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Abstract

This paper introduces a new method for surface recon-
struction from multiple calibrated images. The primary
contribution of this work is the notion of local prior to com-
bine the flexibility of the carving approach with the accu-
racy of graph-cut optimization. A progressive refinement
scheme is used to recover the topology and reason the vis-
ibility of the object. Within each voxel, a detailed surface
patch is optimally reconstructed using a graph-cut method.
The advantage of this technique is its ability to handle com-
plex shape similarly to level sets while enjoying a higher
precision. Compared to carving techniques, the addressed
problem is well-posed, and the produced surface does not
suffer from aliasing. In addition, our approach seamlessly
handles complete and partial reconstructions: If the scene
is only partially visible, the process naturally produces an
open surface; otherwise, if the scene is fully visible, it cre-
ates a complete shape. These properties are demonstrated
on real image sequences.

Keywords: Surface Reconstruction, Local Prior, Voxel
Carving, Graph Cut, Complete/Partial Reconstruction.

(a) input image (b) voxels (c) patches (d) surface (e) input image (f) surface
Figure 1. Our method reconstructs an object from several images. Two sample input images are shown (a,e). We use a carving
approach to estimate the global shape of the object (b). Within each voxel, a patch is built using a graph cut (c). These patches are
stitched together to form the final geometry (d,f). We ensure that the resulting surface is smooth although it has been reconstructed
in several steps. Note that a head is a difficult subject due to its non-Lambertian aspect (skin, hair).

∗ARTIS is a team of the GRAVIR lab (UMR 5527), a joint unit of
CNRS, INRIA and UJF.

1. Introduction

Three-dimensional reconstruction from multiple images
has numerous applications in the domains of virtual reality,
movie making, entertainment, and so on. Thus, a lot of
efforts have been made leading to a wealth of quality work.
Numerous techniques have been introduced in the domains
of camera calibration and surface reconstruction. Our work
focuses on the latter, as we believe that several points can
be improved to acquire the scene geometry.

The most precise methods such as the technique of
Hernández and Schmitt [11] yield an accuracy comparable
to a 3D scanner. However, they require a cumbersome setup
(high resolution images and a turn-table) and induce a long
computation time (several hours). On the other hand, flexi-
ble algorithms such as the well-known Space Carving [21]
lack precision because they do not regularize the underly-
ing problem. Thus, one naturally assumes some additional
hypothesis – or, formally speaking, one adds a prior to the
optimization scheme. Classically, the assumption is that the
object is “smooth”. There are several mathematical transla-
tions of this intuitive hypothesis. It leads for instance to the
Level Set technique [12]. However, such a choice of prior



yields overly smooth results. Graph cuts [19, 28] have re-
cently proposed another interesting option that better re-
spects the object features. But then, the prior formulation
is not intrinsic i.e. it depends on the space coordinate sys-
tem. Thus it precludes the algorithm from handling general
surfaces – only disparity maps or equivalent representations
can be manipulated.

This paper presents a new interpretation of the smooth-
ness assumption leading to a local prior. We virtually cut the
surface into pieces (the patches) and we explicitly limit the
scope of the prior to a patch instead of the whole surface.
This approach is more versatile and makes it possible to
combine the flexibility of carving with the accuracy of the
graph cut. Another consequence is the possibility to only
recover a partial shape if some part of the scene remains
hidden in the entire sequence. Switching between complete
and partial geometry is seamless.

Overview Our technique is directly inspired by Space
Carving [21]. The process starts from a bounding volume
of the object and a set of calibrated images. The volume
is first discretized into voxels. Then the voxels are consid-
ered sequentially. For each voxel, we try to reconstruct a
patch using a graph-cut optimization. If the “quality” of the
resulting patch is low, it is discarded along with the corre-
sponding voxel. However, if the reconstruction is success-
ful, then the patch is aggregated in a distance field with the
already built patches. The process is iterated until the whole
surface has been recovered.

It is important to emphasize that the voxels are used only
to estimate the visibility and the topology, whereas the ac-
tual object surface is defined by the patches. The shape res-
olution is not directly linked to the voxel size. Thus we
typically use voxels that are one order larger than the ones
in the classical carving techniques.

Contributions The contributions of this paper are as fol-
lows:
Local Prior: We introduce a new interpretation of the
smoothness assumption. The scope of the corresponding
prior is only local.
Combination Carving/Graph Cut: This new prior leads to
an effective implementation that enjoys both the flexibility
of carving, and the accuracy of graph cut.
Complete/Partial Reconstruction: Without any adaptation,
our algorithm can retrieve both complete shapes (when the
whole scene is visible) and open surfaces (when some re-
gions are hidden).

2. Previous Work
Carving Seitz and Dyer [29] have popularized the use
of a discrete volumetric representation (the voxels) in con-
junction with a color criterion, the photo-consistency. Ac-
cording to the Lambertian assumption, a surface point must
have the same color from any view direction. The voxels

are then examined one by one and the photo-inconsistent
ones are carved out. Many improvements have been pro-
posed, such as arbitrary camera positions [21], robustness
against noise [20], transparency [31], probabilistic interpre-
tations [5, 10], other voxel shapes [34], and so on.

Carving is flexible (any camera position, any object
topology) but it has a drawback: The consistency issue
is considered without any prior, leading to an ill-posed
problem. It has been shown that a set of given images
can correspond to several shapes with equivalent photo-
consistency, and that the result is the largest one among
these shapes [21]. For untextured objects, it may signifi-
cantly differ from the actual geometry. In addition, the ac-
curacy degrades when the scene is not Lambertian.

Level Sets Level sets is a flexible method to optimize
functionals expressed as a weighted minimal surface:∫∫

w(x) ds (1)

A time-evolving surface S(t) is represented at time t by
the zero level set of an implicit function φ(x, t), i.e.
φ(S(t), t) = 0. To minimize Functional (1), the surface
evolves according to a steepest-descent process. From the
Euler-Lagrange formula, φ is driven by a partial differential
equation (PDE):

∂φ

∂t
= ∇w · ∇φ + w ||∇φ|| div

∇φ

||∇φ|| (2)

Faugeras and Keriven [12] have cast the reconstruction
problem into this framework. To regularize the problem,
they assume the object to be smooth. This corresponds to
the minimal surface formulation of the level sets (smooth
surfaces have smaller area). The advantage is that arbitrary
genus can be handled. The w function in Equation (1) ac-
counts for the texture correlation by computing the zero-
mean normalized cross-correlation (a.k.a. ZNCC) between
pairs of cameras {Ci, Cj}. For a 3D point x, the ZNCC
value Zij(x) is defined with the projections pi and pj of x
in cameras Ci and Cj . For an image point p, Īp and σp de-
note the mean and standard deviation of the intensity in the
neighborhood Np. Using π to account for the perspective
distortion between the two cameras (i.e. π(pi) = pj and
π(Npi

) = Npj
), we finally get:

Zij(x) =
1

|Npi
|2σpi

σpj

∑
q∈Npi

(Iq − Īpi
)(Iπ(q) − Īpj

)

(3)
The method has been extended with contours [16], with

non-Lambertian materials [17], with texture, contours and
3D points [23,24], with open surfaces [30], and so on. They
can all recover high-genus objects but, because of the high-
order derivatives (Eq. (2)), sharp features such as corners
and creases are not captured. In addition, different algo-
rithms are required to handle complete [12] and partial [30]
reconstructions.



Graph Cut Roy [28] uses the network-flow theory [1] to
build disparity maps. They design a weighted graph such
that computing its minimum cut leads to an exact solution
of a functional of the following form (c(p, d) is the consis-
tency at a pixel p and disparity d, dp the disparity of p, and
A4 the set of the 4-connected adjacent pixels):∑

p

c(p, dp) + α
∑

(p,q)∈A4

|dp − dq| (4)

This functional models a trade-off controlled by α between
the consistency (left term) and the regularity (right term).
Other approaches have been then proposed to use: more
sophisticated functionals [19], minimal surfaces [6], and
depth fields [26]. The strength of these methods is their
global convergence [6,26] or at least effective local conver-
gence [4,32], whereas level sets reach only a local minimum
whose characteristics are unclear. This convergence leads
to higher accuracy. However, these methods are limited by
their parameterization of the disparity d(x, y) [6, 19] or the
depth z(x, y) [26]. Intrinsic volumetric studies [2, 18] exist
but their use for 3D reconstruction seems nontrivial.

One of our contributions is to adapt the graph-cut tech-
nique to volumetric reconstruction. We had the choice
between the disparity map approach [6, 19] with precise
boundaries, and the depth-field one [26] with accurate
depth. Since depth is more important in our approach than
boundaries, we employ the latter technique that minimizes
the following functional for z(x, y) (αx and αy modulate
the regularization term, see [26] for details):

∫∫ 
c


 x

y
z


+ αx(x, y)

∣∣∣∣∂z

∂x

∣∣∣∣ + αy(x, y)
∣∣∣∣∂z

∂y

∣∣∣∣

 dx dy

(5)

Local Methods Fua [13] exposes a technique to recover
the scene geometry using particles. However these particles
are small planar disks, capturing few details.

Hoff and Ahuja [14] construct a disparity map by gath-
ering several patches. Compared to our patches, the shape
is limited to quadratic functions. Furthermore, the patches
are not self-sufficient; they do not cover the whole scene.
An interpolation step is needed to produce the final shape.
Carceroni and Kutulakos [7] extend the approach to motion
and reflectance recovery. However the geometric accuracy
is still limited by the patch shape.

Zeng et al. [33] build patches anchored on reliable points
provided as input. Their approach uses these points to “in-
terpolate” a surface. Such points may not be available in a
number of cases, impeding the use of this method. In com-
parison, we rely only on image consistency.

3. Motivation and Definition
Study of the Functional Let F be a functional that rep-
resents the reconstruction goal. F always contains a term
C related to the consistency to ensure that the final surface

S matches the image content. With a consistency function
c (e.g. photo-consistency or ZNCC) and a surface measure
dµ, this part can be written as:

C =
∫∫

S
c dµ (6)

Using dµ = ds to measure the surface area leads to the
level set functional (1). The problem is then well-posed but
the sharp details of the scene are not captured.

Another option for the regularization is to add a smooth-
ing term S (i.e. F = C + S). To do so, we parameterize
S as a depth field z(x, y) (or d(x, y) for a disparity map)
and we introduce a function s that measures the variations
of z. Observing Equation (5), this induces the plane mea-
sure dµ = dx dy:

S =
∫∫

S
s(z) dx dy (7)

This approach yields higher accuracy but it depends on the
xyz coordinate system. Since the integrals (6) and (7) con-
sider the whole surface S, this inherently limits the repre-
sentable surfaces. Intuitively, splitting S into small pieces
makes it possible to define S with several depth fields ac-
cording to different coordinate systems.

Patch Definition A patch P is a connected subset of S.
Our goal is to retrieve a set {Pi} such that

⋃Pi = S rep-
resents the object shape. For each patch, a local coordinate
system xiyizi is defined to parameterize Pi as zi(xi, yi).
Local Prior Using this definition, we can express the
smoothness assumption locally. Instead of applying the
smoothness term S on the whole surface at once, we apply
it on each patch separately:

S =
∑

i

∫∫
Pi

s(zi) dxi dyi (8)

The integration is now split on several domains Pi, intro-
ducing a coordinate system xiyizi for each of them. This
overcomes the parameterization limitation of the global ap-
proach since S is now represented as an assembly of depth
fields instead of a single one. The same treatment can be
applied to C. Hence, with f = c + s, we can summarize the
transformation from a global formulation to a local one:

F =
∫∫

⋃ Pi

f dx dy � F =
∑

i

∫∫
Pi

f dxi dyi

(9)
This local expression shows that the patches can be opti-
mized independently. In practice, we minimize Equation (5)
for each patch using the depth-field scheme [26].

Caveats The points near the patch border have a trun-
cated neighborhood and are likely to be erroneously recon-
structed. Thus, we use patches that are slightly larger than
the voxels so that they overlap, and we discard the border
regions. We also have to ensure that the joints between



patches are continuous since the optimizations are indepen-
dent. Discarding the border points and ensuring the con-
tinuity will be handled during the stitching step. Finally,
the coordinate systems xiyizi have to be determined. Since
each patch is a depth field zi(xi, yi), an appropriate choice
for the zi axis is the surface normal at the location of the
patch. The orientation of xi and yi has no major influence.

4. Reconstruction Algorithm

We now expose a practical algorithm to reconstruct the
patches Pi using the local prior. We use a carving approach
to approximately locate the object surface S. The fine ge-
ometry is retrieved using a graph-cut optimization.
Initialization The algorithm starts with a set of calibrated
images. If the background is known, we can extract the
object contours and use the visual hull [22] as a bounding
volume (this initialization is akin to [11, 15]). Otherwise,
we require the user to provide a bounding box. This volume
is then discretized into cubic voxels.

4.1. Voxel Carving

We use a classical carving strategy: The voxels are con-
sidered one by one and the inconsistent ones are removed.
Each time, the visibility is computed from the current voxel
set (for that purpose, we use the effective technique de-
scribed in [8]). The process is iterated until no more voxels
can be removed. In this global framework, we define our
own carving criterion and ordering scheme.
4.1.1 Carving Criterion
Instead of computing the photo-consistency of a voxel to
decide whether it is carved, we reconstruct a patch within
it. We run a graph-cut process; it results in a patch P and
a functional value F = C + S. The voxel is kept if the
patch consistency C is less than a threshold τ , otherwise it
is carved. The rationale is that the consistency of P is high
(i.e. C is low) only if P is part of the surface. This criterion
is more robust than photo-consistency because it is based
on a whole surface piece instead of a single point. For the
same reason, τ is relatively easy to set in practice.

Remark that the carving decision does not involve S

since smoothness is not an issue at the voxel level.
Normal Estimation To define the coordinate system, we
need a normal estimate. We first start by fitting a plane to
the current voxel and its adjacent surface voxels to get n0

(shown as short lines on Fig. 1b, 4b, 7b). Then we build
a patch P(0) from which we estimate a new normal n1. If
n1 �= n0, we build P(1) using n1. We iterate until nk+1 =
nk. In practice, this occurs in 2 or 3 steps. We define P =
P(k) to compute the carving criterion F(P). In inconsistent
regions, this may not converge. Therefore, if the process is
not stabilized after kmax iterations, the voxel is considered
inconsistent and carved.

Consistency Function For the c function (Eq. 5), we use
the ZNCC value (Eq. 3) computed from the two most front-
facing visible cameras Ci and Cj according to the normal
estimate. For a 3D point x, we wish to choose a consistency
function c(x) ≥ 0 that decreases when the match quality in-
creases, which can be computed by c(x) = arccos(Zij(x)).
This corresponds to the interpretation of ZNCC as a dot
product. In our experiments, it better discriminates incon-
sistent points than a linear inversion such as 1 − Zij .

If the visual hull V is available, we add a term v to con-
strain the patch within V: v(x) = 0 if x ∈ V , ∞ otherwise.
In this case: c(x) = arccos(Zij(x)) + v(x).

4.1.2 Ordering Scheme
ZNCC is more reliable when computed with front-facing
cameras because it limits the perspective distortion. There-
fore, we use the following strategy to reduce the number
of voxels processed with grazing view directions: For each
voxel, we determine the angles with the normal of the two
most front-facing unoccluded cameras. The voxels with
small angles are considered first. The underlying idea is that
processing the reliable voxels first is likely to carve away in-
consistent voxels that were occluding front-facing cameras
for other voxels. In other words, this ensures that we always
consider the voxel with the “most reliable” ZNCC evalua-
tion according to the current shape estimate.

Once a voxel is found consistent, it is marked “definitely
visible” and it is no longer examined by the carving process
(except as a potential occluder). The corresponding patch is
merged into the surface (cf. the following section).

4.2. Surface Construction

To collect all the patches and construct the final surface,
we use a technique inspired by Curless and Levoy [9]. It
has the advantage of allowing for incremental updates with
a fine control over the fusion. It relies on two structures:
a signed distance field D and a volumetric weight function
W ≥ 0, both sampled on a regular 3D grid. Each new
patch locally modifies D and W . At the end of the pro-
cess, the surface is extracted as the zero level set of D using
the Marching Cubes technique [25]. W can be seen as the
“history” of the construction of D; each patch “records its
influence” in W . Thus we adapt the Marching Cubes al-
gorithm to cope with partially defined distance field: If a
grid cell contains an uninitialized or null W value, then no
triangle is output.

In practice, for each new patch P , we compute a dis-
tance field DP and a weight function WP restricted to the
neighborhood of P (i.e. DP = WP = 0 outside the neigh-
borhood, cf. Fig. 2). DP is the signed distance to P . WP
is related to the confidence we have in P , its design is dis-
cussed later. At each grid vertex x, D and W are updated
as follows:
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D <0

D >0

P
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D =W =0P P
Figure 2. The
patch P . The
dashed lines de-
limit the neigh-
borhood. o is
the center of P ,
and n the lo-
cal estimation of
the normal.

D(x) =
W (x)D(x) + WP(x)DP(x)

W (x) + WP(x)
(10a)

W (x) = W (x) + WP(x) (10b)

The equations (10) show that D(x) is the mean of all the
patch distances DPi

weighted by WPi
.

4.2.1 Patch Weight
The previous remark outlines the importance of WPi

in de-
termining the influence of Pi on the final result. As dis-
cussed previously, there are two major issues: discarding
the unreliable points near the patch border, and ensuring
the continuity across the patches. Both objectives are ful-
filled by using a WPi

function that smoothly decreases to
0 near the boundary. Thus the border points have a neg-
ligible influence compared to the other patches (remember
that the patches overlap). Continuity is guaranteed since the
weights smoothly cross-fade.

Formal Study To achieve the surface continuity, from the
Implicit Function Theorem, it suffices that:
(1) D is C1 continuous and,
(2) ∇D is not null when D = 0.

From Equations (10), if WPDP and WP are C1, then Con-
dition (1) is fulfilled. Condition (2) is not as direct. Theoret-
ically, the gradient could vanish, but it is very unlikely to oc-
cur in practice. First, ∇(WPDP) = DP∇WP + WP∇DP
can vanish near the border because WP = 0 and ∇WP = 0
but it does not affect ∇D since the patches overlap. Then,
within the patch neighborhood, ∇DP cannot vanish be-
cause DP is a signed distance function. But merging several
patches at the same location may cancel the gradient ∇D.
In practice, the zeros of D are near the zeros of DP , thus
DP∇WP is negligible compared to WP∇DP . The gra-
dient cancellation would therefore imply that two patches
have been reconstructed at the same place with their nor-
mals forming an angle greater than π

2 . During our experi-
ments, such an extremely large error never happened.

Implementation For WP , we use the patch center o to
define (see plot on Figure 3):

WP(x) =




(
1 − ||x−o||2

σ2

)2

if ||x − o|| < σ

0 otherwise
(11)

We set σ such that for any point p on the border of P ,
||p − o|| > σ. In this condition, Condition (1) is fulfilled:
WP is C1, and the border discontinuities of DP and ∇DP
are canceled by WP = 0 and ∇WP = 0.
4.2.2 Weight Refinement
The previous construction is independent of the input im-
ages: WP depends only on the patch size. We refine this
approach with W �

P by accounting for the “quality” of the
points: Consistent points are given more influence. In prac-
tice, this further reduces the influence of the border points
if they are erroneous. A direct implementation could be:
W �

P = max(0, Z) WP (max(·) keeps it non-negative and
cancels the gross errors). But for real images, ZNCC is un-
likely to be C1, thus Condition (1) would be violated.

To address this point, we smooth ZNCC while preserv-
ing its overall structure (we should not lower the influence
of consistent regions close to inconsistent areas). We ap-
ply an edge-preserving filter inspired by Perona and Ma-
lik [27]. Using the xiyizi coordinate system of Pi, we
consider ϕ(xi, yi) = max(0,Z (xi, yi, zi(xi, yi))), the re-
striction of max(0,Z ) to Pi. Similarly to [35], we assume
that surface areas with the same color are coherent regions.
Thus, we preserve the edges where the color changes (we
build a color map of Pi by averaging the colors seen by
the ZNCC cameras). The color intensity gradient ∇I then
yields an effective and computationally efficient estimation
of the edges. Putting this together with a stopping function
g, we obtain:

∂ϕ

∂t
= div

(
g(||∇I||)∇ϕ

)
(12)

Note that the g function has to be designed to slightly
smooth the edges in order not to create discontinuities. Thus
Condition (1) is satisfied and the smoothing mainly occurs
within regions of the same color. Finally we extend ϕ to
3D: Φ(xi, yi, zi) = ϕ(xi, yi) and define: W �

P = ΦWP .
This refinement improves the accuracy of the seams be-

cause it accounts only for the most consistent patch whereas
a direct blending would loose details by averaging several
different contributions. Moreover, it makes the boundaries
of the open surfaces clean since the gross errors in the patch
borders are discarded.

4.3. Summary and Discussion
At a coarse level, our algorithm behaves like a carving

technique except that we use the patch consistency C in-

 0

 1

 0 σ

Figure 3. x �→(
1 − x2

σ2

)2

if |x| <

σ, 0 otherwise. This
function is also known
as the Tukey function.



(a) input image (b) voxels (c) patches (d) surface (e) input image (f) surface
Figure 4. This gargoyle has two holes (above and under its arm). The carving step correctly recovers this topology (b). Then the
patches (c) produce a fine surface (d,f). The back of the stick (d) is not as accurate as the rest of the model because the gargoyle
body occludes most of the cameras. The consistency is evaluated from grazing views which suffer from perspective distortion. We
however encourage the reader to compare the above results with the ones of the carving-only techniques [20,21] that work from the
same images. The precision is dramatically improved.

stead of the photo-consistency, and a visibility-driven order.
At a fine level, we use a graph cut to build the patches by
minimizing the functional (5) within each voxel. The opti-
mization scheme [26] reaches a global minimum of Equa-
tion (5). In this respect, the patches are optimal. The con-
sistent patches are then incorporated in a distance field. We
have shown that, with a proper update scheme, this pro-
duces a continuous surface. Finally when no more consis-
tent voxel is found, the surface is extracted from the distance
field.

It is important to highlight that the same algorithm han-
dles complete and partial reconstructions. If the images
cover the whole scene, the patches form a closed shape.
Otherwise, if some regions remain hidden, an open surface
is produced seamlessly. The Marching Cubes algorithm
naturally creates a boundary when it reaches an uninitial-
ized domain.

5. Results
Implementation Details The presented results use real
images. ZNCC is computed with a 11 × 11 window. The
patch size is set to twice the voxel size to ensure a suffi-
cient overlap. To avoid grazing views, we ignore cameras
whose angle with the normal is greater than π

3 . The dis-
tance field D has a resolution 43 times finer than the voxel

(a) space carving (b) level set (c) our method
Figure 5. Comparison. Space Carving [21] fails to build
a satisfying approximation (a) (to achieve a fair comparison
without aliasing, the voxel volume has been triangulated us-
ing the Marching Cubes [25]). The level-set technique [23]
builds a less detailed geometry (b) compared to ours (c);
e.g. observe the chin, eyes and forehead.

grid. The graph-cut process is run on a grid of resolution
153. We stop the normal estimations after kmax = 4 itera-
tions. In Equation (12), g(||∇I||) = max(0, 1−||∇I|| /16)
with I ∈ [0; 255]. We use the graph-cut code of the Boost
library1 which leads to computation time between 20 min
(the owl) and 45 min (the gargoyle). As future work, we
want to try the implementation [3] that should run faster on
our small graphs. We initialize all the sequences with the vi-
sual hull. Bounding boxes produce equivalent results, but in
a longer time depending on the box size (more voxels have
to be processed). The running time of the other steps of the
algorithm is negligible compared to the optimizations.

Complete Reconstruction We use a handheld camera to
shoot images all around the object. The calibration is done
as a pre-process.
� The gargoyle sequence (Fig. 4) shows that non-spherical
topology can be reconstructed. There are 16 views at
720 × 486 although the gargoyle only covers an area of
about 200 × 400. This demonstrates the performance of
our technique on low-resolution data. The voxel space is
25 × 50 × 25.
� The owl sequence (Fig. 7) demonstrates the performance
of the technique on concavities and thin sharp features. We
correctly reconstruct the ears whereas many existing tech-
niques would have difficulties because they are thin and
sharp. There are 37 views at 600 × 800. The voxel reso-
lution is 25 × 50 × 25.
� The head sequence (Fig. 1) involves significantly non-
Lambertian materials (eyes, skin, hair). There are 21 views
at 480 × 640. The voxel resolution is 323. A compari-
son with other well-known techniques (Fig. 5) emphasizes
the improvement brought around by our approach: The ac-
curacy is obviously higher than a photo-hull [21]. We also
compare our result with the level-set method [23] that works
from images, 3D points (extracted from the images) and

1http://www.boost.org



contours. Thus, we fairly use the same images and silhou-
ettes. Note that the head is not a sharp shape and should
suit the level sets. Nonetheless, we recover a finer geometry
whereas level sets smooth out the details.

Partial Reconstruction To demonstrate the capabilities
of our approach for partial reconstruction, we hid the back
of the head by omitting some images. Without any change
in the algorithm, the front part is reconstructed as an open
surface (see Figure 6).

(a) 7 views (~120°) (b) 10 views (~171°) (c) 21 views (360°)
Figure 6. Partial reconstruction. The 21 input images
form a rough circle around the head. To demonstrate that
the algorithm handles both partial and complete shape, we
have used only a subset of these images: 7 (a) and 10 views
(b). Note that the geometry of the visible part is stable in-
dependently of the setup. The Φ function makes the border
clean (cf. Section 4.2.2).

6. Conclusions

We have presented a reconstruction algorithm that com-
bines carving and graph cut. This technique relies on a new
formulation of the smoothness assumption: The prior is ap-
plied to small surface patches instead of the whole surface.
The given technique is nonetheless shown to preserve the
continuity of the surface. The created geometry has sev-
eral valuable characteristics: Arbitrary topology is recov-
ered, complete and partial shapes are handled by the same
algorithm, detailed surfaces are captured and sharp features
are reconstructed. This unique combination of properties
makes a significant contribution to the state of the art.

(a) input image (b) voxels (c) patches (d) surface (e) input image (f) surface
Figure 7. This owl illustrates the ability of the technique to deal with concavities. Notice also how the ears that are sharp and thin
are accurately reconstructed. To our knowledge, few existing methods attain such precision on these kinds of features.

Future Work This local approach to 3D reconstruction
opens promising research avenues. First, it may be interest-
ing to explore other combinations: We have demonstrated
the value of a carving/graph cut couple. One can also imag-
ine other interesting couples such as level set and graph cut.
The patches introduce a new degree of flexibility. A chal-
lenging topic would be to reconstruct non-manifold surfaces
to address very difficult cases such as tree leaves or complex
thin objects.
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