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Street generation for city modelling

Xavier Décoret, Francois Sillion

iMAGIS GRAVIR/IMAG - INRIA

Abstract

In this paper, we present a complete solution for automati-
cally retrieving the street graph of an urban model. Given
a set of 2.5D polygons representing the buildings footprints
and their heights, the algorithm constructs a graph that rep-
resents the street network (a node for a crossing, an edge for
a street, each associated with a set of surrounding buildings)
along with geometric information such as the width of the
streets. We demonstrate how this graph can be used to an-
alyze the city structure and give an example of its use with
an automatic geometric modeler for city streets.

Keywords: Street generation, Voronoi, Median axis, City
modelling

1 Introduction

City modeling is a growing field of interest. With the devel-
opment and democratization of machines able to run high-
quality simulations, more applications focus on building vir-
tual environments. Whereas the first large environments
were mainly poorly detailed terrains, todays machine capac-
ities facilitate the computation of both large and complex
3D models. Cities are such models. They can be mod-
eled at various, and possibly infinite, level of details (large
blocks when viewed from above, detailed shops when walked
through). They can have both large open spaces (squares, or
avenues) and densely obstructed ones (narrow streets). Ap-
plications covers a large spectrum, from virtual tourism and
video games to city planning and rescue or military training.

However, modeling such environments can be tedious.
When the model has to faithfully represent an existing city,
modeling every building by hand is inefficient. Even simple
blocks textured with real photos requires a great deal of work
and raises storage problems, as shown by the experience of
the UCLA'. Acquiring the data automatically is also very
difficult[Tel98] and can not yet be applied at large scale.

At the other end of the spectrum are imaginary, or semi-
realistic cities such as the one generated for video-games like
Crazy Tazi 22. Such cities usually want to look like Paris or
New-York. Some important monuments must then be mod-
eled exactly but others just need to approximate the look
and feel (facade style and color, street furniture,etc...) of
the different areas. This leaves room for procedural model-
ing. Recent work [PMO01] uses L-systems to automatically
generate large cities by constructing a street network and
populating it with buildings.

One interesting problem is the generation of streets. If
the exact appearance of the buildings is required only for
significant landmarks, the location of other buildings should
always be correct. These locations can no longer be repre-
sented by L-systems since they involve complex social and
historical interactions. However they can be retrieved auto-

1h‘t:'t:p ://www.ust.ucla.edu/ustweb/ust.html
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matically from aerial photographs and used to fix the posi-
tion of procedurally generated buildings. Streets must then
be generated after the buildings are placed,

In this paper, we present a solution to this problem of
street retrieval where buildings are given. In section 2 we
present the general idea, sections 3 and 4 explains the two
phases of the process. Sections 5 and 6 show applications
and results.

2 Overview

The input of our system is a set of building footprints, that
are described as counter clockwise oriented 2D polygons with
an altitude attached to each vertex. The altitude can be
treated independently and will be discussed in section 4.1.
The output is a set of center lines as this is the most common
source of road data®. These lines are enhanced with extra
information describing local and global properties.
Motivated by the idea that roads go in between buildings,
more or less at equal distance of the ones on the left and right
hand sides, we define the street network as a modified medial
azis of a non simple polygon. The polygon we consider is
obtained by subtracting all footprints from a large container
polygon. In our tests we use a slightly enlarged bounding
box of the buildings, as shown on figure 1. Other polygons
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(a) footprints (b) difference

Figure 1: Difference polygon

(a) Buildings (inside is colored), and an enlarged bound-
ing boz. (b) the difference polygon whose median azis
i8 the street graph.

could be used, such as a polygon shaped according to the
terrain boundary for example. We will discuss in section 6
the role of this polygon. It is specified to the system as a
building footprint with a reversed (clockwise) orientation.

The medial axis (also known as the skeleton) of a shape
is formally defined as the set of interior points whose clos-
est point on the boundary is not unique [Pav82]. More in-
tuitively, if the shape represents a prairie whose boundary
has been set on fire, it is the points were the flames will
meet [Blu67].

3http://www.vterrain.org/Culture/RRF/index.html



The skeleton of a polygonal shape is known to be consist-
ing of segments of straight lines and parabola[OI92]. Algo-
rithms to compute it can be found in [MR96, OI92]. How-
ever, we can not use them straightforwardly. First of all,
a mixed representation with straight lines and parabolas is
hard to manipulate and we would rather have a graph struc-
ture made only of lines. [AAAG95] proposes a novel type
of skeleton for polygons that is not a medial axis but is
only composed of straight lines. Unfortunately, it still suf-
fers from the main two problems of skeleton computations
methods :

input sensitive : if the polygon boundaries are slightly
changed the skeleton shape is completely modified and
may become unnecessarily complex (for our uses) as
shown on figure 2. This is due to the fact that skeleton
has an exact definition in term of distance to boundary,
encoding far more information than we would need.

artifacts : the skeleton have protrusions everywhere the
boundary has bulges or perturbations, as shown on fig-
ure 3. In many skeleton-based methods, filters and post
process are used to prune them. In our case, we want
to ignore them.
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Figure 2: Input sensitivity

(a) A skeleton (in red) for two ideally aligned buildings. (b) With
more detailed facades, the skeleton changes to fit, whereas a simpler
road as shown on (c) would be sufficient.

Figure 3: Artifacts

Bulges and noise on the polygon boundary produces
extra branches of the median awis.

To account for the above mentioned issues, we propose a
modified medial axis based on Voronoidiagrams.

2.1 Our approach

We first approximate roughly the skeleton, and then filter
the solution. This is a two-phase process with :

a topological phase which generates a graph whose arcs
represent streets, and whose nodes represent crossings
(junction of 3 or more streets).

a geometric phase The arcs of the graph are shaped to a
suitable position in between the surrounding buildings.
The shape is formed with only straight lines.

The advantage of this approach is that it reduces the overall
problem to local filtering. Indeed, the first phase gives a
collection of paths (arcs of the graph) and corners (nodes
of the graph). As we will see later, each path is bound
to exactly one building on its left and one on its right; and
each corner is associated with a list of surrounding buildings.
These bindings have the property of partitioning the space:
every point on the 2D map that is not inside a building is
uniquely attached to either a path or a corner. Therefore,
the second phase is a local optimization process that fits
each path or corner to the subset of the map bound to it.
One then need only specify how a path should be placed
in between 2 building facades and how a corner should be
placed at the “junction” of several buildings.

The first phase uses Voronoidiagram, that is a distance-to-
boundary based construction of the skeleton but the gener-
ated collection of path and corners, together with the bind-
ings and partitioning is strongly <nsensitive to the detailed
shape of buildings footprints. On the contrary, the second
phase depends highly on these detailed shapes but is no
longer based on distance to boundary. Instead it maximizes
an objective function under constraints. This decoupling is
the reason why our approach is very robust relative to the
input. It also naturally handles protrusion and dead-ends.

The next sections explain each phase in details.

3 Construction of a graph

3.1 Delaunay Triangulation

We sample the buildings’ boundaries by adding vertices
along their footprints’ edges so that two consecutive vertices
on a boundary have a distance of less than £. The vertices
are then Delaunay triangulated using the CGAL library®.
One can intuitively see that if £ is less than the smallest dis-
tance between any two footprints (known as the separation
of the two polygons in literature), then all the boundaries
are covered with edges of the triangulation. Figure 4 shows
an example where it is not true when not enough samples
are used (¢ is too large).

Currently, the user supplies an estimation of £ as the
“thinnest expected street”. Typically, for our test databases
where the unit is to represent one meter of the real world, we
chose a value of 1.0. Note that we could compute exactly this
value by measuring the minimum distance between 2 poly-
gons using for example [Ama94], with a hierarchical spatial
structure to accelerate an otherwise quadratic search. How-
ever, this value is not critical. Choosing too small a value
would yield the same results with simply an increase of the
computation time during the Delaunay triangulation.

3.2 Dualization

The Voronoidiagram is known to be the dual of the Delaunay
triangulation. In CGAL, it can be obtained by taking the
dual edge of every edge in the triangulation. However, we
will not consider all the edges. Indeed, we ignore the ones
that cover a footprint since their dual would be an edge
crossing the buildings boundaries. To identify such edges,
each building has a unique Building Identifier (BID), which

4http://www.cgal.org



(a) (b)

Figure 4: Sampling limit
Two footprints are Delaunay triangulated (gray lines) using too few
vertices (a). The footprints are not covered by the triangulation
and the corresponding Voronoidiagram (in red) is not a relevant
street. With our choice of €, the problem dissapears (b) and the
Voronoidiagram gives a better street (emphasized in blue).

propagates to all vertices placed on this building’s footprint.
An edge [AB] is ignored if bid(A) = bid(B).

Otherwise, its dual edge [ad] is retrieved together with the
two (different) BIDs, bid(A) and bid(B). It is then inserted
into a graph structure. The graph nodes hold a list of BIDs,
and the edges hold a pair of BID, called left and right. Here
is the pseudo-code for the edge insertion :

1. search if a graph node n, is placed at position a, oth-
erwise create a new node;

2. add bid(A), bid(B) to the list of BIDs of n,;
3. repeat for b;

4. create an oriented edge joining n, and np, and set its
right and left BIDs to bid(A) and bid(B) .

Due to the orientation of the footprints and the way CGAL
returns triangulation edges and computes dual, step 4 cor-
rectly gives left and right buildings. With another library
one may have to check this property and eventually swap
the edge to guarantee it. This will be important in step 3.4.
Notice also that edges are oriented and that we do not insert
the reverse edges in the graph.

3.3 Merging nodes

Each node of the graph has either 2,3 or more connected
edges (what we call the dimension of the node). Nodes of
dimension greater than or equal to 3 are called corners. A
dimension greater than 3 happens in cases where rectangu-
lar shapes are involved such as in an orthogonal crossing
depicted on figure 5(a). However, these cases are rare. The
input polygons are generally not perfectly aligned and the
result usually looks like figure 5(b), with two close nodes of
dimension 3.

In such cases, we do not want to consider the tiny edge
(emphasized in blue) between the two corners as a street. So
every time we found two nodes of dimension greater than 2
that are directly linked by an edge, we contract the edge,
thus merging the corners as shown on figure 5(c). Note
that the configuration of buildings required to have such
tiny edges make them independant of e. With smaller val-
ues (more samples) such edges are still present.

3.4 Finding paths

By construction, the sequence of edges linking two different
corners is made of edges with the same left and right BIDs,
and of nodes whose dimension is 2. Such a sequence defines
a path, with a left and a right BID.

At the end of this first phase, we are left with :

e a list of corners, each one associated with a list of the
BIDs of the surrounding buildings;

e a list of paths connecting corners, each one associated
with the BIDs of the building on the left, and of the
building on the right.

Paths are oriented from a start corner to an end corner.
Each corners knows the list of outgoing paths.

Figure 6 shows the result for a model of the Boston Fi-
nancial District (courtesy of the Laboratory Of Computer
Science, MIT).

3.5 Partitioning space

The corners and pathes are used to partition the 2D map.
Each corner is projected on the surrounding footprints®.
This defines a polygonal area attached to the corner (fig-
ure 7(a) shows an example). For each path, we also consider
the polygonal area defined by the two sections of the left
and right footprints in between the projections of the start
and end corners (figure 7(b) illustrates this). These sections
are called left and right borders. The two segments that join
these borders are called the start line and the end line.

We also define the width of a path as the distance w be-
tween the left and right borders (i.e. the minimum distance
of a point on one border to its projection on the other one).

4 Construction of schematic network

For each path, we construct a simplified centerline, the skele-
ton, with the following properties :

1. it is made of straight lines;

2. every point on the left and right border is further than
half the width of the path from the skeleton®.

To do so, we generate a set of sample median points in the
following manner : for each vertex P on one border, we
consider its projection P’ on the other border and add the
middle M of [PP’] to the set. We also add two special
samples, the middle points of the start and end lines.

We then search for the longest valid segment joining two
such samples. A valid segment is one that satisfies prop-
erty 2. Once this seed segment is found, we successively

5We consider the orthogonal projections. They are not neces-
sarily vertices of the footprints.

6In practice, to avoid numerical issues, we ask it to be 10%
further.



Figure 5: Merging corners

The Voronoimethod generates (b) two close corners (a corner is a node with 8 or more edges) where we would like only one such as in the
ideal configuration of (a). Such corners are merged into a median position as illustrated by (c).

(a) (b)

Figure 6: Corners and pathes

(a) A set of footprints, color indicates the unique building id (BID). (b) The resulting graph, with corners in red and pathes in grey. The
jagged shape of the graph is not visible due to resolution, see figure 7(a) for a zoomed version.

(a) (b) (c) (d)

Figure 8: Construction of skeleton

(a) shows the set of sample (hollow circles) with the construction indicated for some of them (dashed lines). A longest valid segment is first
chosen (b) and then extended with other segments (c) until it reaches the end line (d).
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Figure 7: Partitioning with the graph

(a) Bold grey polygons are the areas attached to the corners in red.
(b) Emphasized is the polygonal area attached to the path in red.
Blue line is the right border, green line the left one.

extend its extremities by adding maximal segments until we
reach the samples at the middle of the start and end lines.

Figure 8 illustrates the process. Notice how the bulge in
the upper building is filtered out; it adds more sample me-
dian points that are ignored at the benefit of relevant ones.
The same thing would happen to extra samples generated
by noisy, jagged footprints. In a certain manner, the process
only retains samples corresponding to interesting features of
the path shape.

4.1 Adding height

The whole process was done in 2D. The height of skeleton
points can be retrieved simply. When a border’s vertex at
height h is projected onto the other border, it gives a point
whose height b’ is either the height of the vertex if the projec-
tion happens to fall exactly on a vertex, or the average of the
heights of the segment extremities on which the projection

lies. The height of the generated sample is then simply ’”’T"’

5 Applications

The data we build, corners and skeletons gives much infor-
mation. Obviously, the graph can be used for many appli-
cations such as traffic planning or evaluation of the distance
between two locations, for which much work has been done.
However more information is available and can be used in
a context of automatic modeling (models can be geometric
models, models of moving pedestrians, etc...). The mini-
mum and maximum distance of surrounding buildings to a

skeleton helps finding narrow streets which can be useful, for
example to decide if a street should be one-way. Corners’ di-
mensions can be used to classify the type of crossings in the
city :

dimension 3 means a secondary street joins a main one.
The main one is constituted by the two skeletons who
form the smallest angle. These skeletons themselves
can be connected to corners of dimension 3, extending
the main street. This way, avenues can be identified in
the city.

dimension 4 means two streets cross each other. Width
of the streets can be used to find out which one should
have the priority and how traffic signs should be placed.

higher dimension means there is an important traffic
junction. Maybe bridges or a roundabout should be
placed here.

When modeling street geometry, the partitioning of space

allow to generate geometry that exactly fits the space be-
tween buildings. This is what the next sections show.

5.1 Road geometry

Our solution for modeling is based on the following obser-
vation. It is easy to define a parametric model of street
geometry for an ideal configuration. If one has for example
to fill a rectangular area of W x L, he can define the model
of the figure 9. What is difficult is to define the model when

a rmodel of tr 5 >
anong 10 possmF e
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Figure 9: A parametric model of rectangular road

it is no longer rectangular, but has an arbitrary non convex
shape, with perhaps jaggy boundaries. For a given path,
what should be the parametric model to generate a geome-
try filling the area attached to the path?

Our approach is to cover such an area with simple shapes
centered on the skeleton. We use 2 kind of shapes, rectan-
gular shapes called segments and pie slices called curves.

At each of the inner vertices of the skeleton, we place the
points O, M and N such as :

o the bisectrix of the skeleton segments joining at an inner
vertex is also the bissectrix of O; M; Ny;



e the middles of [OM] and [M N] are on the skeleton;

e max(OM, MN) is maximum.

Curves are the pie slices OJ/ITNi, and segments are the rect-
angles M;O; N1 M; 1. Figure 10 illustrates this procedure.

Skeleton\
L eft Border/“ o

O

Figure 10: Covering with segments and curves

Parametric models of segments and curves are then used
to generate geometry. The remainder of the path’s area that
is not cover by the generated geometry is triangulated and
textured with a default texture.

What this scheme does is therefore to remove the burden
of modeling from the modeler. The modeler simply defines
parametric models for segments and curves (which is quite
easy). These models specify position and shape of the road,
sidewalks and any other relevant elements. The modeler
then gives strategies for choosing a parametric model for a
given path in a given city. These strategies can be based
on information available in our system as described earlier.
They can also use extra information from a GIS, such as
style layers painted on a map of the city. The system then
takes care of constructing a “clean” road using these models
and strategies and fills the “dirty” remaining part around
the buildings boundaries with triangles.

5.2 Crossing geometry

In the same manner, the user provides models to build ge-
ometry for corners. The parameters available to the model
are : the the parametric models that have been used for each
connected path.

6 Results

We tested our algorithm on two databases : the Financial
District of Boston and a model of Vienna (courtesy of Peter

Wonka). The table 1 and 2 sum up the informations and
results. The computation were done on a Pentium 800MHz.

Number of
footprints | corners | pathes
Boston 87 146 247
Vienna 458 740 1196

Table 1: Test databases

phase 1 | phase 2 | total
Boston 246 3207 3453
Vienna 2756 9452 12208

Table 2: Computation times (in msecs

The whole computation time, even for the complex Vienna
model is low. The “phase 1” time indicates the time to build
the Voronoi diagram. The “phase 2” time is the time to
build skeletons and geometry. We used very basic parametric
models similar to the one of figure 9. With more complex
models, the computation time could slighlty increase.

Figure 11 shows the resulting graph for the complex Vi-
enna model. Note the peripheral roads. They are due to the
bounding polygon we substracted the footprints to. They
are necessary to have a graph with no leaf. However, they
can easily be identified using the BID of the bounding foot-
print. This gives extra information since streets that connect
to these road can be seen as entrances of the city.

Figure 12 shows the geometry generated for a curve. No-
tice the nice turn. Figure 13 shows the robustness of the
method for a complex case where the building footprint has
a non-trivial shape.

Figure 12: Geometry for a curve

6.1 Peripheric
7 Conclusions and future work

We present an algorithm to retrieve the street graph of a
city given the footprints of its buildings. The algorithm is
very robust, relative to the input and does not suffer of the
extreme sensibility of the skeleton algorithms it is inspired
of. It therefore can be used on footprints scanned from aerial
photographs.

It is fast and does not require obscure parameters to tune
for each case. We believe that this algorithm can have
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Figure 11: The street graph for Vienna

Figure 13: A complex case handel

many applications for the automatic modeling of a city. We

demonstrate one use, where the modeler designs a library of

simple geometric elements (segments and curves) and allows
the system to pave the streets with them. The modeller no
longer has to draw the street network himself as with today’s
tools such as the RoadPro module of Multigen©”.

Our library is simple for the moment and was used to
demonstrate the plausibility of our algorithm, however we
plan to develop a more complex one. This raises some in-
teresting problem regarding texturing of the roads. We also
plan to explore automatic placement of street signs and ur-
ban furnitures. As we partition space and connect exactly
to building footprints, we expect our system to handle con-
nections between the road and buildings, for example with
garage entrances. We finally want to use the graph struc-
ture to demonstrate another kind of modeling : animation
of moving objects in a city.

"www.multigen.com
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