ is a labelled transi-
tion system with final states, i.e. A = (Q,Σ, δ, q0, QF)
with QF ⊆ Q. The labelled transition system underly-
ing A is U(A) = (Q,Σ, δ, q0). The language of the au-
tomaton A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∈ QF }. Thus,
L(A) ⊆ L(U(A)) ⊆ Σ∗. In the sequel, we sometimes
consider also (for technical convenience) automata A =
(Q,Σ, δ, Q0, QF) with a set Q0 of initial states.

Given a language L ⊆ Σ∗, its prefix-closure is L = {u ∈
Σ∗ | ∃v ∈ Σ∗ : uv ∈ L}. A language L is prefix-closed if
L = L. A prefix-closed language L induces a (possibly
infinite) transition system LT S(L) = (L,Σ, δ, ε) where
δ(u, a) = ua for every word ua ∈ L with a ∈ Σ.

2.2 Supervisory Control

The presentation given here has been adapted from [2].
Let Σo ⊆ Σ and Σc ⊆ Σ be the sets of observable and
controllable events, respectively.

A run of a plant automaton G = (Q,Σ, δ, q0, QF) is an
alternated sequence ρ = q0, a1, q1, a2, . . . , qn−1, an−1, qn
such that n ≥ 0 and δ(qi−1, ai−1) = qi for all i ≤ n.
The run is accepted if qn ∈ QF . The trace of the run is
the (possibly empty) word a1a2 . . . an−1. The observable
trace of the run (w.r.t. Σo) is the natural projection of
a1a2 . . . an−1 on Σ∗

o, defined inductively with πo(ε) = ε
and

• πo(a1a2 . . . ai) = πo(a1a2 . . . ai−1)ai if ai ∈ Σo,
• πo(a1a2 . . . ai) = πo(a1a2 . . . ai−1) otherwise.

An admissible control w.r.t. Σc ⊆ Σ is a map f :
Σ∗

o → 2Σ such that all values taken by this map are
supersets of Σ \ Σc. Applying the control f to G means
disabling after a trace w all events which do not belong to
f(πo(w)). The induced restrictions of L(G) and L(U(G))
under the control f are denoted L(f/G) and L(f/U(G)),
respectively. The control f is non-blocking if L(f/U(G))
is equal to the prefix-closure of L(f/G), i.e. every run of
G under the control f can be extended to an accepted
run compatibly with f . An admissible and non-blocking
control is said to be a proper control. Given a control f ,
let C be any (possibly infinite) LTS such that the language
of C is equal to L(f/LT S(Σ∗)). Then L(f/U(G)) =
L(U(G) × C) and L(f/G) = L(G × C) where the final
states of G × C are all pairs (q, s) with q final in G.
Moreover, if one considers exclusively the maximal control

maps f such that L(f/G) = L(G × C), where f ≤ f ′ if
f(ω) ⊆ f ′(ω) for all ω ∈ Σ∗

o, then f and C determine each
other up to the above equality relation. For this reason,
C is called a controller, and G × C and U(G) × C are
rewritten C/G and C/U(G) to stress this view. In order
to characterize the behaviours that may be enforced on a
given plant by supervisory control, Ramadge and Wonham
introduced two central concepts.

Definition 1. A prefix-closed language K ⊆ L(U(G)) is
controllable w.r.t. Σc if K · (Σ \ Σc) ∩ L(U(G)) ⊆ K. ⋄

Definition 2. A prefix-closed language K ⊆ L(U(G)) is
observable w.r.t. Σo and Σc if, for any w,w′ ∈ K with
equal observations πo(w) = πo(w

′) and for any controllable
event a ∈ Σc, (wa ∈ L(U(G)) ∧ w′a ∈ K) ⇒ wa ∈ K. ⋄

A classical Ramadge and Wonham’s theorem states that,
given a prefix-closed sublanguage K ⊆ L(U(G)), K =
L(f/U(G)) for some control f if and only if K is con-
trollable and observable. Similarly, if K is a sublanguage
of L(G), then K = L(f/G) for some non-blocking control
f if and only if K = K ∩ L(G) and K is controllable and
observable. In the particular case where every controllable
event is observable, i.e. Σc ⊆ Σo, a prefix-closed language
K ⊆ L(U(G)) is observable if and only if it is normal
according to the following definition.

Definition 3. A prefix-closed language K ⊆ L(U(G)) is
normal w.r.t. Σo if π−1

o ◦ πo(K) ∩ L(U(G)) ⊆ K. ⋄

Prefix-closedness, controllability and normality are pre-
served under arbitrary unions of languages. Therefore, if
K is a prefix-closed sublanguage of L(U(G)), then there
exists a supremal prefix-closed, controllable and normal
sublanguage K† of K. Similarly, if K is a sublanguage
of L(G), then there exists a supremal sublanguage K† of

K such that K
†
is controllable and normal. In both situa-

tions, Ramadge and Wonham have shown that the induced
control f† such that K† = L(f†/U(G)) or K† = L(f†/G)
is regular, i.e. K† = L(C/U(G)) or K† = L(C/G) for some
finite state controller C, and they have given algorithms for
computing C. In the particular case where Σc ⊆ Σo, such
a controller is said to be maximally permissive because
L(C ′/G) ⊆ L(C/G) for any other proper controller C ′

such that L(C ′/G) ⊆ K. Moreover in that case, one may
assume w.l.o.g. that δ(r, a) = r in C = (R,Σ, δ, r0) for
all r ∈ R and for all a ∈ (Σ \ Σo), hence one may as
well consider C as an LTS over Σo. This is the kind of
supervisors we shall consider in the sequel. Note that when
Σc ⊆ Σo, if a supervisor C is given as an LTS over Σo, then
L(C/G) is normal by construction with respect to Σo and
L(G) and thus it is observable.

2.3 Modal Specifications of Services

In this section, we propose to specify services using an
extended form of Larsen’s modal specifications [5]. The
extension is twofold. On the one hand, service specifica-
tions express requirements about the behaviour of the ser-
vice seen from the environment (service requester), hence
they should abstract from the unobservable events of the
service provider. Given modal specifications over a set of
observable events Σo, we shall therefore consider as an
associated class of models a family of LTS’s over a larger

430

alphabet of events Σ ⊇ Σo (drawing inspiration from
Hüttel and Larsen’s observable refinements which were
introduced for the same purpose in [6]). On the other hand,
we shall provide modal specifications with final states, and
similarly for their LTS models (service providers), so that
the ability to terminate interactive sessions can be taken
into account as a main requirement in the definition of the
satisfaction relation.

In the sequel, Σ and Σo are two fixed finite sets of events,
with Σo ⊆ Σ, and we let Σuo = Σ\Σo. Given an automaton
A = (Q,Σ, δ, q0, QF), we say that a subset of states P ⊆ Q
is closed under unobservable transitions if δ(P,Σ∗

uo) ⊆ P .

Definition 4. A deterministic modal transition system (or
MTS) over Σo is a 5-tuple MTS = (S,Σo, δ

✷, δ✸, s0)
where δ✷ : S × Σo → S and δ✸ : S × Σo → S are two
partial maps, called the strong and weak labelled transition
maps, respectively, subject to the constraint that δ✷ is
a restriction of δ✸. A deterministic modal automaton or
modal specification over Σo is a modal transition system
with final states, i.e. S = (S,Σo, δ

✷, δ✸, s0, SF) with
SF ⊆ S. The plain transition system underlying S is
U(S) = (S,Σo, δ

✸, s0). ⋄

An easy way to define a satisfaction relation between
automata over Σ and modal specifications over Σo would
be to set A |= S if DetΣo

(A) |= S where DetΣo
(A) is the

deterministic automaton over Σo produced by applying to
A the classical subset construction. P |= s could then be
defined inductively for states P of DetΣo

(A) and s of S
as suggested in the introduction. Such a definition would
unfortunately not ensure that, when P |= s and q ∈ P ,
joint final states can be reached from (q, s) in A × U(S),
nor that a can be triggered from some state in the unob-
servable reach of q whenever δ�(s, a) is defined. Therefore,
unobservable actions must be considered explicitly in the
definition of the satisfaction relation. In the sequel, we
use s

a

−→✷ s
′ and s

a

−→✸ s
′ as abbreviations respectively for

δ✷(s, a) = s′ and δ✸(s, a) = s′. This notation is extended
inductively from letters a ∈ Σo to words ω ∈ Σ∗

o.

Definition 5. An automaton A = (Q,Σ, δ, q0, QF) satisfies
a modal specification S = (S,Σo, δ

✷, δ✸, s0, SF) (noted
A |= S) if Q0 |= s0 where Q0 = δ(q0,Σ

∗
uo) and |= is the

largest relation between subsets of states P closed under
unobservable transitions and states of S such that P |= s
entails the following properties for all a ∈ Σo and q ∈ P :

(1) δ(q, a) defined ⇒ s
a

−→✸ s
′ and P ′ |= s′ for P ′ =

δ(P, aΣ∗
uo),

(2) s
a

−→✷ s
′ ⇒ δ(q,Σ∗

uoa) 6= ∅,
(3) QF × SF can be reached from (q, s) in A× U(S). ⋄

According to the above definition, A satisfies S if the
fair abstraction of A w.r.t. the unobservable transitions
satisfies S with the definition given in [5] and moreover,
any interactive session in which A is used as specified
in S can be completed (the service provider and the
service requester can always reach final states jointly). An
illustration of the use of modal automata for specifying
services is proposed below.

Example 2. Consider the modal specification S depicted
in Figure 3. S defines the service offered by a (special)

coffee-machine 1 . The initial state is s0. The final states
are s0 and s5. Initially, the user must be enabled to insert

s0 s1

s2

s3

s4 s5
?E ?T

?C

!C !E

!T !E

?C

?T
?E

Figure 3. Specification S of a coffee-machine

a coin (?E) in the machine and further to order a tea (?T).
He may also have the possibility to order a coffee (?C), but
this is optional. Afterwards, the machine may deliver the
requested beverage (!C or !T)) or return the coin (!E) and
the service may then end (in state s0 or s5). If the coin is
returned, there is no guarantee that the user can insert a
new coin and order a coffee or a tea (all these transitions
are optional). However, if the user succeeds to have his
beverage, then he must be enabled to insert a new coin
and order a tea.

The automaton A of Figure 4 represents a possible coffee-
machine plant, where Σuo = {NC, NT, R} (NC (resp. NT)
means no coffee (resp. no tea) and R stands for Reset) and
QF = {1, 2, 3}. It is easy to check that the coffee-machine

4 5 6

7 1 8 32

10 11 15 12 139 14

16

?C ?T

!C
NC

!T
NT

!E!E

?E ?ER
R!E R !E

?T ?C

!C

?C?T

!T

NT NC
!E

?E

Figure 4. A possible implementation A of the coffee-
machine

plant A fulfills properties 1. and 2. of Definition 5 w.r.t. S
whereas requirements 3. is not satisfied. Indeed, after the
observation ?E?C!E?E?C, S is in state s3 and A is either
in states 11 or 1, i.e. P = {11, 1} and in A × U(S), the
state (1,s3) is a deadlock state. So there is no possibility
for A and S to reach final states jointly. Note that state 1
is not a blocking state of A considered alone, since it is a
final state. ⋄

Modal specifications where all states are final have the
same expressive power as µ-calculus without least fixed
points and disjunction [3]. Hence, unlike CTL, CTL∗ or µ-
calculus, they cannot be used to describe branching behav-
iors. The addition of final states gives modal specifications
the ability to capture nonblocking properties that cannot

1 The transitions →✷ and →✸ are respectively represented with
plain arrows and dashed arrows

431

be expressed in µ-calculus without least fixed points and
disjunction.

Modal specifications of services diverge notably from the
operating guidelines for services introduced in [8] and fur-
ther studied in [9], although they have much in common.
Operating guidelines abstract from unobservable events,
and they take final states into account for guaranteeing
the absence of deadlock in the closed system formed by
the service provider and the service requester. However,
operating guidelines do not guarantee that this closed
system is free of dead-ends, i.e. global states which are
not deadlocks but from which global final states cannot be
reached. For the rest, operating guidelines are technically
closer to acceptance automata [4] than to modal automata
[5]. In the absence of final states, modal automata are
less expressive than acceptance automata, see [10] for
a comparison. Nevertheless, this weakness seems to be
overcompensated by the provision of a satisfaction relation
for modal specifications which guarantees the absence of
deadends.

3. ANY SERVICE SPECIFICATION HAS AN
OPTIMAL FINITE STATE SUPERVISOR

In the rest of the paper, Σc ⊆ Σo ⊆ Σ, where Σo and Σc

are the subsets of observable and controllable events, re-
spectively 2 . We let Σuo = Σ\Σo, respectively Σuc = Σ\Σc

denote the subset of unobservable, respectively uncontrol-
lable events. We consider a plant G = (Q,Σ, δQ, q0, QF), or
service provider, and a modal specification of the expected
service S = (S,Σo, δ

✷

S , δ
✸

S , s0, SF). The control problem,
we want to solve is the following:

Problem 1. Given a plant G and an expected service as
above, we search for the optimal (i.e. maximally permis-
sive) supervisor C = (R,Σo, δR, r0) such that C/G |= S
and C is an admissible controller for G w.r.t. Σc.

Let us recall that C/G denotes the reachable restric-
tion of the automaton (Q × R,Σ, δQ×R, (q0, r0), QF × R)
where δQ×R((q, r), a) = (δQ(q, a), δR(r, a)) if a ∈ Σo and
δQ×R((q, r), a) = (δQ(q, a), r) otherwise (assuming that
the right members of these equations are defined).

By definition, in order that C be an admissible controller
for G w.r.t. (Σo and) Σc, the following condition should
hold for any state (q, r) of C/G and for any uncontrollable
event a ∈ Σuc ∩ Σo:

• δQ(q, a) defined ⇒ δR(r, a) defined.

Note that as previously mentioned, as C is defined over
Σo, the language of C/G is automatically normal w.r.t.
Σo and G.

In view of Definition 5, in order that C/G |= S, it
is moreover necessary that (Q0, r0) |= s0 where Q0 =
δQ(q0,Σ

∗
uo) and |= is the largest relation on (2Q ×R)× S

such that, whenever (P, r) |= s, the following properties
hold for all a ∈ Σo and q ∈ P :

2 Thus we set ourselves in a case where observability and normality
coincide, entailing the existence of an optimal control for language
specifications.

(1) δQ(q, a) defined and δR(r, a) defined ⇒
s

a

−→✸ s
′ and (P ′, r′) |= s′ for P ′ = δQ(P, aΣ

∗
uo) and

r′ = δR(r, a),
(2) s

a

−→✷ s
′ ⇒ δQ(q,Σ

∗
uoa) 6= ∅ and δR(r, a) defined,

(3) (QF × R) × SF can be reached from ((q, r), s) in
(U(G)× C)× U(S).

It is important to note that the above characterization
applies unchanged to G′ = (Q,Σ, δQ, Q0, QF), where Q0 =
δQ(q0,Σ

∗
uo), i.e. to the original plant automatonG in which

the initial state q0 has been replaced with its unobservable
reach Q0.

The state oriented and therefore co-inductive characteri-
zation of the admissible supervisors C such that C/G |= S
which we have presented above is not always convenient.
Alternatively, a non-inductive characterization of these
supervisors may be given in terms of their languages L(C),
as follows.

Given any non-empty prefix-closed language K ⊆ Σ∗
o,

let C = LT S(K) and hence K = L(C), then C is an
admissible supervisor for G if and only if

∀a ∈ Σuc ∩ Σo ∀ω ∈ K ∀w ∈ L(U(G)) :

ω = πo(w) ∧ wa ∈ L(U(G)) ⇒ ωa ∈ K

With the same definition as above, C/G |= S if and only
if the following properties hold for all a ∈ Σo, for all
ω ∈ K, for all s ∈ S such that s0

ω

−→✸ s in U(S), and
for all w ∈ L(U(G)) such that ω = πo(w):

(1) wa ∈ L(U(G)) and ωa ∈ K ⇒ s
a

−→✸ s
′ for some

s′ ∈ S,
(2) s

a

−→✷ s
′ ⇒ ∃u ∈ Σ∗

uo : wua ∈ L(U(G)) and ωa ∈ K,
(3) ∃v ∈ Σ∗ ∃ν ∈ Σ∗

o :
wv ∈ L(G) ∧ ν = πo(v) ∧ ων ∈ K ∧ s

ν

−→✸ s
′ for

some s′ ∈ SF .

The two characterizations are equivalent since one may
pass from the former to the latter by replacing q with
δQ(q0, w) and r by δR(r0, ω), and vice-versa. Therefore,
in the latter characterization, after applying universal
quantification over w ∈ L(U(G)) subject to πo(w) = ω,
one gets three conditions that depend exclusively upon
P = δQ(q0, π

−1
o (ω)), r = δR(r0, ω) and s. From now on,

let K denote the family of the non-empty prefix closed
languages K ⊆ Σ∗

o that satisfy the conditions stated in
the second characterization, and let K† = ∪K. It is
straightforward to show that K† belongs to K. Therefore,
if K 6= ∅, there exists a unique solution to problem 1.

In the rest of the section we prove that, if there exists an
admissible supervisor C such that C/G |= S, then there
exists such an optimal and moreover finite-state supervisor
C†. Further, we show that R = 2Q × S may be chosen as
the set of states of C†.

Given any non-empty prefix-closed language K ⊆ Σ∗
o,

let C = LT S(K). Then C is an admissible supervisor
and C/G |= S if and only if K ∈ K. As K† is the
supremal element of K, it follows clearly that, unless
K = ∅, LT S(K†) is an optimal supervisor. However,
this supervisor may have an infinite number of states. We
prove below that K† is a regular language, showing that
K† = L(C†) for some finite state supervisor C†.

432

Proposition 1. K† is a regular language.

Proof For any ω ∈ K†, let ρ(ω) = {ν ∈ Σ∗
o |ων ∈ K†}

(thus ρ(ω) is a right derivative ofK†), and let ξ(ω) = (P, s)
with P = δQ(q0, π

−1
o (ω)) and so

ω

−→✸ s. By Myhill and
Nerode’s theorem, in order to show that K† is regular,
it suffices to construct ρ : 2Q × S → P(Σ∗

o) such that
ρ(ω) = ρ ◦ ξ(ω) for all ω ∈ K†. We show that this relation
is satisfied with ρ (P, s) = ∪{ρ(ω) | ξ(ω) = (P, s)}. Let
ω, ω′ ∈ K† such that ξ(ω) = ξ(ω′). By Lemma 1 given
below, ρ(ω) = ρ(ω′), and therefore ρ(ω) = ρ ◦ ξ(ω). ✷

Lemma 1. For any ω ∈ K†, let K† ⊲ ω = {ν ∈ Σ∗
o |ων ∈

K†} (= ρ(ω)), and let S ⊲ ω = (S,Σo, δ
✷

S , δ
✸

S , so ⊲ ω, SF)
and G ⊲ ω = (Q,Σ, δQ, q0 ⊲ ω,QF) be defined with
s0

ω

−→✸ (so ⊲ ω) and q0 ⊲ ω = δQ(qo, π
−1
o (ω)). Then K† ⊲ ω

is the language of an admissible controller enforcing the
modal specification S ⊲ ω on the plant G ⊲ ω, and moreover
it is the largest language with this property.

Proof When specialized to words ωω′ ∈ K†, the condi-
tions specified in the characterization of K in order that
K† should be an admissible controller enforcing S on G are
the same as the conditions required in order that K† ⊲ ω
should be an admissible controller enforcing S ⊲ ω onG⊲ω.
The second assertion may be established by contradiction.
IfK† ⊲ ω was not the largest solution to the derived control
problem, then K† ∪ ω(K† ⊲ ω) would be a solution to the
original control problem strictly larger than K†, which is
impossible. ✷

4. AN ITERATIVE ALGORITHM FOR COMPUTING
AN OPTIMAL FINITE STATE SUPERVISOR

With Proposition 1, we have obtained a non-constructive
proof of the regularity of K†. In this section, we propose
an algorithm for constructing from G and S an optimal
finite state supervisor C† or deciding that no supervisor
can enforce S on G. It will be proved in Section 4.5
that the proposed decision and synthesis algorithm is
correct: if it does not yield any supervisor, then K† = ∅,
and in the converse case, K† = L(C†). Not surprisingly,
the set of states of C† is a subset of 2Q × S (Q and
S are the respective sets of states of G and S). As
usual in supervisor synthesis, the algorithm starts with
an expansion stage (A), in which an abstraction of the
reachable part of U(G)× U(S) is built inductively, and it
proceeds with reduction stages, performed in rounds until
a fixpoint is reached. A particularity lies in the (non-strict)
alternation between two types of reduction stages, on the
one hand stages (B) that eliminate states inconsistent
with modal transitions, and on the other hand stages (C)
that eliminate states from which joint termination is not
possible. The algorithm has the control pattern A;(B;C)*.

4.1 The expansion stage A

Given U(G) = (Q,Σ, δQ, q0) and U(S) = (S,Σo, δ
✸

S , s0),
let r0 = (δQ(q0,Σ

∗
uo), s0) where Σuo = Σ \ Σo and let

C0 = (R,Σo, δR, r0) be the LTS defined inductively as
follows. R ⊆ 2Q×S and δR : R×Σo → R are the least set
and partial function, respectively, such that r0 ∈ R and
for any (P, s) ∈ R and a ∈ Σo, δR((P, s), a) = (P ′, s′) ∈ R

with P ′ = δQ(P, aΣ
∗
uo) and s′ = δ✸S (s, a), unless δ✸S (s, a)

is undefined or (∀q ∈ P) δQ(q, a) = ∅ or δ✷S (s, a) is defined
and (∃q ∈ P) δQ(q,Σ

∗
uoa) = ∅. As R is a subset of the

finite set 2Q × S, this inductive construction is finite.

4.2 The reduction stage B

Given Ci = (R,Σo, δR, r0) where i is an even number,
one computes Ci+1 from Ci by removing iteratively from
Ci all states and transitions which are found inconsistent
with the requirements expressed by the modal transitions
in S. This is done by applying the classical Ramadge-
Wonham algorithm for state based supervisory control,
with Σuc = Σ \ Σc as the set of uncontrollable events.

Declare inconsistent w.r.t. controllability or modalities any
state (P, s) ∈ R such that at least one of the following two
properties hold:

• ∃a ∈ Σuc ∩ Σo ∃q ∈ P : δQ(q, a) defined ∧
δR((P, s), a) undefined,

• ∃a ∈ Σo : δ✷S (s, a) defined ∧ δR((P, s), a) undefined

Whenever some state (P, s) is found inconsistent, this state
is removed from R and from the image of the partial
function δR, which may lead to new inconsistencies w.r.t.
controllability or modalities. Note that the inconsistencies
w.r.t. δ✸S have already been considered in the construc-
tion of C0 and new inconsistency of this type may be
introduced by restricting R and δR. As R is a finite set,
this iterative cleaning procedure terminates (possibly with
R = ∅). The result does not depend upon the order in
which the states and transitions are removed.

4.3 The reduction stage C

Given Ci = (R,Σo, δR, r0) where i is an odd number, one
computes Ci+1 from Ci by removing iteratively from Ci all
states and transitions that cannot lead to joint termination
w.r.t. the final states of G and S.

Define Hi = U(G) × Ci, thus any state of Hi is of the
form (q, (P, s)) with q ∈ P . Declare inconsistent w.r.t.
termination any state (P, s) ∈ R such that, for some q ∈ P ,
q /∈ QF ∨s /∈ SF and there is no path in Hi from (q, (P, s))
to any (q′, (P ′, s′)) with q′ ∈ QF and s′ ∈ SF . Whenever
some state (P, s) is found inconsistent, it is simply removed
from R and from the image of the partial function δR.

Remark 1. In practice, Hi may be computed from Hi−1

by just cancelling states whose second projection is not in
Ci.

4.4 The halting condition

The algorithm executes according to the pattern A;(B;C)*.
The iteration is stopped as soon as Ci = Ci+2, which must
eventually occur since, at each step in the iteration, the set
of states is decreased or left constant. When the fixpoint
is reached, one declares that the control problem has no
solution if Ci has an empty set of states, and one sets
C† = Ci otherwise.

Example 3. To illustrate the algorithm, let us come back
to example 2. We assume that the set of controllable
events is reduced to Σc = {?E, ?T} (note that there

433

is however no direct relation between may/must and
controllable/uncontrollable). Figure 5 represents the LTS
C0 computed from S (Figure 3) andA (Figure 4) according
to Section 4.1. As remarked in Example 2, there iss no

{1}
s0

{5}
s1

{4,7}
s3

{6,8}
s2

{3}
s5

{2}
s5

{10}
s4

{11,1}
s3

{13}
s4

{12,1}
s2

{5}
s4

{15,1}
s5

{9,16}
s2

{14,16}
s3

{3}
s0

{2}
s0

{10}
s1

{13}
s1

?E

?C ?T

!C

!E

!T

!E

?E

?E

?C ?T

?C

?T

?T

?C

!E !E

?E

!E !E

!T !C

?E ?E

?C

?T

?T

?C

Figure 5. C0

inconsistent state w.r.t. controllability or modality in C0.
Thus, Stage B of the algorithm does not remove any states
in C0 and C1 = C0. However, state ({11, 1}, s3) as well
as state ({12, 1}, s2) are inconsistent w.r.t. termination
and have to be removed from the state space. We thus
obtain C2. As C2 6= C0, we need to iterate the process.
In C2, states ({10}, s4) and ({10}, s1) are now inconsistent
w.r.t. controllability and are removed. Moreover, ({13}, s1)
has also become inconsistent w.r.t. modalities since in S,
the transition ?T is mandatory from s1. By removing this
state, ({3}, s0) also becomes inconsistent w.r.t. modalities
and the same applies in turns to ({14, 16}, s3) and to
({13}, s4) due to the uncontrollability of !C and ?C. We
thus obtain the LTS C3 described in Figure 6.

Finally, in C3, the sink states ({2}, s5), ({3}, s5) map to
final states in H3×U(S), so C3 = C4 and we have reached
the fix-point. ⋄

{1}
s0

{5}
s1

{4,7}
s3

{6,8}
s2

{3}
s5

{2}
s5

?E

?C ?T

!C

!E

!T

!E

Figure 6. C3

4.5 Correctness of the algorithm: L(C†) = K†

In this section, we show that the finite state LTS C†

constructed in section 4 realizes K†, thus in particular C†

has an empty set of states if and only if K† is an empty
language.

For all i ≥ 0, let Hi = U(G) × Ci. Three observations
about the LTS’s Hi and Hi × U(S) are fundamental for
the propositions established below. First, every state of Hi

is of the form (q, (P, s)) with q ∈ P and P closed under
unobservable transitions in G. Second, every reachable
state of Hi × U(S) is of the form ((q, (P, s)), s), where
the same state s ∈ S occurs twice. Third, for i ≥ 1, Hi is
isomorphic, as an LTS over Σ, to the expansion Exp(Ci)
of Ci defined as follows.

Definition 6. Given Ci = (R,Σo, δR, r0), let Exp(Ci) =
(Exp(R),Σ, δi, E0) where the set of expanded states is
Exp(R) = {(q, (P, s)) | (P, s) ∈ R∧ q ∈ P}, the initial state
is E0 = (q0, (δQ(q0,Σ

∗
uo), s0)), and the transition function

δi : Exp(R)× Σ → Exp(R) is defined as follows:

• for a ∈ Σuo, let δ
i((q, (P, s)), a) = (δQ(q, a), (P, s)),

• for a ∈ Σo, let
δi((q, (P, s)), a) = (δQ(q, a), (δQ(P, aΣ

∗
uo), δ

✸

S (s, a))
unless δQ(P, a) = ∅. ⋄

Remark 2. H0 is not necessarily isomorphic to Exp(C0)
because in this particular case there may exist (P, s) ∈ R,
q, q′ ∈ P and a ∈ Σo such that δ✷S (s, a) defined, δQ(q, a)
defined, and δQ(q

′,Σ∗
uoa) = ∅, and then δR((P, s), a) is

undefined in C0 (see stage A of the synthesis algorithm).

Proposition 2. If C† has a non-empty set of states, then
C† is an admissible controller and C†/G |= S.

Proof Suppose for a contradiction that C† is not an
admissible controller, and let C† = Ci with i ≥ 2, thus
C†/G = Hi. In view of the isomorphism between Hi and
Exp(Ci), the following situation is met for some a ∈ Σuc∩
Σo and for some reachable state (q, (P, s)) of Exp(Ci):

• δQ(q, a) is defined and δi((q, (P, s)), a) is undefined,
but in this case,
δQ(P, a) 6= ∅ since q ∈ P , hence δ✸S (s, a) must be
undefined, and therefore (P, s) is an inconsistent state
of Ci (w.r.t. controllability), which is impossible.

Now suppose for a contradiction that C†/G does not
satisfy the modal specification S. In view of Definition 5
and the isomorphism between Hi and Exp(Ci), at least
one of the following situations is met for some a ∈ Σo and
for some reachable state (q, (P, s)) of Exp(Ci):

• δi((q, (P, s)), a) is defined and δ✸S (s, a) is undefined,
but this is not possible because the first assumption
implies that δR((P, s), a) is defined in Ci and hence
in C0, entailing that δ✸S (s, a) is defined,

• s
a

−→✷ s
′ and δi((q, (P, s)),Σ∗

uoa) = ∅,
then by definition of δi, one of the following two
situations is met (recall that q ∈ P and P is closed
under unobservable transitions):

· δQ(q, aΣ
∗
uoa) = ∅, but in this case, δR((P, s), a)

would have been left undefined in C0 (see Stage
A of the synthesis algorithm), hence (P, s) would
have been removed from R in C1 at Stage B of
the synthesis algorithm, showing a contradiction;

· δQ(P, a) 6= ∅ and (δQ(P, aΣ
∗
uo), δ

✸

S (s, a)) is not
a state of Ci, but then (P, s) in an inconsistent

434

state of Ci (w.r.t. modalities), which is impossi-
ble.

• one cannot reach any state (q′, (P ′, s′)) with q′ ∈ QF

and s′ ∈ SF from (q, (P, s)) in Exp(Ci),
but then (P, s) in an inconsistent state of Ci (w.r.t.
termination), which is impossible.

As all cases have been examined, the proposition ob-
tains. ✷

Proposition 3. If K† 6= ∅, then L(C†) = K†.

Proof For any ω ∈ Σ∗
o, let ξ(ω) = (δQ(q0, π

−1
o (ω)),

δ✸S (so, ω)). By Lemma 1, ξ(ω) = ξ(ω′)⇒K† ⊲ ω = K† ⊲ ω′

and moreover, K† ⊲ ω is the language of an admissible
controller enforcing S ⊲ ω on G ⊲ ω. Thus, if ω ∈ K†

and ξ(ω) = (P, s), then for all a ∈ Σo such that δ✷S (s, a)
is defined, δQ(q,Σ

∗
uoa) is non-empty for all q ∈ P (=

δQ(qo, π
−1
o (ω))). Therefore, the prefix closed language K†

may be generated by a sub-system of C0, that is to say, by
the induced restriction of C0 on specific subsets of states
and transitions. In particular, K† ⊆ L(C0).

Assume by induction on i ≥ 0 that K† ⊆ L(Ci).

• If Ci = Ci+2 then C† = Ci and by Proposition 2,
L(C†) ⊆ K† ⊆ L(C†), showing the result.

• In the converse case, Ci is not an admissible con-
troller or Ci/G does not satisfy S. By the proof of
Proposition 2, Ci contains inconsistent states (P, s).
Therefore, Ci+2 has a strictly smaller set of states. We
claim that no reachable sub-system of Ci containing
a state missing in Ci+2 can generate a language in
K. Therefore, necessarily K† ⊆ L(Ci+2), and the
proposition obtains by the induction on i.

The claim may be established by an induction on
the set of inconsistent states successively removed,
using at each step the isomorphism between C/G
and Exp(C) for any reachable sub-system C of Ci

for i ≥ 1. ✷

5. CONCLUSION

We have investigated the application of the supervisory
control theory to enforce the modal specification of a
service on a given plant automaton. We have established
that this control problem has at most one solution and
that this solution can be represented as a finite state
supervisor. Finally, we have shown how to compute this
supervisor. The point made in the paper is that, under a
mild adaptation (dealing jointly with controllability and
modal consistency), Ramadge and Wonham’s theory and
algorithms of supervisory control under partial observation
extend smoothly to specifications more expressive than
language specifications. The control synthesis algorithm
stays linear in the size of the modal specification (but expo-
nential in the size of the plant due to partial observation).
The control synthesis problem is EXP-TIME complete in
the size of formulas for CTL and µ-calculus and doubly
EXP-TIME complete for CTL∗ [7], but it is not clear that
our algorithm does better in practice. In this paper, we
have made the assumption that the set of events that are
observed by the controller is the set of events involved in
the modal specification of the service. In order to obtain a

more general framework, it would be interesting to inves-
tigate the control problem for modal specifications in the
different setting where the controller’s view of the system is
not directly related with the interactive user’s view. In the
context of computer security, modal specifications could
also serve to express additional availability constraints. For
that reason, it would be interesting to define a common ex-
tension of this work and the one in [2] and then to consider
a wide range of security properties mixing integrity con-
straints given by safety properties, confidentiality proper-
ties given by opacity predicates and availability properties
given by modal specifications. Modal specifications are a
simple but powerful description of the functional service
that a user expects from an implementation. Among the
set of controlled systems satisfying the specification, some
implementations may be preferred to others because, e.g.,
the average elapsed time between the requests and the
answers is shorter. It would be interesting to add quanti-
tative criteria to help a selection among the non necessarily
maximally permissive solutions of the control problem for
modal specifications.

REFERENCES

[1] J.W. Bryans, M. Koutny, L. Mazaré, P.Y.A. Ryan:
Opacity Generalized to Transition Systems. Int. Jour-
nal of Computer Security, vol. 7(6), 2008, pp 421-435.

[2] J. Dubreil, P. Darondeau, H. Marchand: Supervisory
Control for Opacity. IEEE Trans. Automatic Control,
55(5), 2010, pp 1089-1100.

[3] G. Feuillade, S. Pinchinat: Modal Specifications for
the Control Theory of Discrete Event Systems. Dis-
crete Event Dyn Syst, vol. 17, 2007, 211-232.

[4] M. Hennessy: Acceptance Trees. J. ACM, vol. 32,
1985, 896-928.

[5] K.G. Larsen: Modal Specifications. in: Automatic
Verification Methods for Finite State Systems,
Springer-Verlag, LNCS vol. 407, 1990, pp 232-246.

[6] H. Hüttel and K. G. Larsen. The use of static
constructs in a modal process logic. In Logic at Botik,
1989, pp 163–180.

[7] S, Jiang, R. Kumar: Supervisory Control of Dis-
crete Event Systems with CTL ∗ Temporal Logic
Specifications. SIAM J. of Control and Optimization,
vol. 44(6), 2006, pp. 2079-2103.

[8] N. Lohmann, P. Massuthe, K. Wolf: Operating
Guidelines for Finite-State Services. Proc. ICATPN,
Springer-Verlag, LNCS vol. 4546, 2007, pp. 321-341.

[9] N. Lohmann, K. Wolf: Petrifying Operating Guide-
lines for Services. Proc. ACSD, IEEE Computer So-
ciety, 2009, pp. 80-88.

[10] J.B. Raclet: Residual for Component Specifications.
ENTCS vol. 215, 2008, pp. 93-110.

[11] P.J. Ramadge, W.M. Wonham: Supervisory Control
of a Class of Discrete Event Processes. SIAM J. of
Control and Optimization, vol. 25, 1987, pp 206-230.

[12] P.J. Ramadge, W.M. Wonham: On the Supremal
Controllable Language of a Given Language. SIAM
J. of Control and Optimization, vol. 25, 1987, pp 637-
659.

[13] P.J. Ramadge, W.M. Wonham: The Control of Dis-
crete Event Systems. Proc. of the IEEE, Special Issue
on Dynamics of Discrete Event Systems, vol. 77, 1989,
pp 81-98.

435

