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Abstract

A general light transfer simulation algorithm for environments com-
posed of materials with arbitrary reflectance functions is presented.
This algorithm removes the previous practical restriction to ideal
specular and/or ideal diffuse environments, and supports complex
physically based reflectance distributions. This is accomplished
by extending previous two-pass ray-casting radiosity approaches to
handle non-uniform intensity distributions, and resolving all possi-
ble energy transfers between sample points. An implementation is
described based on a spherical harmonic decomposition for encod-
ing both bidirectional reflectance distribution functions for materi-
als, and directional intensity distributions for illuminated surfaces.
The method compares favorably with experimental measurements.

CR Categories and Subject Descriptors: 1.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism; 1.3.3 [Com-
puter Graphics]: Picture/image Generation.
Additional Keywords and Phrases : global illumination, BRDF,
specular reflection, directional-diffuse, progressive radiosity, spher-
ical harmonics.

1 Introduction

The simulation of global illumination is one of the major require-
ments for realistic image synthesis. Global illumination effects pro-
duced by multiple surface reflections are significant in all but tbe
simplest environments. For instance, indirect lighting and color
bleeding, or the transfer of color by reflection, can be observed in
almost all indoor scenes. This paper presents a completely general
algorithm designed to solve the global illumination problem for ar-
bitrarily complex reflectance models.

Solution techniques for the simulation of complex light transfer
mechanisms, where every point in the environment can potentially
act as an illuminator for all other points, have thus far been quite lim-
ited. Two major paths have been explored. Light can be followed as
it leaves the light sources and is propagated and reflected throughout
the environment. For example, this approach is used by progressive
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refinement radiosity algorithms, and can & characterized as view-
imiependenf shading [3]. Conversely, standard ray tracing [20] and
its derivatives usually start from the eye and follow light paths in
the reverse direction. It is therefore strongly view-dependent.

These approaches work well for certain typss of reflective behav-
iors, such as ideal diffuse (radiosity), ideal specular (ray tracing), or
combinations of these [18, 17, 9]. The actual reflectance distribu-
tions of most surfaces are far more complicated, exhibiting some
directionality which must be taken into account for accurate simu-
lation.

The approach presented here extends the progressive radiosity
method to include arbitrary reflectance distributions. While previ-
ous algorithms incorporating general reflectance have relied upon
a discrete set of directions [1i, 1, 13], no such restriction is intro-
duced here. This is accomplished by using continuous functions to
encode the directional dependence of intensity distributions.

In the next section we discuss the applicability of \’iew-
independent and i’ien’-dependent approaches to the case of general
reflectance distributions and introduce a classification of reflectance
types into ideal diffuse, ideal specular and directional dz~use com-
ponents. The third section is devoted to the presentation of a com-
plete algorithm to solve the general problem. Two specitic issues
are then detailed: treatment of ideal specular reflection in Section 4,
and storage of directional diffuse contributions in Section 5.

2 Algorithmic choices for a general solution

The goal of this research is to develop a method for the simulation
of global illumination that is general enough to provide accurate
solutions for scenes incorporating any reflectance distribution, The
problems encountered in devising a completely general algorithm
are reviewed below, together with some of their design implications.

2.1 General reflectance distributions

The reflective properties of a surface are generally described by
means of a bidirectional reflectance distribution function (BRDF),
which is defined as tbe ratio of the reflected radiance in a given
outgoing direction to the incoming energy flux (per unit area) in an-
other direction. A similar quantity is defined for transmission. For
the sake of clarity, we will refer only to reflection in this paper, al-
though the algorithm is equally applicable to transmission. The two
we] l-understood limiting cases are idea/ d~ffuse and ideal specular
reflection.

An ideal diffuse reflector has a constant BRDF, that is, the scat-
tered intensity is the same in all directions. Diffuse reflection
can thus be fully described by a single scalar value.
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specular reflector has a Dirac delta function as its
BRDF, where the only direction in which there is non-zero
scattering is the mirrored direction. The relevant quantity to
describe specular reflection is the ratio of the outgoing inten-
sity in the specular direction to the incoming intensity, or spec-
ular re~ectatrce.

Most materials have BRDFs that are not this simple, exhibiting a
more elaborate directionality. Recent work on light reflection mod-
els has shown that different physical processes contribute to differ-
ent parts of a BRDF [8], and the term direcrirmal d@iise has been
introduced to describe the general BRDF excluding its ideal specu-
lar component. (Figure l).

e Ideal specular

Directionaldifluse

Ideal diffuse

Figure 1: Different components of a general BRDF.

The directional diffuse component of a BRDF is a function of
many variables, includin~ surface finish (roughness), wavelength,
and ~he electrical propert~es of the material. fiis produces a g~eat
variety of behaviors, all of which must be correctly simulated. The
algorithm presented below is capable of incorporating both arbitrary
dkectional diffuse and ideal specular reflection into a global solu-
tion.

2.2 View-independence vs. view-dependence

View-independent methods in general require the storage of illumi-
nation information on the surfaces, both for the purpose of the ilhs-
mination computation and for use by a final ]tiew-deperrdent display
algorithm. In the case of diffuse surfaces, storing a single radiosit y
value per wavelength channel at each sample point is sufficient, re-
sulting in reasonable storage demands. In the same spirit, Immel et
al, stored the directional information regarding the reflected inten-
sity at each point, using a discrete set of directions [1I]. If, however,
the distribution of emitted or reflected light is sharply directional, as
is the case with specular surfaces, storage becomes unmanageable
if accurac y is to be maintained.

On the ~’iew-dependerrt side, distribution ray tracing [5] uses
brute force, tiring many reflection rays to simulate complex BRDFs,
while path tracing [12] follows many paths through the scene to ob-
tain a statistically reliable estimate. Here again, the property that
made standard ray tracing [20] computationally tractable disappears
(namely the restriction to ideal specular reflection that limits the
number of rays), as rays must be tired towards all potential illu-
minators.

The method presented below combines elements of both strate-
gies into a two-pass algorithm. The first pass computes a view-
independent solution for the directional diffuse distribution of light,
includhtg the effect of intermediate specular reflections, and the sec-
ond pass supplies the view-dependent ideal specular effects. This
partitioning of reflectance behaviors resembles earlier two-pass ap-
proaches, but now accounts for all possible transport chains and in-
corporates arbitrary reflectance distributions, not only the extreme
cases of ideal diffuse and ideal specular.

In the following discussion we use the vocabulary of radiosity -
style algorithms for two reasons. One reason is the energy consis-
tency of the radiosity method: a physical consideration necessary

.r-.,
-.+. .

Figure 2: Energy transfer between a patch and a differential area

to obtain accurate simulations. The second reason is the appeal of
the progressive refinement paradigm [3], where useful intermediate
results can be obtained early in the computation.

The notion of radiosity is extended to include the directional dif-
fuse part of the light reflected at a given point. Because it does not
include specularly reflected light, this intensity distribution is fairly
smooth and thus can be stored at reasonable cost (See section 5).
The ideal specular distribution of light is sharply discontinuous and
is too costly to store on the surfaces; it is properly computed “on the
fly” to resolve specular to directional dtfluse transfers.

By using ray-casting, which has proven to lx an effective sam-
pling method to evaluate light transfers, all sample points in the en-
vironment are considered [19]. Furthermore, the use of ray casting
imposes no restriction on the geometry of the environment and al-
lows every illuminator to be sampled adaptively.

The algorithm proceeds by successive steps similar to progres-
sive radiosity “shots”, but directional intensity distributions are con-
tinuously maintained on the surfaces instead of scalar radiosity val-
ues. The ideal specular contributions to the energy transfers are
propagated immediately so they need never be stored.

2.3 Energy transfers for non-diffuse surfaces

Traditional radiosity methods assume an ideal diffuse behavior on
all the surfaces, and express the transfers between surfaces by means
of a form factor [7]. For the general case the amount of light re-
flected from a point can be expressed as follows.

Let us denote by I(TI, ii) the intensity (or radiance, expressed in
Watts per unit solid angle per unit projected area) leaving a surface
at point T!, in the direction of the unit vector d (Figure 2). The
energy dz E emitted by a differential surface area dA I around TI in
the direction Zand falling on a differential surface dAZ around point
Tt is given by :

(dA2 COS &
d2E = Z(T,, r7) (dA] COS&) ,

)
(1)

\ / -
projected area solid angle as seen from TI

(2)

This energy is scattered by the surface at Tz in all directions. By
definition of the BRDF p2 at T2, the intensity leaving T1 in the di-
rection Z, due to the incident light from dAl, is given by :

dI(Tz, ti) = pz(ti, ti) ~ (3)

where F = —Z is the unit vector pointing from 1: to Tl.
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To evaluate the total intensity leaving T2 in direction F, due (o
the reflection of light originating from a finite area .41, Equation (2)
must be integrated across .41 giving :

Equation (4) represents the effect of the light emitted by a partic-
ular surface on the light that is scattered around a point on another
surface. It describes the elementary ,shooring operation of the ra-
diosity method. The traditional radiosity method simplifies Equa-
tion (4) in two ways : tirst, the BRDF p is assumed to be diffuse,

which makes it a constant independent of both Fand rii, and can thus

be moved out of the integral, The diffuse assumption also makes
I(T,, IT)independent of U. Second, the radiosity ml(Tl ) is assumed
to be constant across the surface of the patch. The intensity term
can thus be moved out of the integral, which then becomes purely
geometric and is called the (/jflere~~riu/fiJrn~fucrf~r.

If more general BRDFs are considered for the surface at Tz, how-
ever. the entire integrand must be considered. The next section ex-
plains how a form factor computation algorithm is adapted for that
purpose.

3 General solution for arbitrary reflectance

A detailed description of the algorithm is presented below. The first
pass, or solution pass. is very similar to progressive radiosity, and
the implementation is a straightforward modification of an existing
radiosit y program. The second pass employs a simple ray tracer to
retrieve the directional intensity information stored on the surfaces.

A central assumption of the method is that a directional intensity
distribution 1(;) can be stored and accessed at each vertex of the
environment. We discuss this topic further in section 5, where an
efficient storage scheme is presented.

The method is explained here in terms of a meshed environment,
composed of patches and elements [4], but it could be applied to
radiosity textures [9] as well, if directional distributions are stored
in the texture. The second (view-dependent) pass is described first,
as it is a straightforward application of ray tracing.

3.1 Second pass

Once the view-independent solution has been computed in the first
pass, a simple ray tracing pass is used to supply the view-dependent
portion and create the final image. When rays encounter surfaces
with a directional dl~u.w component, the intensity leaving a surface
is retrieved from the directional distributions computed and stored
in the first pass. The intensity contributed by ideal spa’ukv reflec-
tion is obtained by recursively following reflected rays as in con-
ventional ray tracing. Note that a specular rcflecfance function is
used to attenuate the reflected rays instead of a simple “specular
coefficient”. This allows a precise treatment of specular reflection,
where roughness effects as well as Fresnel reflection are properly
accounted for [8].

3.2 First pass

The first phase of the computation is an extension of progressive
radiosit y, but directional distributions are used throughout the algo-
rithm in place of diffuse radiosities. The basic shooting operation
now uses the directional intensity distribution emitted by the shoot-
ing patch to update the directional intensity distributions of the re-
ceiving vertices according to Equation (4).

This equation can be rewritten as a function of the intensity dis-
tributions rather than scalar values. If p~( F, ) denotes the BRDF for

an incoming direction F as a function of the outgoing direction, and
1(T, ) denotes the intensity distribution at point T, then the effect
of shooting from T, to TZ is

1(7;,)=
/

1( T! , 7i)
Cos (?, Cos 6+

p?( r, )dA I (5)
,~1

r?

The algorithm presented below follows Equation (5) and decom-
poses the integral into a discrete sum. This is similar to the form
factor computation algorithm of Wallace e( a/. [ 19], but modified to
sum complete directional intensity distributions.

Approximation of the integral

To obtain the reflected intensity distribution given by (5). we follow
the computation of the area-lo-dt~eren/ia/-area form factor used in
[19].

Patch .41 is broken into a number of smaller pieces according to
any given sampling scheme, and a contribution (a scalar cle/tu-f{mn-

facror in the diffuse radiosity case. a directional distribution in our
case) is computed for each piece. A variety of sampling strategies
is available. and this formulation is independent of the particular
scheme chosen. For .Y samples, the total integral is expressed as :

(6)

Given sample i, with area AA, centered at T,, the associated con-
tribution to the integral in (4) could be crudely approximated by as-
suming the integrand constant, yielding :

To avoid possible singularities when Tl and T? are close together,
we treat piece i as a finite area, and use the approximation of a disk-
shaped area as in [19]. This amounts to assuming that the emitted
intensity does not vary significantly over the area of the piece. which
is a common assumption of the radiosity formulation. The contr-

ibution of piece i is then :

Introducing the incident energy flux (Watts per unit area) incident
on point T2 from piece i

Equation (5) can be conveniently rewritten as :

h is apparent from equation ( If)) that 1 is simply a weighted sum
of the BRDF at TI over a set of incident directions, Each energy
flux term, MI,, is the product of the intensity leaving a sample print
on the shooting patch in the direction of the receiving vertex and the
de/fa-form:facror for that sample point.
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Do until convergence 
Select Shooting Patch P, 
Call SHOOT( P, , Sgeneric ) 

End Do 

Function SHOOT( Patch Pi , Occlusion function S ) ( 
For each Receiving Vertex Vi 

For each Sample Point TS on Pi 
l Evaluate occlusion c = S(T,, Vi) 
lf(c+O)Then 
1 Obtain the incoming ener,qy&x on Vi 
l Evaluate inten&I, leaving T, tohard Vj, 

using intensity distribution of patch Pi 
l Compute 6F = “delta-form-factor” 0 

between T, and Vj 
l Compute incident energy flux Cp = C. 6F. Id 

0 Compute incident angfes in local axes at Vj 
l Retrieve BRDF p of surface at Vj 

for the incident angte 0 
o Create intensity distribution AX = @ - p 
0 Orient (rotate) 5X in local axes according to 

incident direction 
l Add nz to accumulated and unshot intensity 

distributions Z and U at V, 

End If 
End For 

End For 

Figure 3: Algorithm for first pass. Step D is explained in section 4 

Figure 4: Computation of the energy flux. 

can “see” each other, the intensity leaving the shooting patch is 
obtained from the stored directional distribution of the patch, and 
a delta-form-factor SF (geometric attenuation term) is computed 
(Figure 3-A). The desired energy flux is the product of the inten- 
sity, the delta-form-factor and the attenuation given by the occlusion 
function (Figure 4). 

1 
Z 

Discussion of the algorithm 

The shooting operation that propagates the accumulated energy of 
a patch into the environment is presented as a pseudocode subrou- 
tine (called SHOOT) in Figure 3. Given a shooting patch Pi and 
a receiving sample point (vertex Vj), the following operations are 
needed to update the directional intensity distribution of the vertex : 

Sample points are selected on the shooting patch according to a 
sampling algorithm. Our implementation uses an adaptive sampling 
technique where the number and location of the sample points de- 
pend on the results obtained from previous samples [19]. For each 
sample point, a contribution is added to the reflected intensity dis- 
tribution of the vertex. 

The first task of the algorithm is to compute the incident energy 
flux on the vertex, which is used to weight the BRDF as in equa- 
tion (10). This involves a visibility determination accomplished 
by the occlusion function S. In the simple cases where no ideal 
specular reflection is present, this function simply returns 0 or 1 
to encode occlusion between the sample point and the vertex The 
more complex cases are explained in Section 4. If the two points 
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Figure 5: Orientation of the BRDF. (1) : obtaining the BRDF ac- 
cording to 8. (2) : rotating the BRDF according to 4. 

The second step is to compute the contribution of the current sam- 
ple point to the intensity distribution (Figure 3-B). We start by ob- 
taining a directional distribution representing p2(2;,, .), that is, the 
BRDF for the given incident direction. This is retrieved by means 
of the storage method described in section 5. The BRDF is then 
scaled by the energy flux value 6@%, which results in the distribu- 
tion of reflected intensity LV due to the current sample point. If an 
isotropic BRDF is used, the directional distribution depends only on 
the incident elevation angle 0, and is obtained in a canonical coordi- 
nate system : it must be rotated to be properly aligned with the inci- 
dent azimuth angle 4 in the local coordinate system of the receiver 
(Figure 5). Finally this contribution is added to the unshot intensity 
distribution and the accumulated intensity distribution, much as in 
traditional progressive radiosity (Figure 6). 

Previous work has shown that a complete treatment of light trans- 
fers requires exchanges incorporating different modes of reflection. 
Our shooting operation also includes a complete treatment of ideal 
specular reflection, so that the effect of specular reflection on the 
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Figure 6: Addition of directional distributions. 

intensity distributions is completely evaluated, but no “specular in- 
tensity” is stored (see section 2). Section 4 explains this part of the 
algorithm in more detail. 

4 Ideal specular transfers 

As explained in Section 2, specularly reflected light is not stored 
in the directional distributions on the specular reflector. Instead it 
is immediately propagated to other surfaces where part of it will be 
stored in a directional distribution, and part may again be specularly 
reflected to other surfaces. 

Our implementation is an adaptation of the “image method” [ 161 
to the ray-traced form factor idea : if the specular surfaces are pla- 
nar, one can simply reflect the shooting patch across the surface, 
and shoot light from this “virtual patch” to all receiving vertices 
(Figure 7). Note that the direction for each shot is chosen determin- 
istically based on the position of a vertex; this is not a Monte Carlo 
sampling technique. 

Figure 7: Reflecting the shooting patch on a specular surface. Orig- 
inal vertices from the environment mesh are shown as dots. 

This method has several important benefits : 

l In contrast to the original “image method”, where the entire 
environment had to be reflected into a virtual environment, 
only the shooting patch need be reflected. 

0 The evaluation of one specular reflection on a given specular 
surface can be implemented as a normal shooting step with 
a slightly modified occlusion testing routine. Furthermore, 
since we are shooting directly to vertices, it is possible to re- 
strict the expensive occlusion testing operation to the portions 
of the environment that can potentially receive reflected light, 
using a technique similar to a shadow volume [ 141. 

This allows us to retain benefits of the normal ray-casting 
method, such as adaptive meshing based on the results of a 
shot, and various sampling stategies for the shooting patch. 

l Multiple specular reflections can be implemented by recur- 
sively creating virtual patches. It should be noted that since 
the shooting patch is the only one that need be reflected, there 
is no explosion of the complexity of the scene. 

The current implementation is limited to planar specular surfaces. 
If more complex geometries are needed for the specular surfaces, 
it is no longer simple to construct a modified patch from which to 
shoot. Instead, specular rays can be fired from each receiving vertex 
lying on a specular surface, in a manner similar to [ 171. However, 
the distribution of specular rays then depends on the mesh of ver- 
tices on the specular surface, with no guarantee that all vertices in 
the environment will receive their share of the specularly reflected 
light. A major benefit of the ray-casting approach to radiosity is 
then lost. Furthermore, rays must be properly weighted, taking sur- 
face curvature into account, to ensure a physically correct energy 
transfer. 

4.1 Algorithm 

The pseudo-code algorithm in Figure 3 contains two parts involv- 
ing specular reflection (note that the treatment of specular reflection 
within the first pass occurs entirely within the shooting operation). 

In the general loop that considers all receiving vertices in turn, 
specular surfaces are flagged whenever one of their vertices re- 
ceives some energy from the shooting patch (Figure 3-C). Entire 
surfaces (planar patches) are flagged regardless of their subdivision 
into patches or elements, or their number of vertices. 

Once all the vertices have had their directional intensity distri- 
butions updated with respect to the shooting patch, the specular re- 
flectors are then considered in turn (Figure 3-D). For each specular 
surface, a new patch is created and the occlusion testing function is 
modified in preparation for a recursive call to the shooting proce- 
dure SHOOT. 

The new patch is obtained by reflecting the original shooting 
patch and its attached coordinate system across the specular surface 
A. The new, virtual patch possesses the same intensity distributions 
as the original shooting patch except that they are reflected by virtue 
of the reflected coordinate system. 

A shot from the virtual patch Pi affects only those vertices in the 
environments that can “see” the original shooting patch in the spec- 
ular surface. This is easily accomplished by sampling the virtual 
patch as a normal shooting patch, but using a modified occlusion 
testing routine between the receiving vertex and the sample point. 
Figure 8 depicts the extended occlusion test. 

An occlusion function (called Sd in Figure 3, and described as 
pseudo-code in Figure 9) is first called : this function first looks for 
an intersection between the specular surface A and the ray linking 
the receiving vertex V, and a sample point on the virtual patch TS . 
If no intersection is found, there can be no light reflected in that 
direction, and the function returns. Next, if an intersection point ra 
was found, a normal occlusion test is performed between V, and TS. 
If the two points are visible to one another, the specular refectunce 
of the specular surface is computed for the appropriate reflection 
angle at 7-s. 

If SA returns a non-zero value, the only remaining operation con- 
sists in determining the occlusion between TS and a sample point on 
the original shooting patch, that is, the reflected image of TS (Fig- 
ure 8). This is accomplished by calling whatever occlusion function 
was in use at the current level of recursion : if we are dealing with a 
first specular reflection, the generic occlusion testing routine Sgenetic 
is used. At deeper levels of recursion, a composite function obtained 
by previous chaining operations is used. 

191, 
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Figure 8: Chaining the occlusion functions. Once occlusion be-
tween Vj and ~~ is resolved, the composite occlusion test is per-
formed between TS and the sample point on the original patch, pos-
sibly involving several specular reflections.

The entire operation can be described as chaining together the
current occlusion testing function with the occlusion routine for the
current specular surface. Note that once point TS has been found on
the specultw surface, the order in which the two occlusion tests are
carried out is arbitrary. However, since the occlusion test between
TS and Jj is generally a simpler test, it is performed first.

Function .9A ( Ts , Vj ) {
● Find intersection rs between Vj T.s and A
If ( No Intersection is Found) Then

● Return O
End If
● Evaluate occlusion c = SEeneriJTS,v])
If(C#l J)Then

● Compute specular reflectance p>
● Return c. qj

Else
● Return O

End If
}

Figure 9: Occlusion testing for a virtual patch

5 Storing Intensity Distributions

The main departure of the current algorithm from previous progres-
sive radiosity methods is that unshot and accumulated intensities
now take the form of distribution functions at each vertex instead of
scalar values. Because the number of vertices required for an accu-
rate simulation can be quite large, it is cruciaf that the representation
of these functions be economical in terms of storage. Moreover, the
representation must allow for efficient “shooting” steps, which are
performed many thousands of times in the course of a single simu-
lation.

To fit within tbe framework of progressive radiosity, intensity dis-
tributions must also be computed incrementally by summing the di-
rectional distributions resulting from impinging shots. After accu-
mulating contributions shot from n sample points on other patches,
the intensity distribution at vertex k on an isotropic surface is given
by the following equation.

192
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Here 0,, 0:, and A@, are the energy flux, angle of incidence, and
azimuthal angle of the i ‘th contribution respectively. Here we have
expressed the BRDF parameters as angles with respect to a fixed
local coordinate system at vertex k (Figure 5). The vertical axis
of this coordinate system corresponds to the surface normal at that
vertex though the other axes are arbitrary.

We can interpret Equation (11) as a sequence of four operations
applied to the underlying BRDF, p~, for each contribution arriving
at vertex k: retrieving the directional distribution for a given an-
gle of incidence, scaling and rotating this distribution, and finally
adding it to the accumulated and unshot distributions stored at the
vertex. These steps are shown in Figure 3-B.

From these operations it is clear that the shape of each intensity
distribution depends solely on the BRDF associated with the ver-
tex and not on the distributions from which the energy was shot.
While this constrains the class of distributions that can arise at any
given vertex, the distributions resulting from marry contributions
may nonetheless be quite irregular if the BRDF has a directional
component (Figure 6).

We therefore require a representation that is general enough to
account for this variation while also accommodating the steps in Fig-
ure 3-B. High-order continuity is also a requirement, since a discrete
description, such as the global cube [1I ], can result in severe alias-
ing problems. Furthermore, derivative discontinuities in the inten-
sity distributions can cause artifacts such as Mach-banding on the
illuminated surfaces, even if a perfectly accurate transfer of light is
computed.

In the following sections we describe an approach based on
spherical harmonics which meets these requirements. Using this
mechanism we can compactly and accurately represent arbitrary
BRDFs and their associated intensity distributions and efficiently
perform all of the operations required for shooting and incremen-
tal creation. It is therefore a nearly ideal mechanism for storing the
intensity distributions for this global illumination algorithm.

5.1 Approximation using Spherical Harmonics

Spherical harmonics form an orthogonal basis for the space of func-
tions defined over the unit sphere [6]. This infinite collection of ba-
sis functions is typically denoted by Yl,~(f3, +) where O s 1 < m
and – 1 < m < 1. In direct analogy with Fourier series in one
dimension, any square-integrable function, f(fl, ~), can be repre-
sented by an infinite series of the form

(12)

where the coefficients are given by

The practical value of this is that a finite number of terms can be used
to approximate relatively smooth functions defined on the sphere.
This allows us to store intensity distributions as a vector of N coeffi-
cients, where N depends upon the characteristics of the underlying
BRDF and the desired accuracy of the approximation. A diffuse,
smoothly varying BRDF will typically require fewer coefficients
than a very directional one.
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To construct such a representation for the intensity distributions
we begin by approximating the BRDFs in terms of spherical har-
monics. In previous work, Cabral e~al, have used a similar approx-
imation for the purpose of simulating diffuse and glossy reflections
of the environment [2]. In the present work the dependence of the
BRDF on the angle of incidence is accounted for by representing
each spherical harmonic coefficient as a function of O’”.That is, for
every BRDF we constmct a collection of scalar functions, 131,m(,),
such that

1=0 m-l

In this way we can model the behavior of a BRDF over the entire
range of incident angles. In our implementation the ~{,”, functions
are stored as one-dimensional cubic splines: one for each spheri-
cal harmonic in the BRDF approximation. The cos @factor is in-
cluded at this stage because it reduces evaluation time and tends
to reduce ringing in the approximation. Figure 10 shows several of
these curves for slightly rough aluminum. Additional details on this
approximation can be found in Appendix A.

in the BRDF approximation. These coefficients reappear in the in-
tensity distributions, however, because the symmetry is destroyed
when the BRDFs undergo arbitrary rotations. This can be seen in
step 3 of figure I 1.

Initialize: C’/,,, -0

For Each Contribution (0, f?”, A@) arriving at Vertex k

For Each index pair, (1, m), used in the approximation of p~

1. Interpolate: .4~,,r,+ @~(13’”)

2. Scale: A’~,,,, + @ Al,,,,

3. Rotate:
[1

A“I. m

A“I. -”,
+ A’/.”,

4. Add:
[ $k:: 1 + [ $’:

End For

End For

cos(rn A@)
sin(m Ao)

1

[1

A“(, rn
+

.4’’ [.- m

I
Figure 11: Creating an intensity distribution, When m = O, steps 2
through 4 reduce to C~() - C’$~)+ @.41,0.

o X14 rr/2

Angle of Incidence

Figure 10: Seven spherical harmonic coefficients for the BRDF of

slightly rough aluminum plotted as functions of the incident angle.

5.2 Operations on Spherical Harmonic Coefficients

Given a BRDF approximationof the form in equation (14) we can
constructa correspondingintensitydistributionusing Equation( 11).
For every intensity contribution we first evaluate the BRDF at the
given angle of incidence, W, by computing the spherical harmonic
coefficients of the resulting directional distribution. This consists of
evaluating an interpolating spline, B1,~( .), for each cmfficient.

Next, we scale the distribution by multiplying each of these co-
efficients by the energy flux. The third step, rotating the distribution
about the vertical axis, is made simple by the following property of
spherical harmonics (shown in real form).

[:::~::::l=r:::::::)lKrn:e:l
This propefiy follows immediately from the definition of spherical
harmonics given in Appendix A. Rotation about this axis is partic-
ularly straightforward, and the usual symmetry of the BRDFs with
respect to the incident plane simplifies it even further. Because neg-
atively subscripted spherical harmonics are odd functions with re-
spect to O, we are guaranteed that all such coefficients will vanish

As the fourth and final step we add the resulting distribution to
the current total by adding the corresponding coefficients. Thus, we
have rephrased each of the steps in Figure 3-Bin terms of operations
on spherical harmonic coefficients. The actual steps are shown in
Figure 11 where the C~rn denote coefficients of an intensity distri-
bution at vertex k.

It is apparent from these operations that summing scaled and ro-
tated instances of a single representation introduces no additional
coefficients once the symmetry has been broken. Therefore, the
storage required for a gi\’en intensity distribution does not gro~’ as
intensity is accumulated. Furthermore, the intensity distributions
retain the full accuracy of the original BRDF approximations.

To perform the shooting step we must evaluate an intensity dis-
tribution in directions toward all vertices to which intensity is to be
shot. This requires evaluating the YI,,,, functiortsassociatedwiththe
coefficients of the intensity distribution in each of these directions.
These evaluations can be performed efficiently using the recurrence
relations shown in Appendix A.

6 Results

Solutions have been computed for several test environments to
demonstrate the feasibility of the simulation for wbitrary reflectance
distributions. The resulting pictures exhibit all the expected visual
effects produced by directional diffuse as well as ideal specular en-
ergy transfers.

Figure 12 shows a side by side comparison of a simulated envi-
ronment with a scanned physical environment. The scanned picture
was obtained by scanning through three colored filters, where each
channel is spectrally integrated over a large range of wavelengths.
Thus, the comparison with a simulation computed with three well-
defirred monochromatic channels can only be qualitative (for exam-
ple the general color tone is noticably different). However, impor-
tant features such as the structure of the shadow on the left, or the
illumination of the ceiling via specular reflection from the top of the
tall box, appear to be very similar. A related research project is un-
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Figure 13: First-surface  mirror

Figure 16: Rough  Aluminum

Figure 14: Smooth Aluminum box #I Figure 15: Smooth Aluminum box #2

In figure 13, the tall box is covered  with perfectly  smooth aluminum, making it a first surface
mirror.  In figure  14 the surface has been roughened slightly. Note that ideal specular  effects
are still very strong, both in the reflected image on the box, and in the upper left comer  of the
environment,  where light is reflected by the top of the tall box. The directional  nature of the
diffused light can also be seen on the front face of the tall box. In figure  15,  the box is made
somewhat rougher, and more of the light is being reflected in a directional  diffuse manner.  Note
that  the specular  reflection is stronger  on the left face of the box than  it is on the front face
because of the different incident angles for rays reaching the eye. This  is a result of the model
used to predict  the specular  reflectance [8] and is observed on real materials.  Figure 16 shows
an aluminum box that is rougher still, and the ideal specular  component of the reflectance has
almost disappeared.  Note  that there is still a concentration  of light in the upper left comer  of
the scene, because light reflected by the top face of the box has a definite directional  character.
Figures I7 and 18 show  the results of the algorithm run on more complex scenes. In figure  17
the aluminum bowl and cupboard doors are directional  diffuse reflectors, and in figure  18 the
telephone, the drawer handles and the blackboard  frame  are made  of different varieties  of alu-

Figure 17: Kitchen with directional  diffuse cupboards and mixing
bowl.  Note  the highlights  on the cupboards.

Figure 18: Desk with aluminum phone and drawer handles. Note the
caustics  on the back wall.
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using the complex formulation of spherical harmonics.
This  method  suffers from several limitations  inherited from the

progressive  radiosity  method. For example,  the intensity distribu-
tion is assumed to be uniform across a patch  at shooting time, even
though  more detailed  information might already  be available  from
the subdivision  of the patch into elements. Better sampling strate-
gies are also needed. However, we believe that the formulation of
the global illumination  problem in terms of directional  distributions
attached to the surfaces, combined with a physically  consistent treat-
ment  of ideal specular reflection, allows a truly general solution to
be computed for arbitrary  reflectance distributions.

Figure 12: Comparison of a simulation with a scanned image.

der way to develop precise radiometric  measurement procedures  so
that  accurate quantitative  comparisons  can be made [IO].

Figures I3 to I6 show  simulations of a simple environment  with
varying surface properties. The tall box is made of aluminum with
increasing roughness throughout the sequence.  Figures I7 and I8
demonstrate the method  applied to complex scenes  (consisting  of
34400  and 30200  elements, respectively).  The last two pictures re-
quired an average time of 5 minutes per radiosity  shot, on an Apollo
DN 10000  computer  with 64 Megabytes of main memory.

In all these simulations,  between 80 and 133 coefficients  were
used to approximate the BRDFs.  resulting in intensity distributions
of I48 to 254 coefficients. The  number of coefficients in the latter
increases due to loss of symmetry as described in section 5.2.  The
number of coefficients was determined for each  material  in order to
achieve a given precision in the approximation  of the BRDF  over the
entire range  of incidence angles,  Ideal diffuse surfaces require only
one coefficient, and in general the more directional  the BRDF,  the
more  coefticients  are required to account for the higher frequencies
in the shape.

In all cases the intensity distributions  have been  stored using
fewer than  I K bytes at each vertex, while the error in the approxima-
tion was kept to a few percent. For any fixed number of coefficients,
however,  the approximation  will generally begin to degrade as the
BRDF becomes increasingly  directional.  Fortunately, according to
physical optics, this  will be somewhat compensated by the fact that
the ideal specular component. which  is handled separately, begins
to dominate in this case IS]. Therefore, even  for nearly-perfect  mir-
rors, we can maintain a reasonable accuracy in terms of energy bal-
ance  without increasing storage.

7 Conclusions and future directions

An algorithm for the simulation of global illumination  with  arbi-
trary reflectance behaviors  was presented. A general treatment of
ideal  specular  m directional  di#iise transfers was introduced, allow-
ing all chains of reflection to be effectively  simulated. An efficient
method using spherical harmonics to store the directional  diffuse in-
tensity distributions  has been  demonstrated,  which  permits a given
accuracy to be maintained with a fixed amount of storage per vertex
throughout  the simulation.

Other features could be added easily to the system. An extension
to anisotropic  reflectance models would  require an extra level of
interpolation  to obtain the BRDF, since it would depend on both  in-
cident angles (elevation and azimuth). This  can be accomplished
by using  a two-dimensional  spline surface instead of the current
one-dimensional  spline function for the spherical harmonics coeffi-
cients.

Polarization  effects that  are predicted by general reflectance mod
els [8] could also be incorporated into the system very naturally, by
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Appendix A: More on spherical harmonics

In real form, the normalized spherical harmonics are defined by

{

Ivl,mPf,m(cos e) Cos(rnd) ifm>O

K,m(o, @)= IVl,clP/.ll(cos e)/ti ifm=O (15)

N~,m Pl,lml(cos @)sin(lml@) ifrn <0

where the normalizing constants, IVl,~,, are given by

‘trrL=fw% (16)

and the Pl, n, (z) factors are associated Legendre polynomials. The
latter can be evahrated with the recurrence relations

Pmm(x) = (1 – 2m)/=Pm_l,m-l(x)

P“l+l.m(z) = z(2rrl + l)pwt. m(x)

PI,,,,(X) = z (~) ‘1–l. m(~) – (*) PI–Z, WL(Z)

beginning with F’o,o(z) = 1 [15]. Applying these in
conjunction with recurrence relations for generating sin(~),
sin(2@), . . . . sin(rn~) and COS(0), cos(2q5), . . . . cos(rqb), it is possi-
ble to evaluate spherical harmonic expansions using approximately
10 floating point operations per coefficient and no trigonometric
function evaluations whatsoever.

Evaluation of the spherical harmonic functions is required for
two pu~ses: shooting from an intensity dktnbution and creating
the initial BRDF approximations. The former is a straightforward
application of Equation 12 while the latter is more complicated and
is performed once per distinct BRDF. To approximate an isotropic
BRDF for all incident angles, we first compute

forj=O, l,... qwhere O=O~ sO; ~ . . ~,0~ = n/2.
Then the functions EJI,~ can be approximated by cubic mterpoiating
splines through the the points (ON,b~,,n ), (O?, b~,m ),. . . . (o:, b~,m ).

For each distinct BRDF, p, we select q as well as a specific set of
spherical harmonic coefficients to achieve the desired accuracy of
approximation over all incident angles. The value of q affects the
accuracy of the interpolation but does not otherwise influence the
intensity distributions. In contrast, the number of coefficients used
in the BRDF approximation directly determines the sorage required
for the intensity distributions. It is therefore important to keep this
number reasonably small.

If the BRDF that we wish to approximate is only defined on the
upper hemisphere, as with an opaque material, we extend the func-
tion to the lower hemisphere before computing the approximation.
We do this in such a way that the complete BRDF satisfies

(40’”.0,4) = –p(fY”,7r– t?,qi), (18)

This introduces a vertical symmetry which has the advantage of
eliminating all spherical harmonics for which 1+ m k even. Italso
maintains C 1continuity between the upper and lower hemispheres
when the function is zero at the equator, a corrdhion that is guaran-
teed if the cos O factor is included as described in section 5.1.


