
HAL Id: inria-00510188
https://hal.inria.fr/inria-00510188

Submitted on 14 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Volumetric Cell-and-Portal Generation
Denis Haumont, Olivier Debeir, François X. Sillion

To cite this version:
Denis Haumont, Olivier Debeir, François X. Sillion. Volumetric Cell-and-Portal Generation. Com-
puter Graphics Forum, 2003, Grenade, Spain. pp.303 – 312. �inria-00510188�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50063403?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00510188
https://hal.archives-ouvertes.fr

EUROGRAPHICS 2003 / P. Brunet and D. Fellner
(Guest Editors)

Volume 22 (2003), Number 3

Volumetric cell-and-portal generation

D. Haumont1, O. Debeir1 and F. Sillion2

1SLN, Université Libre de Bruxelles 2Artis, INRIA†

Abstract
We present an algorithm to generate a cell-and-portal decomposition of general indoor scenes. The method is
an adaptation of the 3D watershed transform, computed on a distance-to-geometry sampled field. The watershed
is processed using a flooding analogy in the distance field space. Flooding originates from local minima, each
minimum producing a region. Portals are built as needed to avoid the merging of regions during their growth.
As a result, the cell-and-portal decomposition is closely linked to the structure of the models. In a building, the
algorithm finds all the rooms, doors and windows. To restrict the memory load, a hierarchical implementation of
the algorithm is presented. We also explain how to handle possible model degeneracies -such as cracks, holes and
interpenetrating geometries- using a pre-voxelisation step. The hierarchical algorithm, preceded when necessary
by the pre-voxelisation, was tested on a large range of models. We show that it is able to deal with classical
architectural models, as well as cave-like environments and large mixed indoor/outdoor scenes. Thanks to the in-
termediate distance field representation, the algorithm can be used regardless of the way the model is represented:
it deals with parametric curves, implicit surfaces, volumetric data and polygon soups in a unified way.

1. Introduction
The visibility determination problem (i.e. the process of
finding the geometry that is visible from the viewer location)
is central in many computer graphics algorithms. Visibility
has been studied for a long time and many solutions have
been proposed in the literature. Most visibility culling algo-
rithms make use of particular scene characteristics to speed
up the determination process. An important class of models
is indoor scenes where algorithms can benefit from dense oc-
clusion and structural coherence of visibility. In this kind of
environment, the cell-and-portal graph (CPG) is commonly
used to solve the visibility queries. A CPG is a graph that en-
codes the visibility structure of the scene. The nodes of this
graph are cells, which correspond to the rooms of a building.
They are connected by portals that correspond to openings
(e.g. the doors and windows). A cell can only see other cells
through portals.
CPGs are often constructed by hand, with some helper tools

† Artis is a research team of the GRAVIR/IMAG Laboratory, a
joint effort of CNRS, INRIA, INPG and Université Joseph Fourier-
Grenoble I

implemented in the modeling application. Therefore this
task remains difficult and the results non satisfying: being
able to create automatically a cell-portal subdivision for ar-
bitrary models would result in substantial savings of time
and money in the game industry4. Furthermore, it would
free the non specialist from the tedious portal placement and
cell creation process. Unfortunately, it is difficult to com-
pute automatically an optimal decomposition, since a scene
can be partitioned into an unlimited number of different cell-
and-portal graphs. Some solutions have been proposed for
very particular scenes: architectural BSP 23 5 and tubular-
like models 16. To the best of our knowledge, no previous
published method is usable in all situations.
In this paper, we propose to restate the problem of the CPG
generation algorithm in terms of 3D image segmentation (in
image processing, segmentation is the process of separating
the different objects in an image). The image we use is an
intermediate volumetric representation of the scene, the ob-
jects to separate being the cells and the separators being the
portals. This formulation enables us to adapt a powerful tool
from the image segmentation literature, the watershed trans-
form (WST)18. Contrary to other approaches, the resulting
algorithm is able to compute automatically the CPG of any

c
�

The Eurographics Association and Blackwell Publishers 2003. Published by Blackwell
Publishers, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street, Malden, MA
02148, USA.

Haumont and Debeir and Sillion / Cell and Portal

indoor scene without imposing any modeling constraint.
The remainder of the paper is organized as follows: after re-
viewing some relevant work, we present the CPG generation
algorithm in section 3, followed by its implementation (sec-
tion 4). To limit the memory cost, we present a hierarchi-
cal version of the algorithm in section 5. Potential problems
and their solutions are investigated in section 6. Finally, we
discuss the results and present avenues for future work in
section 7.

2. Related Work
2.1. Visibility
Many visibility algorithms were proposed to speed up ren-
dering in interactive walkthrough applications, and the inter-
ested reader will find exhaustive surveys10 8. The ultimate
goal of visibility determination is to detect efficiently the
part of the scene that is visible from the camera. Before the
z-buffer algorithm became a de facto standard, exact visi-
bility determination (i.e hidden face removal) was the cen-
tral issue. Nowadays, the research has shifted to occlusion
culling, which concentrates in eliminating invisible geome-
try as early as possible in the rendering pipeline. Occlusion
culling gives a rough conservative estimation of the visible
geometry: the PVS (Potentially Visible Set), that may still
contain invisible parts of the model which are later removed
by an exact visibility algorithm.
Schaufler at al. made the important observation that visibil-
ity could be solved efficiently by using a volumetric data
structure instead of the original scene description21. For this
reason, they use a binary volumetric representation of the
scene for occlusion culling: the inside voxels and the hidden
voxels act as blockers to eliminate the invisible geometry.
In indoor scenes, cell-and-portal graphs have been widely
used for visibility determination 17 23 5 9 4. Previous work
on CPGs mainly focused on the use of the graph rather than
its generation, since it was often created manually by the
user 9 4. However, some automatic generation algorithms
have been proposed. The most common are the decompo-
sition of the scene into BSP, which are CPGs themselves23

5. The resulting portals are aligned with the features of the
scenes, constraining the method to a restricted set of geome-
tries. Furthermore, these approaches are limited to polygonal
datasets and lead to unusable CPG when the number of poly-
gons increases, because each triangle creates a cut plane and
adds a portal to the decomposition. An exception to the BSP
decomposition is the algorithm proposed by Lichan et al. in
the context of virtual colonosopy 16. They make use of the
particular structure of their scene, the human colon, to cre-
ate the CPG. On the basis of a distance field, the center-line
(i.e. the skeleton) of the colon is extracted. The colon is then
partitioned with regulary spaced cross-sections, placed per-
pendicular to the skeleton.
As in 21, our method is based on a volumetric description of
the scene. Because this representation is a distance field, our
work can be seen as an extension of the algorithm presented
in 16. The main difference is that our technique was designed

to deal with arbitrary scenes, in place of the very particular
human colon geometry.

2.2. Distance field
A sampled distance field is a discrete scalar field, each sam-
ple point storing the distance to the closest scene geometry.
It has proven to be useful in a wide range of applications
in computer graphics: rendering , virtual sculpting, collision
detection, path planning, morphing between objects, surface
reconstruction, etc. Distance fields have been widely used
in image analysis too, for example for image segmentation.
Several methods, such as the distance transform 20, were in-
troduced to cope with the high computational cost implied
by the distance field computation. To reduce the memory
needs, hierarchical representations 13 were proposed. Our
implementation uses both of these improvements.

2.3. Watershed transform
The watershed transform (WST)18 is a powerful image seg-
mentation technique initially designed for 2D gray level im-
ages. One can find in 19 an introduction to the WST and
its several algorithmic implementations. Although the wa-
tershed transform can be extended from 2D to more dimen-
sions, one has to face increasing memory and computation
costs when using voxel data, therefore applications of the
3D WST remain rare 24. However, an optimized implemen-
tation, minimizing the memory consumption to treat large
3D medical datasets, has been proposed recently 11.

3. Volumetric CPG computation
In this section, we present the general principle of our ap-
proach.

3.1. Cell and portal Graph (CPG)
A scene can be decomposed into an unlimited number of
cell-and-portal graphs: defining what the ideal decomposi-
tion should be is still an open issue. In terms of culling per-
formance, a good partition is a trade-off between the number
of portals and the computational cost of using them. Ideally,
one wants to minimize the number of portals while trying to
place them where they will help to cull the scene’s geome-
try. In architectural scenes, this tradeoff is usually achieved
by using the ’classical decomposition’, where the cells are
the rooms and the portals are the openings.
When using a pre-calculated CPG to speed up rendering,
the visibility determination consists first in finding the cell
in which the viewer is located, called the view cell. All the
objects of the view cell are classified as potentially visible.
Then the algorithm recursively checks the cells that are con-
nected to the view cell by portals. The objects of these cells
are also classified as potentially visible. A more exact visi-
bility test with respect to a given viewpoint will classify the
objects as visible through a portal if they belong to the pyra-
mid supported by the portal’s silhouette and whose apex is
the view point. The set of all the visible objects is found by

c
�

The Eurographics Association and Blackwell Publishers 2003.

Haumont and Debeir and Sillion / Cell and Portal

testing the visibility through all the visible portals.
We propose to automatically create an approximation to the
classical CPG decomposition using the segmentation of a
volumetric representation of the scene. As will be shown in
this section, the watershed transform is well adapted for this
task.

3.2. Watershed transform
Let us begin with a 2D explanation of the watershed trans-
form. The transformation extends easily to supplementary
dimension, and the 3D watershed transform is a straightfor-
ward adaptation of the 2D process.
The watershed transform is a morphological tool that consid-
ers a function D as a topographic surface S and defines the
catchment basins and the watershed lines of D by means of a
flooding process: a hole is pierced at each local minimum of
the surface S, afterwards the surface is plunged into a lake at
a constant vertical speed. The valleys of S are flooded by the
water entering through its holes (see figure 1(a)), creating
basins (i.e. the catchment basins). During this process, the
water coming from different minima may merge. To avoid
this, we build a dam on the point where these floods would
merge (see figure 1(b)). A difficulty arises when the location
of the fusion occurs on a plateau. Suppose that two regions,
noted A and B present a the iteration t-1, merge during the
iteration t into a single region C. The merge is detected and
a dam is built to separate A and B. In the classical watershed
transform, the dam is placed on the SKIZ (Geodesic Skele-
ton by Zones of Influence, defined in the appendix) of A and
B into C. At the end of the process, all the surface is under
water: only the dams emerge 1(c)). The watershed of D is
defined by the set of dams, separating the catchment basins.
Each of these basins contains a single minimum of D.

(a) (b) (c)

Figure 1: Different steps of the watershed algorithm.

The watershed transform is widely used for image seg-
mentation. For example, if the watershed transform is ap-
plied to the gradient of a greyscale image, the watershed
lines correspond directly to the contours and each catchment
basin corresponds to an object of the image.

3.3. CPG generation algorithm
When applied to the distance map representation of the
scene (see figure 2), the classical watershed algorithm
can be adapted for the generation of a CPG. To remain
compatible with a flooding metaphor, the field D is inverted
before the algorithm takes place (i.e. each distance is given
a negative sign).

Figure 2: Distance field representation of an architecural
model (after inversion).

The height field representation of D shows that the saddle
points of the surface correspond to the portals locations (cf.
figure 3). In 3D, these locations correspond to the pinches of
the distance field.

Figure 3: Distance field used as topographic surface. A sad-
dle point, corresponding to one of the portal, is highlighted.

The progression of the watershed algorithm applied to D
is depicted in Figure 4.

Figure 4: Different steps of the watershed algorithm. Two
catchment basins getting in contact during an iteration re-
veal the presence of an opening: a portal is built to separate
them.

The result of this segmentation is close to the intuitive
classical CPG decomposition described above (see last im-
age of figure 4):

c
�

The Eurographics Association and Blackwell Publishers 2003.

Haumont and Debeir and Sillion / Cell and Portal

� the cells correspond to the catchment basins of D. They
are the volumetric space enclosed by the geometry of the
scene, and separated by the portals. One can see that they
correspond to the rooms of the architectural scene.

� the dams separate the catchment basins: they directly cor-
respond to the portals. They are placed at the pinch-points
of the free space in the volumetric representation of the
scene. In terms of visibility, they correspond to areas
where the scene’s longest visibility lines (e.g. the set of
segments traced between all the mutually visible points
of the scene) are concentrated. This means that the portal
are placed where they are supposed to be helpful for vis-
ibility culling. Moreover, in architectural models, pinches
effectively encompass the doors, windows and corridors.

Note that portals are added on all pinches and that each local
minima generates a cell. Due to this fact, some of the cells
and portals may be unsuitable. This problem principally oc-
curs when the initial geometry is intricate, leading to a very
perturbed distance field. This is an illustration of the classi-
cal over-segmentation problem that occurs when segmenting
images by watershed. We will detail in section 6 some solu-
tions to this problem in our case.

4. Implementation
We propose an implementation organized in successive
stages explained in detail below. First, the distance field from
the scene representation is computed and sampled in a grid.
The distance map is then used by the watershed process to
find the contacts between catchment basins, where portals
are to be placed. When necessary, the portals are built on the
basis of the scene geometry. The cell-and-portal graph itself
is computed as the watershed takes place. At the end of the
algorithm, the scene geometry is assigned to the different
cells.

4.1. Distance Map Construction
The distance field evaluation requires a function that com-
putes the distance between a 3D point and its closest ge-
ometry. From the CPG algorithm point of view, the only
difference between all the modeling techniques (parametric
surface, volumetric representation, implicit surface, polygon
soup,...) is the way this distance function is computed. For a
set of independent triangles for example, the distance is the
minimum distance to all the triangles in the model. For an
implicit surface, the distance can directly correspond to the
implicit function.
A naive brute force algorithm evaluates the distance field for
every point of the distance map. Unfortunately, such a query
is very costly in the case of a polygonal model representa-
tion, even if the triangles are organized in a hierarchical data
structure (such as an octree, a BSP or a bounding volume hi-
erarchy). The total distance field computation time become
the limiting process.
More sophisticated algorithms make use of particular prop-
erties (continuity, bounded growth) of the distance function

to speed up the computation. The distance transform 20 gives
an approximation of the distance field that is very fast to
compute but relatively inaccurate. This algorithm applies a
local distance matrix in two successive passes over the voxel
grid. Each pass propagates the local distance computed by
the addition of known neighborhood value to the values ob-
tained from the local distance matrix. The forward pass cal-
culates the distance from the surfaces in an arbitrary top-
down direction, starting from the top corner of the grid and
moving away to its bottom. The backward pass calculates the
remaining distances, from the bottom corner of the grid to
its top. The algorithm’s speed results from the simple com-
putations involved. In our algorithm, distance transform is
used because it does not compromise watershed: in practice,
the distance transform only deforms the distance field locally
without adding any local minima. The number of regions and
their global shape are conserved. When an exact distance is
required, for example in the case of portal placement (see
section 4.3.2), it is computed on the fly from the initial ge-
ometry representation.

4.2. Portals Detection
This phase corresponds to the watershed algorithm. A level
value, called isoValuet , is initially set to the minimum value
of the distance map. isoValuet defines a surface that parti-
tions the 3D space into an inside volume -where the dis-
tance field is smaller than isoValuet - and an outside vol-
ume -where the distance field is greater than isoValuet -
(Remember that by convention the distances have negative
values). The algorithm iteratively increases isoValuet . The
inside volume corresponding to iteration t, called Insidet , is
cut into different regions. A labeling process assigns a dif-
ferent ID to each region, that is a unique value is assigned to
voxels that belong to the same connected region. The con-
nectivity used is a 4-connectivity in 2D and a 6-connectivity
in 3D. The key step of the algorithm is to detect the catch-
ment basins that merge during an iteration t, in order to sepa-
rate them by a dam. This task is accomplished by the dilation
of each regions of Insidet � 1 in the Insidet space, at the be-
ginning of iteration t. This dilation consists in propagating
the ID to the adjacent voxels (see figure 5). During this di-
lation, the new ID that is propagated (called NEW_ID) is
compared to the ID already stored in the voxel that has been
reached (called OLD_ID). Three cases are possible:

� OLD_ID is null: the dilation of the region reached a be-
forehand empty voxel. Nothing happens and the dilation
continues (see figure 5 (b)).

� OLD_ID is equal to NEW_ID: the voxel already belonged
to the region. The dilation stops.

� OLD_ID and NEW_ID are different: the voxel belonged
to another region (see figure 5 (d)). The center of the voxel
is the contact point P. The two colliding regions OLD_ID
and NEW_ID are restored as they were before dilation,
and a portal is built to separate them (see section 4.3). The
dilation process restarts with the dam included (see figure

c
�

The Eurographics Association and Blackwell Publishers 2003.

Haumont and Debeir and Sillion / Cell and Portal

5 (e) and (f)). If nothing had been done, the two regions
would have merged during the labeling of iteration t.

Iteration t � 1

(a) before dilation (b) after dilation

Iteration t

(c) before dilation (d) during dilation.

Iteration t
(after the construction of the dam)

(e) before dilation (f) after dilation

Figure 5: ID propagation to detect the portals.

4.3. Creation of the portals
4.3.1. Portal definition
The SKIZ, where the dam is built in the watershed trans-
form, is not really adapted as portal definition. Firstly, it is
entirely dependent on the region’s shape: there is no cer-
tainty that the SKIZ touches the initial geometry. Secondly,
the SKIZ is a 3D set of voxels that are not adapted for scene
culling. Instead, we define the dam as being an oriented pla-
nar rectangle, located at the pinch-point of the distance field
and in contact with the geometry responsible for the pinches
(and bounding it). In the distance map, all the voxels that are
crossed by a portal are tagged as a dam. A dam is an ob-
stacle: the propagation algorithms (i.e the labeling and the
dilation processes) can not traverse it. This dam definition is
the most important difference between our algorithm and the
classical watershed transform.
When a contact point (P) between regions A and B is dis-
covered, two portals are built to separate them. The first is
positioned with the distance map information only, the sec-
ond with the help of the graphics hardware. The smaller of
these two portals is chosen.

4.3.2. Distance map portal positioning
Just before starting the portal positioning algorithm, the
insidet � 1 of the two regions to separate have been restored.
This enables us to compute an estimation of the location of
the portal from the distance map representation. The loca-
tion of the portal is defined by its normal and a point noted
M:

� Intuitively, a good normal direction is given by the skele-
ton of the distance map, that crosses the portal 16. It can

be approximated by the segment joining the two mutually
closest points (noted C1 and C2) of the iso-surface of the
regions A and B at iteration t � 1. The distance used is the
geodesic distance, defined as follow.

Geodesic distance Let x and y two points of the
set X. The geodesic distance between x and y is
the length of the shortest path included in X and
linking x and y.

In practice, it means that the segment C1C2 can not cross
any scene geometry to be valid. In the case depicted in
figure 6(a), the euclidean distance would give the segment
XY , in place of the correct segment C1C2.

� M is located on the middle of the segment C1C2.
We use a simple procedure to find C1 and C2 (see figure
6(b)). Starting from the contact point P, we search its closest
point located on the surface of the region B, noted B1. Then
we search the closest point to B1 that is located on the sur-
face of the region A: it is C1. Finally, we find C2, which is
the closest point to C1 located on the surface of the region B.
This procedure ensures that we find the correct pinch when
there are multiple pinches of equal size between A and B.

(a) (b)

Figure 6: (a) use of a geodesic distance: the segment joign-
ing the two closest points can not cross the geometry. (b)
Finding C1 and C2. In this simple case, B1 equals C2.

4.3.3. Hardware-assisted portal positioning
The first positioning may fail when the portal is thin, because
there is no certainty that the segment C1C2 will give a correct
orientation (see figure 7).

Figure 7: Distance map portal positioning fails when the
distance field is noisy and the portal is small.

For this reason, a second positioning algorithm was de-
veloped in the case of thin portals. It consists in leaning the
portal on the geometry responsible for the pinch, with the

c
�

The Eurographics Association and Blackwell Publishers 2003.

Haumont and Debeir and Sillion / Cell and Portal

help of the graphic hardware. At first, a camera with an large
field of view is placed on C1, pointing in the direction of C2.
A quadrilateral of arbitrary large size, is placed in C2 per-
pendicular to C1C2. It is rendered in red color, followed by
the geometry of the scene in white. The frame buffer and the
corresponding depth buffer are read back. The center point
of the frame buffer belongs to the portal because it inter-
sects C1C2: the red region of the frame buffer that contains
this point is selected. The exterior silhouette of this red re-
gion defines the portal. The corresponding pixels are back-
projected in the 3D space. In that way, the best fitting plane
of this set of points defines the portal direction n.
Each positioning algorithm give its own portal location. To
choose between them, the extent of both portals is computed,
and the smaller portal is chosen.

4.3.4. Extent of the portal
Graphics hardware is also used to determine the 3D extent
of the portal. A camera, with a field of view of 90 degrees,
is placed at the center of the portal, perpendiculary to its
direction (C1C2 or n following the case). It is used to make
four successive renderings followed by z-buffer reading. The
camera is rotated by 90 degrees between each rendering.
The intersection of the portal plane and each of the rendered
image is a pixel line: all the silhouette’s pixels are back-
projected. The corresponding 3D points are coplanar, since
they all belong to the best fitting plane, and the portal is sim-
ply their smallest oriented bounding rectangle. An improve-
ment (not yet implemented) would be to clip this rectangle
by the scene geometry to get a more complex portal shape
that maximizes its culling efficiency.

4.4. Creation of the cells
The cells are the discrete volumetric spaces enclosed by the
geometry and separated by the walls. They are not necessar-
ily convex. The distance map resolution fixes the size of the
smallest room that the algorithm can find: it must be chosen
high enough to have at least one voxel inside each room. The
storage of a geometric description of the cell is necessary to
locate the viewer during the online rendering process. Un-
fortunately, each possible solution has some drawbacks:

� a volumetric description is well adapted for the viewer’s
location, but the memory cost is very high.

� the exact polygonal representation of the surface (ex-
tracted from a marching cube algorithm for example)
would require many triangles and would not be very ef-
ficient to locate the viewer.

� the storage of the surface into a BSP would solve the ef-
ficiency problem, but the memory cost would not be neg-
ligible and the construction of a good BSP is not straight-
forward.

Instead of storing the cell description explicitly, our imple-
mentation uses a simpler solution: each geometry element
(i.e. a triangle or a triangle mesh) stores a pointer to the cell
of the CPG it belongs to. In return, each CPG cell contains

the list of objects composing it, organized by a hierarchical
tree to speed up the portal culling (for example a binary tree
of Axis Aligned Bounding Boxes). At the beginning of the
visualization, the viewer is localized by casting a ray from
the viewpoint through the scene (see figure 8(a)). When a
portal is crossed before the hit, other rays are cast in random
directions until the ray first hit the geometry. This situation
can easily be avoided by tracing vertical rays, because a typ-
ical indoor scene does not contain many horizontal portals.
During the rest of the walkthrough, cell changes are simply
detected by testing when the viewer crosses a portal while
moving.
The correspondence between the scene geometry and the
catchment basins is not straightforward: as can be seen in
figure 8(b), the geometry does not geometrically lie in any
catchment basin at the end of the CPG generation algorithm:
by definition, the geometry separates them. In our imple-
mentation, each triangle is assigned to its closest catchment
basins that are seen by the triangle in the direction of its
normal. To find them, we check the closest catchment basin
to four points of the triangle: its gravity center and its ver-
tices. This procedure may fail with large triangles belong-
ing to several cells because the sampling density may not be
sufficient. However, the number of test points should be in-
creased to handle this case. The triangles crossed by portals
are assigned to a unique cell: for the visualization, it is not
necessary to assign them to both cells since these triangles
are always classified as visible through the concerned por-
tals. However, his can potentially lead to a localization error
at the beginning of the walkthrough. This problem can easily
be solved by subdividing the triangles concerned (solution
not yet implemented).

(a) (b)

Figure 8: (a) Viewer localization: contrary to the viewer 2,
the viewer 1 is correctly located because the ray does not
cross any portals before the hit. (b) Creation of the cells:
The geometry is associated to its closest catchment basin.

5. Hierarchical implementation
For complex scenes, the memory required to store the dis-
tance field becomes a concern and a compression scheme is
needed. In practice, we did not implement the algorithm on
a regular grid for this reason. Instead, we use the Adaptively
Sampled Distance Fields (ADFs) as the basic data structure
for the implementation 13. An ADF is an octree, each node

c
�

The Eurographics Association and Blackwell Publishers 2003.

Haumont and Debeir and Sillion / Cell and Portal

storing the distance values of its eight corners. The distance
inside a cell is computed by tri-linear interpolation. In ad-
dition, minimum and maximum distance values are stored
in each node. For a leaf node, these values correspond to
the minimum (resp.maximum) of the eight distance values.
For an internal node, these values correspond to the mini-
mum (resp. maximum) of the distance of all the child nodes.
These minimum and maximum values suffice for most of the
operations. Let S be the iso-surface defined by an iso-value
d.

� An octree cell is totally inside S if (cell �maximum ��� d)
� A node contains a portion of S if (cell �maximum ��� d)

and (cell �minimum � � d)

In our implementation, the eight distances values are dis-
carded to save memory. When a precise distance is required,
for example for the approximate portal placement, its is
computed on the fly from the initial geometry. The multi-
resolution aspect is the main advantage of ADFs: the re-
finement predicate ensures that details are added only where
necessary. For CPG generation, the areas of interest, where
it is interesting to refine the octree, are the pinches of the
distance field -they give the portal location- and its protru-
sions -they give the portal’s approximate position. Both cor-
respond to areas where the distance field is non-linear. For
this reason our predicate refines the nodes for which the tri-
linear interpolation gives poor results in comparison to the
exact distance values. The threshold error of the refinement
criterion has to be taken sufficiently small to ensure that our
algorithm does not miss some rooms of the building due to
the ADFs data structure. Intuitively, a small threshold im-
poses that the skeleton of the distance map - which passes
by the portals and the center of the rooms - will be refined to
the maximum depth. The ADFs construction begins with the
computation of a full resolution distance field with the dis-
tance transform. Then, the octree is computed by merging
the linear portion of the distance field. When the initial full
resolution grid does not fit in memory, a mechanism of swap
between the central memory and the hard disk is used. The
hierarchical CPG generation algorithm is very similar to the
grid version. Only the ’portal discovering’ part of the algo-
rithm is modified, the portal placement algorithm remaining
the same. The major changes are:

� the use of min and max value stored in every node to speed
up the algorithms: the portions of the octree that are not
concerned by a treatment (labeling, propagation, dilation,
...) can be easily skipped.

� the navigation between neighbor node in the octree is not
as straightforward as in the case of a regular grid 7 14 12.

6. Over-segmentation
In image processing, the watershed segmentation is known
to be sensitive to data noise: the noise often generates many
local minima and each of them become a catchment basin
during the watershed transform. As a result, too many re-
gions are created, leading to the so-called over-segmentation

problem. The implication for CPG generation is that when
the distance field presents many local minima (typically in
the case of furnished rooms, zigzag walls,...), the model will
be decomposed into many cells separated by redundant por-
tals. To solve this problem, two approaches are commonly
used. The first one consists in pre-processing the data in or-
der to eliminate the local minima before the watershed trans-
form. The second consists in post-processing the results in
order to reduce the number of regions by merging several
regions into bigger ones, on the basis of a given heuristic.
We propose in this section two pre-processing techniques
that solve the over-segmentation problem in most of the
observed cases. The first method is the manual simplifica-
tion of the scene while the second one is its voxelisation.
Post-processing methods were not investigated here, but one
could imagine to add a treatment at the end of the process
that consists in eliminating the useless portals, on the basis
of the estimation of their culling efficiency.

6.1. Manual Simplification
Manual simplification is a classical method 22, that requires
little additional work during the modeling process. It con-
sists in discarding the unimportant objects for visibility de-
termination (e.g. the furniture) when computing the CPG,
and adding them back to the cell at the end of the process.
It can be seen as a median filtering of the geometry, already
known to remove the noise from images. In practice, this ap-
proach provides good results, but the manual elimination can
become a tedious task when it is not coupled to the modeling
process. For this reason, we also propose to use voxelisation
as fully automatic treatment to reduce the noise present in
the distance field.

6.2. Scene voxelisation
A binary voxelisation of the scene can be used as support
for the distance computations instead of the initial geomet-
ric scene representation. For sets of independent triangles,
the algorithm presented in 15 is used. It was designed to treat
any scene, even those containing degeneracies such as dou-
ble walls, interpenetrating meshes, cracks or holes. The vol-
umetric representation obtained is cleaner and free of prob-
lems: the noise in the distance field generated by the initial
degeneracies is greatly reduced. Furthermore, the voxelisa-
tion acts as a low-pass filter, the size of the voxels fixing the
size of the geometry details that are eliminated (of course
walls have to be large enough to be part of the volumetric
representation). The filtering eliminates many of the local
minima. Another advantage is that the voxelisation provides
signed distance because the representation distinguishes the
inside and the outside of the objects. The inside regions
do not need to be treated by the CPG creation algorithm.
For all of these reasons, the voxelisation is an efficient pre-
processing of the scene, that eliminates most of the over-
segmentation and the potential modeling problems in a fully
automatic way.

c
�

The Eurographics Association and Blackwell Publishers 2003.

Haumont and Debeir and Sillion / Cell and Portal

7. Results and Discussion
We implemented the hierarchical algorithm described in this
paper and have tested it on different kinds of scenes to show
its generality. All the experiments were performed on a com-
puter with a Pentium III processor (800 Mhz) and an Nvidia
GeForce 2 GTS graphic card. The first scene is an archi-
tectural model of a house (147k triangles), publicly avail-
able on the Hybrid Graphics company website 2. This model
is particularly interesting because it is used in their com-
mercial visibility package dPVS as a demonstration of cell-
and-portal graph rendering to speed up complex scene walk-
throughs. A CPG, created by hand, is associated to the model
and can directly be compared to the result of our algorithm.
Before computing the distance field, we have discarded the
doors and windows with a standard modeling package, as
well as the furniture to eliminate over-segmentation. Our al-
gorithm has then been used to create the CPG decomposi-
tion. The resulting CPG is very similar to the original one
and contains all its portals (see figure 9). The only differ-
ences are the portals added by our algorithm on the exterior
windows and a portal added on the central corridor.

Figure 9: Scene 1- complex architectural house (from 2).
Left: cells created by our algorithm. Right: some of the por-
tals created by our algorithm (scene treated without the fur-
niture, added back to the cells at the end of the process).

This work was partially done in collaboration with the
computer games company Appeal. The next two scenes are
coming from their in-development game, Outcast 2. These
scenes contains many degeneracies, principally coming from
the modeling process based on geometry instanciation: some
parts of the scene are made from different basic objects,
replicated at different locations with scale factors and dis-
tortion parameters. Although instanciation is an elegant way
to reduce the memory cost, it introduces artifacts such as
interpenetrating geometry, cracks and holes. Without taking
care of these degeneracies, the distance field would be very
noisy and would count many uninteresting local minima. For
this reason, a voxelisation process has been used to filter the
details and the artifacts before creating the CPG.

Scene 2 is a house made of 81k triangles. For this model,
our algorithm correctly found all the arches doors and
handles correctly the center room made up of successive
pillars (see figure 10).

Figure 10: Scene 2 (copyright (c) Infogrames)- house, con-
taining many degeneracies. The figure on the right shows
the center room, made off successive pillars. This scene was
treated after a pre-voxelisation step.

Figure 11: Scene 3 (copyright (c) Infogrames)- Mixture of
indoor/outdoor scene, containing many degeneracies. The
algorithm creates a CPG for the underground rooms, while
not partitioning the rest of the scene.This scene was treated
after a pre-voxelisation step.

Scene 3 is a stone landscape with underground rooms
(464k triangles), and represents a mixture of indoor/outdoor
scene in 3D. The algorithm created a CPG for the indoor
part of the scene (the underground rooms), and does not par-
tition the outdoor parts of the scene that are not well suited
for CPG rendering (see figure 11). The reason is that the
flooding originates where the model presents enclosed space
that constitute local distance minima. When no such min-
ima exist, a single region is created and no portal is built.
In the case of 2D 1/2 visualization of terrain and city, one
could want to use a CPG, with the portals placed between
the different peaks and the different buildings. To extend the
CPG creation to this kind of environment, a simple solution
consist in computing a 2D watershed on the 2D height map

c
�

The Eurographics Association and Blackwell Publishers 2003.

Haumont and Debeir and Sillion / Cell and Portal

where the minima effectively exist. Another solution could
be to design an interactive tools to add the appropriate artifi-
cial local minima in the distance field.
Scene 4 is the Berkeley Soda Hall model, without the
furniture (18k triangles)3, that was treated without pre-
processing. The algorithm finds all the rooms, doors and
windows of the building (see figure 12). An open issue is the
treatment of the saddle lines of the distance field that typi-
cally occur in a corridor. Our method places a unique portal
on the middle of this line, but a gain could be obtained by
placing portals at the beginning and at the end of the saddle
line (i.e. the beginning and the end of the corridor).

Figure 12: Scene 4 - Soda Hall model. In a building, the
algorithm finds all the rooms, doors and windows.

Figure 13: Scene 5- Human airway. The cave-like environ-
ments are correctly handled by the algorithm.

The last scene is a medical model used in virtual endo-
scopy and representing a human airway1(49K triangles). The
results show that the algorithm is able to create satisfactory
CPG for cave-like environment (see figure 13). The number
of cells and portals and the computation times of the differ-
ent modules of the algorithm are summarized in table 1. The
remainder of the table gives some information about the res-
olution and the memory cost of the distance map. The last
row indicates the compression rate obtained when using an
octree in place of a regular 3D grid. The grid considered is
the smallest grid containing all the scene, at the same resolu-
tion as the octree, and storing all the variables necessary for
our implementation of the WST algorithm. The compression
rate is good with sparse scenes (scene 3) but decreases when
the scene geometry is uniformly distributed (scene 4). In that
case, the octree is refined to the maximum depth nearly ev-
erywhere: computation time is high and the memory cost is
still an issue. The algorithm could be adapted by treating the

model region by region and combining the CPG created for
the different regions in a final step.

Scene 1 2 3 4 5

Portal 33 25 13 402 30
Cells 31 18 22 511 49

Pre-voxelisation - 8 min. 45 min. - 30 s.
Distance Transform (sec.) 7 20 129 73 62
Octree creation (sec.) 14 21 82 140 35
Portals Detection (sec). 154 18.5 182 >2hours 80
Portals Positioning (sec.) 27 27.5 45.4 >2hours 39.6
Cells Creation (sec.) 30 2.2 102 4 2

Octree Depth 8 8 10 9 9
Memory Cost (Mo) 14 47 90 224 32
Compression 6/1 6/1 21/1 5/1 30/1

Table 1: Results

Measuring the quality of the results is a difficult task since
comparison points are missing: the generation of CPG was
commonly resolved manually and to the best of our knowl-
edge, existing automatic methods can not handle general
scenes. The results could be compared with the one given by
a BSP decomposition for the simplest model (scene 4). Un-
fortunately, this kind of decomposition is not straightforward
for the other scenes containing degeneracies and hundreds
of thousands of triangles. Furthermore, it is not clear that
a BSP decomposition could treat the cave-like scene such
as human airways. In this context, we only compared our
results with manually created decompositions, even though
they are probably not optimal in terms of visibility. For each
of our test scenes, this comparison shows that our automatic
method finds all the ’classical’ portals, but may add redun-
dant portals as well due to the remaining over-segmentation.
As future work, a post-process could be implemented to de-
tect and remove them (cf. section 6). Another indication of
the quality of the decomposition is given by the speedups
obtained when using the CPG for rendering. For this task,
we have implemented a simple cell-and-portal rendering al-
gorithm and have tested its performance on typical paths for
each test scene. Table 2 compares the frame rates (Fps) ob-
tained without any visibility test(HR), with hierarchical frus-
tum culling (HFC) only and with the portal rendering algo-
rithm coupled to HFC (CPG).

Fps HR HFC CPG

Scene min. avg. max. min. avg. max. min. avg. max.

1 7.5 8 8.5 8.5 58.9 753 23.2 188.2 1816
2 24.4 33 40.2 48.2 211 757 155 718 1650
3 6.66 7.4 7.8 13 46.1 168 183 561 1672
4 31 52 61 67 774 1632 597 1610 3170
5 16 23 26 34 156 485 42 345 2193

Table 2: Rendering performances

As expected, the speedups are up to an order of magni-
tude for the different scenes. Even if it does not prove that

c
�

The Eurographics Association and Blackwell Publishers 2003.

Haumont and Debeir and Sillion / Cell and Portal

the generated decomposition is optimal, it shows that the au-
tomatic method presented can be used in a real-life scenario
to accelerate the rendering process.

8. Conclusions
In this paper, we restated the problem of automatic cell-and-
portal graph generation in terms of 3D image segmentation.
For this task, we adapted a classical segmentation tool, the
watershed transform. The results show that our approach
finds a decomposition closely linked to the structure of the
models, while not imposing any particular modeling con-
straint. In future work, our algorithm could directly bene-
fit from the improvements already published in the water-
shed literature such as marker-controlled watershed to re-
duce over-segmentation or computational and memory opti-
mized implementations.

9. Acknowledgments
We would like to thank G. Debunne, M. Cunzi, J.-D. Gas-
cuel, C. Chaudy, P. Van Ham and N. Warzée for all their
help and advice.

References
1. Diagnostic radiology department website. ���������	����
�
�
������

��� ��������������������� � �������������������� .

2. Hybrid graphics website. ���������	����
�
�
�� ���� �� � ����! � � �"� ����#��
������$.

3. Sodahall vrml jumpthru website. ���������	������������������
 �����%���$������&����'(��)*%(��!�$������ .

4. Timo Aila. SurRender Umbra: A Visibility Determination
Framework for Dynamic Environments. PhD thesis, Helsinki
University of Technology, October 2000.

5. John M. Airey, John H. Rohlf, and Frederick P. Brooks, Jr. To-
wards image realism with interactive update rates in complex
virtual building environments. Proceedings of ACM Sympo-
sium on Interactive 3D Graphics, pages 41–50, March 1990.

6. S. Beucher. The watershed transformation applied to image
segmentation. Conference on Signal and Image Processing
in Microscopy and Microanalysis, pages 299–314, September
1991.

7. Parthajit Bhattacharya. Efficient neighbor finding algorithms
in quadtree and octree. Master’s thesis, Indian Institute of
Technology, Kanpur, 2001.

8. D. Cohen-Or, Y. Chrysanthou, and C. T. Silva. A survey of
visibility for walkthrough applications. Proceedings of SIG-
GRAPH, course notes, 2000.

9. Luebke David and Georges Chris. Portals and mirrors: Simple,
fast evaluation of potentially visible sets. Proceedings of ACM
Symposium on Interactive 3D Graphics, pages 105–106, April
1995.

10. Frédo Durand. 3D Visibility: Analytical Study and Applica-
tions. PhD thesis, Université Joseph Fourier, Grenoble I, July
1999.

11. Petr Felkel, Mario Bruckschwaiger, and Rainer Wegenkittl.
Implementation and complexity of the watershed-from-
markers algorithm computed as a minimal cost forest. Com-
puter Graphics Forum, 20(3), 2001.

12. Sarah F. Frisken and Ronald N. Perry. Simple and efficient
traversal methods for quadtrees and octrees. Journal of Graph-
ics Tools, 7(3):1–11, 2002.

13. Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and
Thouis R. Jones. Adaptively sampled distance fields: A gen-
eral representation of shape for computer graphics. Proceed-
ings of SIGGRAPH, pages 249–254, 2000.

14. Samet Hanan. Applications of Spatial Data Structures: Com-
puter Graphics, Image Processing, and GIS. Addison-Wesley,
1990.

15. Denis Haumont and Nadine Warzée. Complete polygonal
scene voxelization. Journal of Graphics Tools, 7(3):27–41,
2002.

16. Lichan Hong, Shigeru Muraki, and Arie Kaufman ans Dirk
Bartz ans Taosong He. Virtual voyage: Interactive navigation
in the human colon. Proceedings of SIGGRAPH, pages 27–34,
1997.

17. C. B. Jones. A new approach to the ‘hidden line’ problem.
Computer Journal, 14(3):232–237, August 1971.

18. F. Meyer and S. Beucher. Morphological segmentation.
Journal of Visual Communication on Image Representation,
1(1):21–46, September 1990.

19. J. B. T. M. Roerdink and Arnold Meijster. The watershed
transform: Definitions, algorithms and parallelization strate-
gies. Fundamenta Informaticae, 41(1-2):187–228, 2000.

20. Azriel Rosenfeld and John L. Pfaltz. Sequential operations in
digital picture processing. Journal of the ACM, 13(4):471–
494, 1966.

21. Gernot Schaufler, Julie Dorsey, Xavier Décoret, and François
Sillion. Conservative volumetric visibility with occluder fu-
sion. Proceedings of SIGGRAPH, pages 229–238, 2000.

22. Seth Teller. Visibility computation in densely occluded polyhe-
dral environments. PhD thesis, UC Berkeley, CS department,
1992.

23. Seth Teller and Carlo Séquin. Visibility preprocessing for in-
teractive walkthroughs. Proceedings of SIGGRAPH, pages
61–68, July 1991.

24. S. Wegner, H. Oswald, and E. Fleck. The 3d watershed trans-
form on graphs. SPIE Conference on Image Processing, pages
264–273, February 1998.

Appendix A: SKIZ definition (from 6)
Consider a set of regions Yi included in a region X . The zone
of influence of Yi is the set of all the points of X that are at a
finite geodesic distance from Yi and closer to Yi than to any
other Y j . The boundaries between the various zone of influ-
ence gives the geodesic skeleton by zones of influence (the
SKIZ) of Y in X. The SKIZ can be computed by successive
dilations of the Yi into the set X .

c
�

The Eurographics Association and Blackwell Publishers 2003.

