
Programmable Style for NPR Line Drawing
Stéphane Grabli1, Emmanuel Turquin1, Frédo Durand2 and François X. Sillion1

1ARTIS/GRAVIR-IMAG – INRIA 2MIT

Code examples
In the following code examples we highlight in yellow the significant lines of code, the remaining lines
consisting in declarations or use of standard mechanisms.
The built-in objects are written in blue.

Code for the Guiding Lines Style Module
We show here the python code of the style module that was used the for the “Guiding Lines” layer of
Fig. 4 in the paper.
The main aspects of this style module are the recursive split used to make strokes start and stop at
points of highest curvature and the shader that displaces the vertices of the stroke along its tangent.
The functions, predicates, shaders needed in the style module are first defined followed by the style
module itself.

zero-dimensional (0D) Unary Predicate, returns true if the u parameter
of the parameterized stroke is inside a given range.
-- inherits from UnaryPredicate0D
class pyParameterUP0D(UnaryPredicate0D):

Builds the functor given the range
def __init__(self,pmin, pmax):

 UnaryPredicate0D.__init__(self)
 self._m = pmin
 self._M = pmax
 ## Operator() – inter is an Interface0DIterator
 def __call__(self, inter):
 return ((inter.u()>=self._m) and (inter.u()<=self._M))

Shader to displace stroke’s vertices along its tangent
-- inherits from StrokeShader
class pyGuidingLineShader(StrokeShader):
 ## shading method
 def shade(self, stroke):
 it = stroke.strokeVerticesBegin() ## get the first vertex
 itlast = stroke.strokeVerticesEnd()##
 itlast.decrement() ## get the last one

t <- tangent direction
 t = itlast.getObject().getPoint() - it.getObject().getPoint()
 ## look for the stroke middle vertex
 itmiddle = StrokeVertexIterator(it)
 while(itmiddle.getObject().u()<0.5):
 itmiddle.increment()
 ## position all the vertices along the tangent
 while(it.isEnd() == 0):

it.getObject().SetPoint(itmiddle.getObject().getPoint() \
 +t*(it.getObject().u()-itmiddle.getObject().u()))
 it.increment()

Shader stretch stroke at its extremities

-- inherits from StrokeShader
class pyBackboneStretcherShader(StrokeShader):
 ## Builds the shader. The user specifies the desired stretching
 ## amount l.
 def __init__(self, l):
 StrokeShader.__init__(self)
 self._l = l
 ## shading method
 def shade(self, stroke):

it0 = stroke.strokeVerticesBegin() ## first vertex
it1 = StrokeVertexIterator(it0) ## --
it1.increment() ## second vertex
itn = stroke.strokeVerticesEnd() ## --
itn.decrement() ## last vertex
itn_1 = StrokeVertexIterator(itn) ## --
itn_1.decrement() ## vertex n-1
get the 2D coordinates for all these vertices:
p0 = it0.getObject().getPoint()
p1 = it1.getObject().getPoint()
pn_1 = itn_1.getObject().getPoint()
pn = itn.getObject().getPoint()
Compute the directions of the stroke’s first and last
segments
d1 = (p0-p1).normalize() ## first segment
dn = (pn-pn_1).normalize() ## last segment
move the first point along the first segment’s direction
it0.getObject().SetPoint(p0+d1*float(self._l))
move the last point along the last segment’s direction
itn.getObject().SetPoint(pn+dn*float(self._l))

//
Style Module
//
-- selects the ViewEdge that are visible
Operators.select(QuantitativeInvisibilityUP1D(0))
-- chains using the standard chaining iterator.
By default, the chaining stays in the selection.
Operators.bidirectionalChain(ChainSilhouetteIterator())
-- splits the chains at points of highest 2D curvature.
The chains are split until a certain length is reached.
We prevent the splitting points from being near extremities
Operators.recursiveSplit(
 Curvature2DF0D(), ## the 0D function we evaluate
 pyParameterUP0D(0.2,0.8), ## The Predicate 0D that preselects
 ## the candidate splitting points

 NotUP1D(LengthHigherUP1D(75)), ## The 1D predicate that tells
 ## when to stop the recursion

 2) ## The sampling
-- list of shaders
shaders_list = [

StrokeTextureShader("pencil.jpg", ## pencil texture with tips
 Stroke.DRY_MEDIUM, 1),

 ConstantColorShader(0,0,0,1), ## assigns a constant color RGBA
 ConstantThicknessShader(2.0) ## assigns a constant thickness
 pyGuidingLineShader(),## modifies stroke’s geometry with
 ## respect to its tangent
 pyBackboneStretcherShader(0.2) ## stretches the stroke
]
-- creates the strokes
Operators.create(TrueUP1D(),shaders_list)

Code for the External Contour Style Module
We show here the python code of the style module that was used the for the “External Contour” layer
of Fig. 4 in the paper.
The main aspects of this style module are in the chaining and in the calligraphic shader.
 The functions, predicates, shaders needed in the style module are first defined followed by the style
module itself.

Assigns a calligraphic thickness to the strokes.
-- inherits from StrokeShader
class pyCalligraphicThicknessShader(StrokeShader):
 ## Builds the shader. The user specifies the min thickness m,
 ## the max thickness M, the calligraphic direction V.
 def __init__(self, m, M, V):
 StrokeShader.__init__(self)
 self._m = m
 self._M = M
 self._V = V

 self._getNormal2D = Normal2DF0D()##instanciate
 ## the functor that
 ##gets normal
 ##info

 ## shading method
 def shade(self, stroke):
 it = stroke.strokeVerticesBegin()
 while(it.isEnd() == 0):
 ## gets the normal to the curve

n2d = self._getNormal2D(it).normalize()
compute the thickness depending on the
angle between the normal and the desired
calligraphic direction
t = self._m + fabs(n2d*self._V)*(self._M-self._m)
assigns the found thickness to the StrokeVertex
attribute
it.getObject().attribute().setThickness(t/2.0,t/2.0)
it.increment()

//
Style Module
//
-- selects the ViewEdge that are visible and external contour
Operators.select(AndUP1D(QuantitativeInvisibilityUP1D(0),

 ExternalContourUP1D())
-- chains using the ChainPredicateIterator that takes a
one-dimensional predicate as argument. This predicate
is evaluated to decide whether a ViewEdge must be included in
the chain or not. We pass a predicate that tests whether a ViewEdge
is visible and is an external contour.
Operators.bidirectionalChain(ChainPredicateIterator(

AndUP1D(QuantitativeInvisibilityUP1D(0),
 ExternalContourUP1D()))

-- list of shaders
shaders_list = [

ConstantColorShader(0.2,0.2,0.2,1), ## assigns a constant color
RGBA

assigns a calligraphic
thickness

 PyCalligraphicThicknessShader(6, ## Min thickness
40, ## Max Thickness
Vec2f(1, 1), ## orientation
1)##clamp

]

-- creates the strokes
Operators.create(TrueUP1D(),shaders_list)

Code for the “not” External Contour Style Module
We show here the python code of the style module that was used the for the “not External Contour”
layer of Fig. 4 in the paper.
This style module selects the ViewEdges that are visible but not external contours and apply a
nonlinear varying thickness to the strokes.
 The functions, predicates, shaders needed in the style module are first defined followed by the style
module itself.

def smoothC(a, exp):
 c = pow(float(a),exp)*pow(2.0,exp)
 return c

Assigns a Thickness that increases and then decreases
in a non-linear way.
-- inherits from StrokeShader
class pyNonLinearVaryingThicknessShader(StrokeShader):
 ## Builds the shader. The user specifies the min thickness m,
 ## the max thickness M, the exponent
 def __init__(self, m, M, e):
 StrokeShader.__init__(self)
 self._m = m
 self._M = M ## M is reached in the middle of the stroke
 self._e = e
 ## shading method
 def shade(self, stroke):

n = stroke.strokeVerticesSize()
i = 0
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:
 att = it.getObject().attribute()
 if(i < float(n)/2.0):
 c = float(i)/float(n)
 else:
 c = float(n-i)/float(n)
 c = smoothC(c, self._e)
 t = (1.0 - c)*self._M + c * self._m
 att.setThickness(t/2.0, t/2.0)
 i = i+1
 it.increment()

//
Style Module
//
-- selects the ViewEdge that are visible and not external contour
Operators.select(AndUP1D(QuantitativeInvisibilityUP1D(0),

 NotUP1D(ExternalContourUP1D()))
-- chains using the standard chaining iterator.
By default, the chaining stays in the selection.
Operators.bidirectionalChain(ChainSilhouetteIterator())
-- list of shaders
shaders_list = [

ConstantColorShader(0.2,0.2,0.2,1), ## assigns a constant color
RGBA

pyNonLinearVaryingThicknessShader(2,## min thickness

 10,## max thickness
 0.33), ## the exponent

]
-- creates the strokes
Operators.create(TrueUP1D(),shaders_list)

Shader code examples

The first shader is used in Fig.12 to define the strokes wavy geometry. It basically consists in
displacing the vertices along the normal to the curve, of an amount proportional to a sinusoidal curve.

Shader to displace stroke’s vertices with respect to a sinusoidal
curve, whose frequency and amplitude are given as arguments.
The amplitude is actually increasing from 0 to A and decreasing from
A to 0 along the curve.
-- inherits from StrokeShader
class pySinusDisplacementShader(StrokeShader):
 ## Builds the shader. The user specifies sinusoid amplitude a
 ## and frequency f.
 def __init__(self, f, a):
 StrokeShader.__init__(self)
 self._f = f
 self._a = a
 self._getNormal = Normal2DF0D() ## functor instanciation
 ## shading method
 def shade(self, stroke):

it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:

v = it.getObject()## v is a StrokeVertex
we retrieve the normal n to the stroke at v
n = self._getNormal(it.castToInterface0DIterator())
the sinusoid amplitude is a(u) = A(1-2|u-0.5|).
This function looks like that :
/\ u belonging to [0,1]
a = self._a*(1-2*(fabs(v.u()-0.5)))
we modulate the amplitude by a cosinus of frequency
f, such as, for f=1, the curve spans a single
2*PI period and displaces the vertex along its normal
of this amplitude
v.SetPoint(v.getPoint()+n*a*cos(self._f*v.u()*2*PI))
it.increment()

The second shader is used in this same figure (Fig.12) to define the stroke’s color variation. It linearly
varies from a first color c1 to a second color c2 as we are progressing from the first vertex toward the
middle one, and from c2 to c1, as we’re leaving the middle vertex to reach the last one.

Shader to linearly interpolate between two colors. The stroke starts
with the first color, reaches the second color in its middle and ends
back with the first color.
-- inherits from StrokeShader
class pyInterpolateColorShader(StrokeShader):
 ## Builds the shader. The user specifies the two colors as
 ## R,G,B,A components
 def __init__(self, r1,g1,b1,a1,r2,g2,b2,a2):
 StrokeShader.__init__(self)
 self._c1 = [r1,g1,b1,a1] ## first color array
 self._c2 = [r2,g2,b2,a2] ## second color array
 ## shading method

 def shade(self, stroke):
n = stroke.strokeVerticesSize()-1
i = 0
it = stroke.strokeVerticesBegin()
while it.isEnd() == 0:

att = it.getObject().attribute() ## we get the vertex’s
 ## attribute

 ## The color for this vertex is defined by:
 ## color = (1-c)c1 + (c)c2 with:

c(u) = (1-2|u-0.5|), and u belongs to [0,1]
This function looks like that :
/\
c = 1-2*(fabs(float(i)/float(n)-0.5))
Sets the interpolated RGB color
att.setColor((1-c)* self._c1[0] + c* self._c2[0],
 (1-c)* self._c1[1] + c* self._c2[1],
 (1-c)* self._c1[2] + c* self._c2[2],)
Sets the interpolated alpha component
att.setAlpha((1-c)* self._c1[3] + c* self._c2[3],)
i = i+1
it.increment()

Function code examples

This example shows a zero-dimensional (0D) Function used to evaluate the norm of the gradient
vector found in the global density map at a given scale for a vertex.

0D Function to compute the norm of the gradient vector computed
at a given point and for a given scale in the global density map.
-- inherits from UnaryFunction0D
class pyViewMapGradientNormF0D (UnaryFunction0DDouble):

Builds the functor given the scale sigma
def __init__(self,sigma):

 UnaryFunction0DDouble.__init__(self)
 self._s = sigma ## the sigma of the gaussian function
 self._step = pow(2, self._s) ## the gap between two pixels
 ## used for computing the

 ## gradient at scale sigma
 ## Operator() – iter is an Interface0DIterator
 def __call__(self, iter):

p = iter.getObject().getPoint2D()
Compute the gradient’s x component by reading the global
density map at scale _s
gx = ReadCompleteViewMapPixelCF(self._s,p.x()+self._step,p.y())
- ReadCompleteViewMapPixelCF(self._s, p.x()-self._step, p.y())
Compute the gradient’s x component by reading the global
density map at scale _s
gy = ReadCompleteViewMapPixelCF(self._s,p.x(),p.y()+self._step)
- ReadCompleteViewMapPixelCF(self._s, p.x(), p.y()-self._step)
return Vec2f(gx, gy).norm() ## returns the norm of the vector

Many built-in mechanisms facilitate the definition of new elements. For instance, we provide a
standard integration mechanism that allows to easily implement a one-dimensional function from a
zero-dimensional function. In particular, we show how to define the 1D function that evaluates the
gradient intensity in the global density map at a given scale for a 1D element, from the 0D function
defined above.

1D Function to compute the gradient intensity found in the global
density map at a given scale for a 1D element.
-- inherits from UnaryFunction1D
class pyViewMapGradientNormF1D(UnaryFunction1DDouble):

Builds the functor given the scale sigma, the integration
type and the sampling to use for the 0D evaluations.
def __init__(self,sigma, integrationType=MEAN, sampling=2.0):

 UnaryFunction1DDouble.__init__(self, integrationType, sampling)
 self._getGradientNorm0D = pyViewMapGradientNormF0D(sigma)
 ## Operator() – inter is an Interface1D
 def __call__(self, inter):
 ## call to the standard integration mechanism

return integrateDouble(self._getGradientNorm0D,
inter.pointsBegin(self._sampling),
inter.pointsEnd(self._sampling),
self._integration)

Figures

Use of different style sheets on the same model

Figure 1 Two different styles applied to the same plane model

Figure 2 Two different styles applied to the same camera model

Use of Information to control attributes variation

Figure 3 The lines thickness depends on the depth information. In addition, the external contour is drawn in a

calligraphic manner.

Figure 4 As in the previous figure, lines thickness depends on depth information. We use edges nature

information to draw crease lines in white and silhouette lines in black.

Figure 5 The lines color depends on the material color information in order to simulate a cartoon like

appearance.

Gallery of Styles obtained using our approach

Figure 6 Sketchy look achieved by making the same stroke turn several times around the object.

Figure 7 The virgin example of the paper. It illustrates in particular the use of layering to produce complex
drawings.

Figure 8 We illustrate here how the chaining operator, coupled with programmable shader allows to simulate
multiple-parameterization for strokes. On this example, notice that the color variation relies on a
parameterization covering the silhouette of the whole object, including occluded parts, to blend in a gradient way
from yellow to blue and back to yellow. Similarly, the stroke’s backbone geometry is displaced against a
sinusoid defined on this same parameterization such as its amplitude linearly increases between 0 and 0.5, and
then decreases back between 0.5 and 1. In contrast, the thickness variation is defined with respect to a
parameterization that covers each visible segment of the silhouette, as increasing between 0 and 0.5 and then
decreasing between 0.5 and 1.

Figure 9 The Stanford bunny rendered in Japanese style.

Figure 10 Two models rendered using a style sheet made of two modules: the first one draws guiding lines and

the second ones draws "finished" lines for close parts.

Figure 11 Technical rendering of a V5 engine, including lines that are hidden by only one object.

