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Abstract—Radio propagation tools are needed to help opera-
tors to find the best setting of their network, including but not
limited to access points positioning, radiated power optimization,
and channel selection. Hence, different approaches proposed in
the literature deal with this issue. Empirical models suffer from
an unacceptable lack of accuracy while deterministic models have
to cope with exponential computational complexity. Geometric
models like ray tracing [1], [2] have been extensively developed
as they offer a good trade-off between computational load and
accuracy but they fail in simulating properly severe environ-
ments where multiple diffractions and numerous reflections hold.
Second, more accurate methods based on the resolution of the
Maxwell’s equations have been implemented [3], [4] but they
suffer from a high computational load. The MR-FDPF (Multi-
Resolution Frequency Domain Partial Flows) approach [5] was
proposed to fill in the gap by developing a multi-resolution pre-
processing for the frequency domain TLM approach. However,
the current challenge for radio propagation tools not relies on
providing signal power levels but beyond on providing a realistic
prediction of the system performance, e.g. bit error rate (BER)
or throughput estimation. From a snapshot of the current main
standards, it can be highlighted that most of them exploit OFDM
and MIMO principles. Any system level simulator should rely
with OFDM and MIMO prediction requirements. This paper
investigates the appropriateness of the MR-FDPF approach for
such task.

I. INTRODUCTION

Last years, a technological shift in wireless communications
has been observed. After few years with a major interest on
direct spreading and CDMA based radio access technologies,
OFDMA and MIMO are the two key technologies exploited
everywhere especially in Indoor like environments [6]. The
former successfully exploits frequency diversity while the
later exploits spatial diversity. These two technologies all
together allow approaching the Shannon’s capacity limit, even
in strong fading conditions. However, the practical capacity
of these networks is not known yet for two main reasons:
First, the optimal bound can be approximated only if the
transmitter exploits a feedback channel to obtain good channel
state information . Second, as wireless networks are densely
deployed, interference plays a crucial role. Predicting and
managing interference locally while achieving a global op-
timization is still an open problem [7]–[9]. Simulations and
models are very important to validate distributed algorithms
for resource allocation, but classical signal strength predic-
tions are not sufficient. A system level simulation is much
more complex because some signal features are needed. This

question arises especially when MIMO and OFDM are used
because they require a very fine resolution in space and
frequency domains respectively. It is obviously impossible to
derive an exact determinist approach as many uncertainties
are present in complex environments. It is therefore more
significant to predict some statistical parameters in addition to
the classical signal strength. Practically speaking, frequency,
spatial and time statistics are needed. Concerning OFDM, the
bandwidth is divided in several sub-channels, each one having
its own channel response hi. To evaluate OFDM transmission
performance, three kinds of information are mandatory: (i)
the average channel gain, (ii) the channel statistics, and (iii)
the sub-channels intercorrelation. Average channel gains are
predictable with classical simulation approaches but the chan-
nel statistics are more difficult to obtain. The objective is for
instance to determine the Rice parameter - if the channel is
ricean -. This problem was investigated in [10]. However the
extension to the case of wideband systems may generate a high
computational load. This question is discussed in section IV
by deriving an approach that exploits the specific structure of
MR-FDPF. Concerning MIMO, the system level performance
still relies on predicting the same three components. But
the channels are now spatially distributed. A deterministic
simulation cannot predict accurately the difference between
two antennas separated from only few centimeters. Still, a
statistical approach is preferred to derive an estimation of the
inter-channel correlation strength.

In [5], we detailed a new method based on a recursive im-
plementation of a frequency domain finite element approach,
referred to as MR-FDPF. This approach was designed for
simulating radio coverage maps from steady-state simulations.
At a first glance, this approach seems adequate neither for
wideband systems nor for MIMO systems. Albeit, we will
discuss in this paper how this method can be adapted to this
context. Further, some specific features of MR-FDPF reveal
to be even very powerful.

II. MR-FDPF APPROACH

In this section we provide the necessary background on
the MR-FDPF approach. The early version of the MR-FDPF
method has been derived for indoor like environments [5], [11]
but we also proved in [12] that it can be extended is some cases
to large urban scales, if a fake simulation frequency is used.
From our opinion however, the major interest of the method is



when hard propagation conditions occur such as in Indoor. As
described in an associated paper [13], we guess that coupling
MR-FDPF with a ray-tracer is the most promising issue for
large scale simulations. For this reason, we mostly focus in
this paper on Indoor like environments.

A. Frequency domain method
The initial ParFlow method relies on a TLM like formalism

[14]. Flows are defined on edges between nodes in a regular
grid. The waves propagate along the edges and transmissions
and reflexions are tuned with linear equations that are associ-
ated with each node. From a general point of view, this system
can be expressed under a general equation:

F (t+ dt) = W · F (t) + S(t) (1)

where F(t) is a state vector that contains all propagating flows
on the edges, and S(t) is the source vector. The matrix M is the
transmission matrix. In the frequency domain, the steady-state
problem turns into a linear system according to:

(Id −W ) · F = S (2)

where Id refers to the identity matrix, and F to the harmonic
flows vector. We showed previously how this system can be
solved in a recursive manner, exploiting a recursive dividing
procedure as represented in Fig.1. In practice, MR-FDPF

Fig. 1. father and children node flows are related with linear operations in
steady-state

approach runs in two steps:
• During the first step, ’vertical’ propagation matrices are

recursively computed. These matrices allow to update
boundary flows from children nodes to father and in-
versely. The computational cost of this part is the highest
part and is in O(n3) [5] but the interesting property is
that this preprocessing is node once whatever the source
position. This computational complexity order is further
identical to that of computing the coverage of one source
with a time domain implementation.

• During the second step, the propagation is performed
’vertically’ in the multi-resolution structure. This phase
exhibits the advantages of the method: the computational
load is only in O(n2) per source and the exact steady-
state result is obtained while all propagation paths are
accounted for. In addition, the descending propagation
process can be stopped at a certain block size, and
statistic parameters can be estimated from inward flows
as illustrated in Fig.2. This principle is detailed in next
subsection.

Fig. 2. This figure represents a block with inward flows from which local
statistics can be derived.

B. Statistic estimations

The MR-FDPF method provides a sub-wavelength reso-
lution. The simulations are extremely fine but strictly not
exact since many artifacts in the real world are not taken
into account and affect the exact value of the predicted field.
Such a fine estimation is however very interesting to estimate
local statistics because it provides a possible picture of what
the field could be in any area. For example, we presented in
[10], a study on signal strength statistics in some blocks and
comparison with measurements exhibited a good agreement.
The principle was to measure signal strength variations in a
free-space block as represented in Fig.2. From a given block,
for which the inward flows have been estimated from the rest
of the environment, we can proceed to a local analysis of the
incoming flows because they are directly related to the field
values inside the block. In a block, the incoming flows allow
to characterize the complete field inside.

Ψ = Wd · Fin (3)

where Fin is the vector of incoming flows, Ψ the vector field
containing all field in the block and Wd is the downward
matrix. Thus, the field values are obtained by linear combina-
tions of the incoming flows. In a block, the first meaningful
parameter is the average SNR, proportional to the average
received power Γ̄ = 〈|Ψ|2〉 easily derived as:

Γ̄ =
1

Nx ·Ny
F⊥in ·W⊥d ·Wd · Fin (4)

where Nx and Ny are the block dimensions. Let be considered
the standard value decomposition (SVD) Wd = U⊥ΣV where
U and V are unitary matrices and Σ is a diagonal matrix. Note
that we have also W⊥d Wd = V ⊥ · Λ · V , wigth Λ = Σ⊥ · Σ.
Then, the inward flows can be projected in the eigenspace
Gin = V · Fin leading to a very efficient computation of the
average power in a block:

Γ̄ =
1

Nx ·Ny
G⊥in · Λ ·Gin (5)

The SVD decomposition is also very interesting to determine
the main mode of the block, i.e. the inward flows that penetrate



the most efficiently in the block. Indeed, the inward flow
vector aligned to the highest singular value corresponds to
the most efficient solution. However, the SVD decomposition
cannot be used directly for computing higher order moments
and the mean amplitude field. In [10], we explained how the
fading strength can be estimated with the k parameter from
the first and second moments of the envelope distribution. The
envelope first moment A is given by:

Ā =
1

Nx ·Ny

∑
j

|Ψ(j)| = 1

Nx ·Ny

∑
j

|uj · Σ ·Gin| (6)

where ui is the ith eigen vector of U . Then, according to [10]
the fading parameter is estimated with:

k =

√
1− Γ−Ā2

Γ2

1−
√

1− Γ−Ā2

Γ2

(7)

III. MIMO CHANNEL PREDICTIONS

MIMO systems are now very usual in high rate wireless
communications [6], [15]. They proved being very efficient in
many context especially in Indoor like environment as they
increase the diversity degree of radio links. However, the
MIMO gain depends on the fading strength and inter-channel
correlation [16]. The fading strength of each channel can be
estimated as described above, while the intercorrelation can
be characterized with the intercorrelation matrix defined as:

Rhh = E〈h.h⊥〉 (8)

where h is the steady-state channel vector. Predicting this cor-
relation is a hard issue in simulation as wide and short scales
phenomna have to be considered simultaneously because the
different antennas are put together in a very close space. We
know discuss how MR-FDP offers a good framework for such
task.

A. Integration in MR-FDPF

To obtain a simple but efficient approach we use the
matricial nature of the MR-FDPF engine. Let a transmitter
be located in a block Bs and a receiver in a boc Br. In
MR-FDPF, directive radiation patterns can be generated with
a set of multiple point source fitting with a reference radiation
pattern r(θ) [17]:

r(θ) =
∑
k∈Bs

sk · e−jβδ(k,θ) (9)

where sk; k ∈ Bs correspond to the complex values of the
equivalent sources in the kth point in Bs. Then, the source
beamforming vector Vb(s) = {sk; k ∈ Bs} is derived from
the discretized radiation pattern Zθ in association with a
smoothing constraint represented by a matrix Sm, leading to
:

Vb(s) =
H⊥

H⊥H + µSm
Zθ (10)

Whatever the radiation pattern, the same radiated field can be
also obtained from the boundary outgoing flows of Bs, noted
Fout(s) and defined by :

Fout(s) = Wu · Vb(s) · S0 (11)

where Wu is the reverse matrix of Wd and S0 is the complex
coefficient of the source.

Let us now switch to the receiver block. Thanks to the
reciprocity theorem, the beamforming vector in reception can
be derived in a similar way, allowing to express the received
field by using the beamforming vector (10) of the receiving
antenna:

Ψ = Vb(r)
⊥ ·Ψ(d) (12)

where Ψ(d) is the field vector in the block B. As above, we can
also simplify the computation by exploiting the linear relation
between boundary incoming flows and filed values leading to:

Ψ = Vb(r)
⊥ ·Wd · Fin(d) (13)

Then, MIMO simulations can be derived by exploiting (11)
and (13) and defining different beamforming vectors for trans-
mission and reception VS = {Vb1(s), Vb2(s), . . . , VbN (s)} and
VR = {Vb1(r), Vb2(r), . . . , VbN (r)} respectively. To compute
the correlation matrix with (8), the expectation requires differ-
ent realization. We propose to use a wide set of beamforming
antennas, and the expectation can be performed over random
selections of antennas in these sets. To avoid a high increase
of the computational load, each outgoing flow from s, fk(s)
is propagated solely in the multi-resolution structure to obtain
the incoming flows in the destination block. Then, the linear
relationship between the source and destination flows are
obtained by the propagation matrix WP (s, d) which relates
each source flow to each destination flow:

Fin(d) = WP (s, d) · Fout(s) (14)

Therefore, the computational complexity of this approach
is independent on the beamforming vectors set, but only
proportional to the source block size. This approach allows
simulating partially correlated MIMO channels that take into
account the real environment.

IV. WIDEBAND PREDICTIONS

A. Wideband characteristics

In, OFDMA, the bandwidth is subdivided into sub-channels
[8], [18]. The fading in each sub-channel is supposed flat and
therefore the carrier spacing represents the maximal frequency
resolution required for measuring the frequency response. In
practice however, this resolution is often much fine than the
experimental frequency correlation, and in practice, several
adjacent channels are affected with a correlated fading. In
802.11a for instance, the channel width of 20MHz is divided
into 52 sub-channels spacing with a carrier spacing equal
to 312.5kHz. Full resolution frequency response estimation
would require 52 samples. The optimal frequency resolution
can be also estimated from the channel time spreading with
∆f < 1/Ts where Ts is the channel time spreading. In usual



Indoor environments, time spreading is in the order of few
hundred nanoseconds around 2.4GHz. This led us considering
a frequency resolution of 1MHz. A full bandwidth estimation
of the frequency response thus needs about 20 samples in the
frequency domain.

From such simulation, we need a statistical estimation
of the channel characteristics. The fading strength is still
important for each sub-channel, but the frequency channels
inter-correlation is of primary importance. Let us note hj , the
channel associated with carrier j,and h = [hj ]

t, the channel
vector. The inter-correlation can be represented with the cor-
relation matrix defined in (8), where the channel coefficients
hi now correspond to the frequency carriers.

B. Implementation in MR-FDPF

Wideband simulation is a very challenging issue for MR-
FDPF since this approach is based on a steady-state study.
Therefore, the complete propagation mechanism detailed in
section II should be done several times. The main drawback
of this approach is that the high computational load of the
pre-processing phase is repeated as many times as the number
of independent carriers. Therefore, the main limit for this
wideband approach is related to the need of developing the
whole preprocessing for each carrier frequency. This generates
a large computational overload but also a large increase of
memory resource needs, since all vertical propagation matrices
have to be stored and maintained in the random access
memory. if the bandwidth is very small compared to the carrier
frequency, an approximated computation may appear efficient.
Let us note the solution at the central frequency:

F (f0) = (Id −W (f0))
−1 · S (15)

where W (f0) is the propagation matrix, noted W0 in the
following. The same expression can be derived for another
frequency according to:

F (f0 + δf ) = (Id −W (f0 + ∆f))
−1 · S (16)

Note that W (f0 + ∆f) = e(−j2π∆f∆t)W (f0). ∆t relies on
the inverse of the carrier frequency, while ∆f on the system
bandwidth. Then one have ∆t · ∆f << 1, which allows to
write (16) as:

F (f0 + δf ) = (Id −W0 +Wδf )
−1 · S (17)

where Wδf ≈ −j2π∆f∆t ·W0 and verifies ||Wδf || << 1.
Now, introducing F (f0) into (17) provides:

F (f0 + δf ) =
(
Id + (Id−W0)−1 ·Wδf

)−1 · F (f0) (18)

which can be expanded with a Taylor series as:

F (f0 + δf ) =
(
Id − (Id−W0)−1 ·Wδf+(
(Id−W0)−1 ·Wδf

)2
+ . . .

)
· F (f0)

(19)

At first order, one obtain:

F (f0 + δf ) ≈ F (f0) + F (1)(δf) (20)

with
F (1)(δf) = −(Id−W0)−1 ·Wδf · F (f0) (21)

This approach is very promising as it becomes possible to
compute and keep in memory the matrices computed for
a unique frequency. Further, the computational overload for
the propagation phase is acceptable. The solution flows at
f0 are used as sources, then propagated locally to their first
neighbors with Wδf and finally propagated vertically in the
multi-resolution structure over the whole space. If the first
order approximation appears not sufficient, a second order
approximation can be assessed by adding a third term equal
to

F (2)(δf) = −(Id−W0)−1 ·Wδf · F (1)(δf) (22)

which can be generalized to higher order terms:

F (n+1)(δf) = −(Id−W0)−1 ·Wδf · F (n)(δf) (23)

At each step, the computational cost is constant.

V. CONCLUSION

In this paper, we discussed three important contributions
to adapt MR-FDPF to OFDM/MIMO systems. The first con-
tribution concerns the estimation of a fading channel model,
that was already presented in a previous paper [17]. We here
improve this approach by considering an eigen decomposition
of inward flows in a homogeneous receiving block. The
second contribution is the extension to MIMO simulations by
considering radiation patterns in source and reception blocks.
The third contribution concerns wideband systems: MR-FDPF
was optimized to compute a frequency domain impulse re-
sponse. Then we derived a Taylor series based approximation
to overcome the computational overload associated with a
multiple harmonic approach.

This paper exhibits the good properties of MR-FDPF for
MIMO/OFDM systems. In a near future, we will have to
validate these new features with experimental measurements.
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