
HAL Id: inria-00510168
https://hal.inria.fr/inria-00510168

Submitted on 13 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Procedural Modeling of Cracks and Fractures
Aurélien Martinet, Eric Galin, Brett Desbenoit, Samir Akkouche

To cite this version:
Aurélien Martinet, Eric Galin, Brett Desbenoit, Samir Akkouche. Procedural Modeling of Cracks and
Fractures. Shape Modelling International (Short Paper), 2004, Genova, Italy. pp.346-349. �inria-
00510168�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50063422?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00510168
https://hal.archives-ouvertes.fr

Procedural Modeling of Cracks and Fractures

Aurélien Martinet
�

Eric Galin � Brett Desbenoit � Samir Akkouche ��
Artis-GRAVIR INRIA Rhône Alpes � LIRIS CNRS UCB Lyon 1

Figure 1. A scotch glass, a statue and a flute glass broken into ��� , ����� and �	� fragments respectively

Abstract

This paper presents a procedural method for modeling
cracks and fractures in solid materials such as glass, metal
and stone. Existing physically based techniques are com-
putationally demanding and lack control over crack and
fracture propagation. Our procedural approach provides
the designer with simple tools to control the pattern of the
cracks and the size and shape of fragments. Given a few
parameters, our method automatically creates a vast range
of types of cracks and fragments of different shapes.

Keywords: Procedural modeling, fractures, cracks.

1. Introduction

Realistic animation of breaking objects is a challenging
task in computer animation. Breaking an object often cre-
ates many small and interlocking pieces. The complexity of
those fragments makes modeling by hand impossible. Con-
sequently, the simulation of cracking, breaking and shatter-
ing has received some attention in the computer graphics
community.

Most existing techniques rely on involved and compu-
tationally demanding physically based simulations to com-
pute crack propagation and fragments [10, 6, 9, 2]. Such
methods are indispensable for correct and accurate simula-
tion of shattering and breaking and have produced images

of striking realism. Specific techniques have been devel-
oped for simulating objects shattering induced by explo-
sions [5, 6]. Other methods model static crack patterns on
dry mud [4], and ceramics [3].

Physically based simulations often require the discretiza-
tion of objects into voxels or tetrahedral meshes to compute
internal forces. The discretization often leads to some arte-
facts in the crack patterns which makes fragments look not
very realistic. Artefacts are the more visible as fractures are
propagated along the boundaries of the initial mesh or voxel
grid. Simulations are difficult to control, therefore their us-
age may be cumbersome for some applications and more
simplistic, albeit less accurate, approaches may be useful.

This paper proposes an original procedural method for
creating cracks and breaking objects into fragments. Our
approach enables the designer to control the regions where
cracks or fractures propagate and the shape of generated
fragments. Our crack and fracture modeling system relies
on the Hybrid Tree model [1] that combines skeletal implicit
surfaces and triangle meshes in a constructive tree. Cracks
and fragments are defined using incremental Boolean oper-
ations between the original model and carving volumes or
fracture masks. Because the objects need not be voxelized
or tetrahedralized as for physically based techniques, we are
not limited in resolution when creating fragments and our
method can create small thin shards easily. Our algorithm
is simple and efficient, allowing the designer to break an
object interactively.

1

2 Modeling cracks

The creation of cracks on the surface of an object is per-
formed in three steps (Figure 2). First, the designer defines
a two dimensional crack pattern in a specific graph editor.
Then, the graph is mapped onto the surface of the original
object to create a geometric skeleton. The carving volume is
defined by sweeping a profile curve along this skeleton, and
cracks are created by using Boolean difference operations
between the original input model and carving volume.

Parameters

Mapping
step

Extrusion
Difference

Pattern

model
Input

model
Output

Figure 2. Simulation cycle of the cracking process

Crack pattern In our system, cracks are designed after
images using a specific editor to obtain realistic patterns.
Cracks are characterized by a graph that defines both its
branching features and its geometry. The nodes of the graph
hold information about the width and the depth of the crack
at the corresponding vertex, as well as the directions and the
angles between junctions. The edges of the graph include
information about the length of the crack. The width and
depth along an edge of the graph are defined as a linear in-
terpolation of the values at the corresponding nodes so as to
create cracks of varying thickness and depth. Therefore, the
graph implements the paths followed by a turtle in a plane.

Mapping The designer simply needs to project one point
of the graph onto the surface of the original object. The
whole graph is then automatically transformed into a three
dimensional skeleton derived from the turtle geometry rep-
resentation [7] by applying a surface marching algorithm,
using the relative directions and length from the data stored
at the nodes and edges of the graph.

The turtle may generate a self-intersecting skeleton. In
practice, this occurs only if large crack patterns are applied
in regions of high curvature. Nevertheless, the carving vol-
ume generation process described in the next paragraphs
still creates consistent objects.

Volume generation The carving volume is defined by
sweeping a vee-shaped profile curve parameterized by the
width and depth of the crack along the line segments of the
skeleton. In our modeling system, carving volume are char-
acterized as the union of prism, tetrahedral and pyramidal
implicit primitives (Figure 3).

n a

a

b

a

a

b

b’

’’n b

Figure 3. Carving volume generated by a line seg-
ment of the crack skeleton

The vertices of the carving volume for every line seg-
ment of the skeleton are computed as follows. Let
 denote
a vertex of the skeleton and � and � denote the width and
depth of the crack at vertex
 respectively. We first com-
pute the normal of the implicit surface at vertex
 as well
as the tangent vector to the skeleton, denoted as , and �
respectively. The bottom vertex is defined as ����
����� ,
whereas the border, denoted as ��� and ��� � are computed as
������ . Eventually, vertices � � and � � � are raised above the
surface by a user controlled offset distance to avoid artefacts
in convex regions of high curvature.

Vase (1.36)Image

Bottle (2.48) Amphora (2.13)

Figure 4. A real clay vase (upper left) and some syn-
thetic models created after the original image

Results Figure 4 shows a comparison between a real bro-
ken vase made of clay, and some synthetic model created
with our method. The paths of the cracks on the synthetic
models were created after the original image. The depth of
the cracks adapted to the thickness of the original model au-
tomatically so that cracks should pierce the model and not
only create surface scratches. Reported timings (in seconds)
include the mapping of the crack pattern and the volume
generation process.

2

3 Modeling fractures

A simulation starts with the selection of a fracturing tool
that is characterized by a fracture mask defining the cut-
ting profile. The fracturing tool � is applied to the object�

to break it into two fragments by computing the Boolean
intersection

��� � and difference
� � � between the orig-

inal object and fracture mask. The fragments are expressed
as Hybrid Trees and can be further broken into pieces by
repetitively applying the selected tool (Figure 5).

Boolean
operations Fragments

model
Input

Fracturing
tool

Figure 5. Simulation cycle of our fracturing system

When the simulation is completed, all the fragments are
fully characterized by a Hybrid Tree which may be polygo-
nized for fast visualization. Mechanical characteristics such
as their mass, volume, inertia tensors may be computed eas-
ily to create physically based animation.

Fracture masks Fracture masks are solids that define the
profile of the fracture between two fragments. The fracture
masks are positioned relatively to the original objects so that
it should embed part of it and cut it into parts. Fracture
masks no only characterize the overall large scale pattern
of the crack between two fragments, but also the small de-
tails which make the crack surface rough or smooth. Simple
skeletal implicit primitives such as ellipsoids, boxes or half
spheres create fragments with straight and smooth cut pat-
terns. Our system also implements height field primitives
to create more complex fracture profiles. Those primitives
enable the designer to reproduce realistic surface charac-
teristics in terms of profile and roughness after real world
examples.

Fracture regions In our system, the designer controls the
regions where fractures will occur by constraining fractures
to a limited volume. Given a volumetric region denoted as!

, fractures will be performed on the Hybrid Tree defined
as the intersection

��� !
whereas the difference

� � ! will
be preserved and kept crack-free.

As for fracture masks, simple smooth and regular vol-
umes such as spheres or boxes create smooth and straight
cut patterns that do not look very realistic. Therefore, we
have implemented a variety of template bumped and noisy
regions that create more realistic fracture patterns. In our
system, those volumes are defined by randomly perturbing

the locations of the vertices mesh of spheres and ellipsoids
along their vertex normal using a noise function.

Controlling the shape of fragments An original object
may be broken interactively by editing the position and ori-
entation of the fracture masks in space to control the shape
of the fragments. While this approach provides the designer
with a tight, although low level, control over the shape of
the final broken object, it is cumbersome and inefficient for
modeling an object shattering into hundreds of pieces.

To overcome this problem, we have developed an algo-
rithm that automatically breaks an object into a set of frag-
ments whose size and shape are controlled by the designer.
The simulation is controlled by two main parameters. The
volume ratio between two fragments, denoted as "$# , char-
acterizes the distribution of the size of the fragments. The
relative shape of fragments is defined by a parameter de-
noted as % that defines whether fragments should be long
thin shards or roughly round pieces. Indeed, % represents
the angle between the main direction of an object and the
normal of the main direction of the cutting tool. Therefore,
the designer can select the orientation of the fracture masks
relatively to the principal axes of the original object, which
enables him to control the global shape of the generated
fragments (Figure 6).

n

V = 55%-

V = 45%+

V = 45%+

n

V = 75%-

V = 25%+

∆∆

∆ ∆

∆

∆

∆

V = 55%-

n α
αα

α

Figure 6. Controlling the shape of fragments by se-
lecting the orientation of the fracture mask relatively
to the principal axis of the shape

At every step of the algorithm, we select the location and
orientation of the fracture mask randomly. Then, given an
initial object

�
and a fracture mask � , we automatically

adjust the position and orientation of the mask so that the
size and shape of the generated fragments

��� � and
� �&�

should conform to the parameters "$# and % prescribed by
the designer (Figure 6).

This algorithm requires the evaluation of the volume of
the fragments as well as the computation of their main di-
rections. The original object is first converted into a point
cloud representation. This process is performed once and
for all as a pre-processing step. We adaptively sample the
object using an octree decomposition of space. Cells that
are detected outside the object are skipped. If a cell is de-
tected inside the object, as many points as needed are cre-

3

ated depending on the level of the octree. Straddling cells
are further subdivided until the maximum octree depth is
reached.

The volume of the object is proportional to the total num-
ber of points, denoted as ' . We simply classify points in-
side or outside the mask to compute the volume of the frag-
ments. Let ')(denote the number of points detected inside,
the volumes are *)+-,/.0�1' (32 ' and *-+546.0�7�8�9' (32 ' .
This classification is performed efficiently by evaluating the
field function value for all the points in the point cloud rep-
resentation.

The point cloud representation is also used to compute
the principal axes of the object using the Karhunen-Loeve
transformation. The principal axes of the point cloud are
found by choosing the origin at the centre of gravity and
forming the dispersion matrix computed as follows:

:<;>= � �'
;@?-AB
;C?5DFEHG ; �JIG ;LK EMG = �NIG =OK

The sum is over the ' points of the sample and the G ; are
the PCQHR components of the point coordinates. IG ; stands for
averaging. The principal axes and the variance along each
of them are then given by the eigenvectors and associated
eigen-values of the dispersion matrix.

Results The images in Figure 1 show a scotch glass, a
statue and a champagne flute glass broken into �O� , �O��� and�S� pieces respectively. Table 1 reports the time needed to
generate point cloud representation and the Hybrid Tree
models of the fragments, as well as the volume ratio "T#
and the angle % parameters.

Model Pieces Cloud Break "T# %
Flute 48 2.08 5.96 UWV>XFX Y 2 �
Glass 18 3.06 5.11 UZV XFU [UW\]Y 2 �_^
Statue 128 8.96 56.37 UZV>`FX [Y 2 �Z\]Y 2 �_^
Table 1. Timings (in seconds) for generating the bro-
ken models in Figure 1

The volume ratio between fragments of the scotch glass
was constrained to UWV>X so as to get pieces of the same vol-
ume. The orientation of the cut was computed randomly in[UZ\aY 2 �_^ to produce some long thin fragments. The cham-
pagne flute glass was broken using a volume ratio of UWV>XFX to
produce fragments of roughly the same size, and the prin-
cipal cutting direction was automatically set orthogonal to
the principal direction of the fragments so as to avoid long
thin pieces.

4 Conclusion

We have presented an efficient procedural approach for
modeling cracks and fractures in solid materials. The de-
signer can control the pattern of the cracks and the size and
shape of fragments easily. Objects shattering into many in-
terlocking fragments may be generated automatically.

In the near future, we plan to investigate the creation of
fracture masks and crack patterns with different levels of
detail to generate fractured models at different resolutions.
We also plan to automatically generate textures from the
geometry of the cracks to create realistic textures that will
be used for display at a low level of details.

References

[1] R. Allègre, A. Barbier, S. Akkouche and E. Galin. A
Hybrid Shape Representation for Freeform Modeling.
Shape Modeling International, 2004.

[2] B. Cutler, J. Dorsey, L. McMillan, M. Mûller and
R. Jagnow. A Procedural Approach to Authoring
Solid Models. SIGGRAPH 2002 Proceedings, 302–
311, 2002.

[3] S. Gobron and N. Chiba. Crack pattern simulation
based on 3D surface cellular automata. The Visual
Computer, 17(5), 287–309, 2001.

[4] K. Hirota, Y. Tanoue and T. Kaneko. Simulation
of three-dimensional cracks. The Visual Computer,
16(7), 371–378, 2000.

[5] O. Mazarak, C. Martins and J. Amanatides. Animating
Exploding Objects. Graphics Interface Proceedings,
211–218, 1999.

[6] M. Mûller, L. McMillan, J. Dorsey and R. Jagnow.
Real-Time Simulation of Deformation and Fracture of
Stiff Materials. Eurographics Workshop on Animation
and Simulation, 113–124, 2001.

[7] L. Mundermann, P. MacMurchy, J. Pivovarov and
P. Prusinkiewicz. Modeling Lobed Leaves. Computer
Graphics International Proceedings, 2003.

[8] M. Neff and E. Fiume. A visual model for blast waves
and fracture. Graphics Interface Proceedings, 193–
202, 1999.

[9] J. O’Brien, A. Bargteil and J. Hodgins. Graphical
modeling and animation of ductile fracture. ACM
Transactions on Graphics, 21(3), 291–294, July 2002.

[10] J. Smith, A. Witkin and D. Baraff. Fast and Control-
lable Simulation of the Shattering of Brittle Objects.
Graphics Interface Proceedings, 27–34, 2000.

4

