
HAL Id: inria-00512553
https://hal.inria.fr/inria-00512553

Submitted on 30 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Model-Driven Engineering to generate QoS
Monitors from a formal specification

Sébastien Saudrais, Olivier Barais, Laurence Duchien

To cite this version:
Sébastien Saudrais, Olivier Barais, Laurence Duchien. Using Model-Driven Engineering to generate
QoS Monitors from a formal specification. Proceedings of the Aquserm 2006, 2006, Hong Kong, China,
China. �inria-00512553�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50061404?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00512553
https://hal.archives-ouvertes.fr


Using Model-Driven Engineering to generate QoS Monitors from a formal
specification

Sébastien Saudrais
IRISA France, Triskell Project1

ssaudrai@irisa.fr

Olivier Barais
IRISA France, Triskell Project

barais@irisa.fr

Laurence Duchien
INRIA France, Jacquard Project

duchien@lifl.fr

Abstract
In the domain of soft real-time application design, the

gap between component-specification models and the im-
plementations often implies that the implementations can-
not fully take advantage of the specification models. To limit
this gap, this paper proposes an approach to generate a QoS
monitor from the timed behavior specification. To support
this approach, we rely on two different component models:
one focused on formal description and the other on prac-
tical implementation. Those models are interconnected by
model transformation, using a Model-Driven Engineering
style.

1 Introduction

Recently, hopes that modeling could take an important
role in the software engineering process have been refuelled
by so-called MDE (Model-Driven Engineering) initiatives,
most prominently advanced by IBM with EMF, the OMG
(Object Management Group) with the MDA or by Microsoft
with Software Factories. The underlying idea is to promote
models to be the primary artifacts of software development,
making executable code a pure derivative. According to this
development paradigm, software is generated with the aid
of suitable transformations from a compact description (the
model) that is more easily read and maintained by humans
than any other form of software specification in use today.

In the soft-real time domain, the industry is interested in
abstract component models to build systems. Such models
improve the reusability of software modules because they
provide three main features [7] for designing soft real time
applications: (1) a composition model that provides opera-
tors able to compose existent libraries of components, (2) an
abstraction level for defining components and connectors

1This work was funded by ARTIST2, the Network of Excellence on
Embedded Systems Design

with only precise and yet abstract properties of the compo-
nents, (3) a set of analysis tools to validate architectural de-
scriptions. To enable an architectural analysis, the specifi-
cation activity must add a time information within the com-
ponent interface specification. Nevertheless, even though
the real-time system community and the software engineer-
ing community use the component paradigm, the details are
not necessarily the same. Consequently, although standards
such as AUTOSAR [3] and sysML [?], for real-time sys-
tems, or UML 2.0 [13], for software engineering, promote
the concept of component, there is not currently any com-
ponent model designed to specify a real-time application by
assembling components with a clear semantic and a clear
mapping with a real-time framework such as Giotto [8] or
Simulink [6].

Our work is motivated by the need to provide a bridge
between the two communities to take the best of the differ-
ent approaches: indeed software engineering provides stan-
dards and tools for the design of system and real time sys-
tem engineering community provides semantic and tools for
analysis. Consequently, we aim at preserving the correct-
ness verification techniques of real-time components, while
supporting component-based software architecture. Our ap-
proach aims at applying formal composition of specifica-
tions while supporting conventional source-code-based im-
plementations. In this way, our paper proposes a Model-
Driven Engineering process to generate a QoS monitor of
the component system from timed-behavior specifications
as illustrated in Figure 1.

The rest of this paper is organized as follows. Section 2
provides details on the languages and metamodels used in
our approach. Section 3 details the component model and
the real-time framework used for the implementation layer
and explains the transformation process. Finally, Section 4
describes some related work and Section 5 concludes and
discusses some future work.

1



Timed 
Automaton of 
Component

Timed 
Automaton of 
Component

Timed 
Automaton of 
Component

Timed 
Automaton of 
Component

Timed 
Automaton of 
the System

State Timed 
Automaton of 
the System

Monitor
In Giotto

Model
Transformation

Model
Transformation

Compostion of 
components Implementation

of the System
Monitors

Traditionnal Develpment

Figure 1. Overview of the approach

2 Analysis and design model

Several works in different domains converge on the use
of components, ports, and connectors to describe a software
architecture [11]. Our approach selects a suitable subset
of UML 2.0 with a special emphasis on component-based
architecture design with time-related features.

Furthermore, in our approach, a specification of a system
consists in defining its architecture. This architecture is an
abstract system specification consisting primarily of com-
ponents described in terms of their behaviors, their temporal
specification, their interfaces and the component assembly.
This section presents the structural concepts used to define
the architecture and the formalisms used to define the be-
havioral and the temporal properties of components.

2.1 Structural elements of the component
model

The structural part of our component model is heavily
inspired from the UML 2.0 architecture diagram. Never-
theless, contrary to UML 2.0, we define an abstract model
with fewer concepts to limit the complexity of the language
that the architect has to manipulate and to remove all the
semantic variation points existing in UML 2.0.

Consequently, in our component model, a component
provides services and may require some services from other
components. Services can only be accessed through explic-
itly declared ports. A port is a binding point on a component
that defines two sets of interfaces: provided and required.

Our component model distinguishes two kinds of com-
ponents: primitives which will contain the code, and com-
posites which are only used as a mechanism to deal with
a group of components as a whole, while potentially hid-
ing some of the features of the subcomponents. A primi-
tive component can be seen as a basic building block in the
component assembly. Our component model does not im-
pose any limit on the levels of composition. The model thus
provides two mechanisms to define the architecture of an
application: connector between ports of components, and
encapsulation of a group of components into a composite.

A connector associates a component’s port with a port lo-
cated on another component. Two ports can be bound with
each other only if the interfaces required by one port are
provided by the other and vice versa. The services provided
and required by the child components of a composite com-
ponent are accessible through delegated ports, which are
the only entry points of a composite component. A dele-
gated port of a composite component is connected to only
one child component port.

2.2 The behavioral part

With the interface and method definitions, a component
declares structural elements about provided and required
services. the behavioral part of the component model adds
information about the behavior of a component. The behav-
ior specification defines the component’s interactions with
its environment. This behavior is declared by a timed au-
tomaton [2] describing the sequences of messages that may
be exchanged between the component and its environment
with timed properties.

A timed automaton is an automaton extended with
clocks, which are a set of variables increasing uniformly
with time. Formally a timed automaton is defined as fol-
lowed :

Definition 1. (Timed Automaton)
A timed automaton is a tuple A =< S,X,L, T, ι >

where :

• S is a finite set of locations,

• X is a finite set of clocks. To each clock, we assign a
valuation v ∈ V , v(x) ∈ R+ for each x ∈ X .

• L is a finite state of labels,

• T is a finite state of edges. Each edge t is a tuple <
s, l, ψ, , s′ > where s, s′ ∈ S, l ∈ L, ψ ∈ ΨX is the
enabling condition. ΨX is the set or predicates on X
defined as x ∼ c or x − y ∼ c where x, y ∈ X and
∼∈ {<,≤,=} and c an integer.



1

AudioPlayer

IAPoutsound

void launch()
void sound()

Decoder
IDinsound

IDoutsound

void launch()
void sound() void 

getSound()

Extraction
IEinsound

void 
getSound()

Source

ISread IEread

void Read()

void Read()ISlaunch

IElaunch

void 
launch()

void launch()

Launch
void launch()

S0
idle

S1
launched

?launch

S2
waiting

!start;x:=0

S3
receipt

?getSound
;x<4;x:=0

S4
working

x=0;
y:=0

!Sound
;y<2

Figure 2. Example of an audio player compo-
nent

• ι is the invariant of A. ι ∈ ΦX where ΦX is the set of
functions φ : S → ΨX mapping each location s to a
predicate ψ.

A state of an automaton is a location and a valuation of
clocks who satisfies the invariant of the location. We can
change of state by two types of transition : discrete transi-
tion and timed transition.

The timed automaton of composite is the composition
of the timed automata of the components of the assembly.
This timed automaton is the expected behaviour of the as-
sembly with respect of timed QoS. The timed properties in
the timed automaton refer to QoS properties. For exam-
ple, at the implementation level, if the QoS wants to have
a response in a specified time, the behaviour is correct if
the response arrives in time. If the response is too late, the
component does not stop but the QoS is not good and the
user must be inform of this violation. We will transform
automatically the timed behaviour to a monitor which can
check the correct execution of the components.

2.3 Example

Fig. 2 illustrates the model with an example of com-
ponent AudioPlayer. The AudioPlayer component
provides an IAPoutsound interface that contains meth-
ods launch and sound. It is composed of 3 compo-
nents: Decoder, Extraction and Source. The left
side shows the structural representation of the component in
UML 2.0. The right side of Fig. 2 shows an timed automa-
ton A1 describing all possible behaviors of the Decoder1.
In this automaton A1, we have two clocks: x and y.
The first one is used for representing the response time
of ?getSound who has to be received less than each 4
units of time. The second clock is used for modelling the
execution time of the transformation of ?getSound into
!sound which takes less than 2 units of time.

1In Fig. 2, in order to simplify the automaton, we only represent the receipt of
message for a method call and the send of message for a method receipt.

3 A model oriented approach for code gener-
ation

From the component-based software architecture repre-
sentation, our approach generates a QoS monitor based on
the Giotto framework [8]. This section presents the Giotto
framework. We also discuss the choice of a model trans-
formation approach to generate the code from the specifica-
tion to the implementation. Finally, we provide details on
the transformation of an architecture specification with time
constraints to the Giotto Framework.

3.1 The Giotto abstractions

Giotto is a real-time framework for embedded control
systems running on possibly distributed platforms. A Giotto
program explicitly specifies the exact real-time interaction
of software components with the physical world. The
Giotto compiler automatically generates timing code that
ensures the specified behavior on a given platform. The
Giotto model is based on four main concepts:

• ports,

• tasks,

• drivers,

• and modes.

In Giotto, all communication are performed through
ports. Giotto defines five kinds of ports. Two kinds of port
(Sensor - Actuator) manage the input and the output inter-
actions with the hardware layer. Two others kinds of port
(Input - Output) manage the interactions with the software
layer. They are used to exchange data between concurrent
tasks. Finally, the private ports represent the state of a task.
They are inaccessible outside the task in which they are de-
fined.

In Giotto, a task has a set of inputs and outputs ports, a
set of private ports and a function which infers the outputs
from the input ports. This function is implemented by a
sequential program and is written with a common program-
ming language. For each function, the Giotto framework
has to know the worst-case execution time of the function
on each available CPU.

The third type of elements in Giotto is the driver. A
driver is a function that converts the value of sensor ports
or outputs ports of the current mode to values for the in-
put ports. Driver are guarded: this gard is a predicate on a
sensors and output ports of a mode.

The main concept of Giotto is the mode. A mode con-
sists of a period, a set of output ports for the mode and
a set of freq. A freq defines the frequency of an action
during the period. This action can be an actuator update



Figure 3. Giotto meta-model

(actFreq), a task invocation ((taskFreq) or a switch to
another mode (ExitFreq). A mode switch defines a tran-
sition from one mode to another mode. For this purpose,
a mode switch specifies a target mode and a driver. The
guard of the driver is called the exit condition, as it deter-
mines whether the switch occurs. The Giotto meta-model is
presented in Fig. 3.

3.2 From the specification to the imple-
mentation

From the specification of a component, we generate the
skeleton of the business component and the configuration
descriptors. From the timed automata, we generate the
Giotto layer implementation that controls the respect of the
time constraint in the architecture of the architecture. In-
deed, Giotto separates the system’s behaviour from its im-
plementation. Then we have three levels in the implementa-
tion architecture: functional, time interaction and platform.
In the functional level, we find business components gen-
erated from the specification of services and the abstract
implementation. In the time interaction level, we find the
Giotto layer generated from the timed automata and the time
constraints. Finally, in the platform level, we find the spec-
ification of the platforms as the topology of CPUs and net-
works and the performance. Choosing a MDE approach
has two main benefits for the QoS. The time interaction
is decoupled from the functionalities. The framework im-
proves the separation of concerns. Moreover, the genera-
tive approach improves the productivity of the development

process. To define a MDE approach, we use Kermeta a
model oriented language. It allows the design of the dif-
ferent meta-model of the generative process and the imple-
mentation of the transformation itself.

Kermeta: a model oriented language Kermeta2 is an
open source meta-modeling language developed by the
Triskell team at IRISA. It has been designed as an exten-
sion to the EMOF [14]. Kermeta extends EMOF with an
action language that allows specifying semantics and be-
havior of meta-models. The action language is imperative
and object-oriented. It is used to provide an implementa-
tion of operations defined in meta-models. A more detailed
description of the language is presented in [12]. The Ker-
meta action language has been specifically designed to pro-
cess models. It includes both Object-Oriented (OO) fea-
tures and model-specific features. Kermeta includes tradi-
tional OO static typing, multiple inheritance and behavior
redefinition/selection with a late binding semantics.

To implement the transformation process between our
component model and the Giotto, we have chosen Kermeta
for four reasons. First, it gives a graphical and textual rep-
resentation for designing the different meta-models iden-
tified in the process. Second, the language allows imple-
menting a composition semantic in the component model
by adding the algorithm in the body of the operations de-
fined in the component metamodel. Third, Kermeta is suit-
able for model processing. It also includes specific concepts

2http://www.kermeta.org



such as opposite properties (i.e. associations) and handling
of object containment. In addition to this, convenient con-
structions of the Object Constraint Language (OCL), such
as closures (e.g. each, collect, select), are also available
in Kermeta. Finally, Kermeta tools are compatible with the
Eclipse Modeling Framework (EMF) which allows us to use
Eclipse tools to edit, store, and visualize models. This sec-
ond argument is more technical than scientific, but it is very
interesting to tool quickly the different meta-model defined
in the approach.

Generating the Giotto layer The assembly of compo-
nents at the specification level gives a timed automaton de-
scribing the behaviour of the complete system. We will
transform this automaton to Giotto to monitor the imple-
mentation of the components. If a component does not have
a correct behaviour, Giotto can inform the user that the level
of QoS is no longer correct. The real components are devel-
oped by traditionnal methods and must only inform Giotto
of the arrival of messages.

The first step of the transformation is to transform the
timed automaton. From the automaton A1, we will cre-
ate the automaton A2 as illustrated in Fig. 4. The second
automaton represents the states of the first automaton with
discrete and time transitions. It can be viewed as a simula-
tion automaton because each state represents the system at a
given time. For the example, locations s0 and s1 have only
discrete transitions. The two clocks are reinitialized before
being used so no timed transitions are used before their ini-
tialization. Each timed transition increases the time unit by
1 so for the state wait, which must hold no more than four
units of time, it is transformed to four states.

The second step of the transformation is to produce the
Giotto code. This step is made with the help of MDE. A
model transformation helps us to create the Giotto model.
A pretty printer was created for the Giotto meta-model.
This generates the textual representation used as input to the
Giotto compiler as illustrated in Fig. 6. The meta-model of
timed automata with states is represented in figure Fig. 5.
The main idea of the transformation is to create one mode
for each states of the timed automata and mode switches for
transitions. The code produced for the example is:

The time unit used for our timed automata is sec-
ond wheras for Giotto it is millisecond. For example,
the state S2 Waiting x = 1 has 2 transitions: one
discrete ?getSound and 1 time transition so the cor-
responding mode waitingone() has 2 mode switches.
The discrete transition is transformed to a mode switch
exitfreq 1 do workingone(CGET ) where CGET ver-
ifies if the message ?getSound has arrived. The timed
transition is transformed to a mode switch exitfreq 1 do
waitingtwo(True) which means if nothing happen during
the period the automaton changes of state with a time transi-

S0
idle

S1
launched?launch

S2
waiting

x=0

!start

S2
waiting

x=1

1

S3
receipt

?getSound

?getSound

S2
waiting

x=2

1

S4
working
y=0;x=0

?getSound

S2
waiting

x=3

1

?getSound

!Sound

S4
working
y=1;x=1

1

!Sound

S0
idle

S1
launched

?launch

S2
waiting

!start;x:=0

S3
receipt

?getSound;
x<4;x:=0

S4
working

x=0;
y:=0

!Sound;
y<2

A1 A2

Figure 4. Transformation of automata

tion. The line taskfreq 1 do Idle(getMessages) updates
the arrival of messages.

The addressed domain is QoS so the program will not
stop if a message is not received. For the example, we in-
troduce a single mode error. In reality, different modes will
be introduced depending of the policy of QoS: allowing five
kinds of error and enabling the reconfiguration of the assem-
bly for example.

3.3 Concrete implementation consistency

Our approach aims at removing the gap between the
techniques used by the developers to implement the appli-
cations and the model used by the designer/the architect to
specify and analyze their system. The use of model trans-
formation techniques ensures that the concrete implementa-
tion has the same time constraints than the specification and
the abstract implementation. At the concrete implementa-
tion level, the respect of these constraints is checked by the
addition of a real time controller on the component to in-
teract with the QoS monitor. Besides, the use of Giotto as a
concrete implementation target allows the architect to check
if the specification of the platform is constrained enough to
obey the time constraints.

The main interest of our approach consists in generat-
ing the concrete implementation time consistency check-
ing from the specification. The Giotto real time framework
guarantee the time correctness. Consequently, the imple-
mentation of the adaptation policy in the case of QoS con-



Figure 5. Meta-model of timed automata with
state

tract violation does not tangle the functional components.
For the moment, the main limitation of the approach is the
risk of state explosion of the timed automata increased by
the discretization of the different clocks in the transforma-
tion process. This risk is limited with the calculation of the
highest discretization step for each clock.

4 Related work

Several research results have shown the usefulness of
specific languages to describe the software architecture.
Thanks to the precise semantics of such languages, tools
suites have been developed to analyze the consistency of
a software architecture and to prototype it. For example,
SOFA [9] provides a specific language that extends the
OMG IDL to specify the architecture of component based
software. It also provides a process algebra to specify the
external behavior of component. However, using SOFA the
architect cannot describe the required and provided QoS of
components. The AADL standard [15] is one of the first
ADL that provides mechanism to specify the QoS level of
component interface [4]. However, AADL is a low abstrac-
tion model, strongly connected with the implementation.
Besides, AADL is not yet connected with tools that use the
QoS information to analyze the consistency of the architec-
ture.

At the validation level, the OMEGA project [1] provides
formal methods to check the consistency of UML 2.0 mod-
els. The OMEGA approach deals with the specification
level only. It does not provide any global development pro-
cess that includes source code development. Uppaal [10]
is an integrated tool environment for modeling, validation
and verification of real-time systems modeled as networks
of timed automata. Their results are only on the model
level and not linked to implementation. Consequently, the

start idle{
mode idle() period 1000 {
actfreq 1 do motion(Move);
exitfreq 1 do launched(CLAU);
taskfreq 1 do Idle(getMessages);

}
mode launched() period 1000 {
actfreq 1 do motion(Move);
exitfreq 1 do waitingone(CSTA);
taskfreq 1 do Idle(getMessages);

}
mode waitingone() period 1000 {
actfreq 1 do motion(Move);
exitfreq 1 do workingone(CGET);
exitfreq 1 do waitingtwo(True);
taskfreq 1 do Wait(getMessages);

}
mode waitingtwo() period 1000 {
actfreq 1 do motion(Move);
exitfreq 1 do workingone(CGET);
exitfreq 1 do waitingthree(True);
taskfreq 1 do Wait(getMessages);

}
mode waitingthree() period 1000 {
actfreq 1 do motion(Move);
exitfreq 1 do workingone(CGET);
exitfreq 1 do waitingfour(True);
taskfreq 1 do Wait(getMessages);

}
mode waitingfour() period 1000 {
actfreq 1 do motion(Move);
exitfreq 1 do workingone(CGET);
exitfreq 1 do error(True);
taskfreq 1 do Wait(getMessages);

}
mode workingone() period 1000{
actfreq 1 do motion(Move);
exitfreq 1 do waitingtwo(CSOU);
exitfreq 1 do workingwo(True);
taskfreq 1 do Working(getMessages);

}
mode workingtwo() period 1000{
actfreq 1 do motion(Move);
exitfreq 1 do waitingthree(CSOU);
exitfreq 1 do error(True);
taskfreq 1 do Working(getMessages);

}
mode error() period 1 {
actfreq 1 do motion(Move);
taskfreq 1 do Error(getMessages);

}
}

Figure 6. generated code

OMEGA project is complementary to our approach.

At the implementation level, Qinna [17] is a component-
based QoS architecture for open system. They integrate
QoS on their architecture but they don’t integrate QoS
specification in their model. Chan et al. proposed a
model-oriented framework for monitoring at runtime extra-
functional properties[5]. They address probabilistic tem-
poral properties. Their monitoring is made at runtime
by checking constraints written in PCTL. They also make
a .NET-based implementation of their framework. The
SeCSE[16] project aim to create methods, tools and tech-
niques for systems integrators and service providers. It will
integrate tools and techniques to provide a SeCSE devel-
opment environment. Their approach is service-based and
they take care of QoS but they target only web-services.



5 Conclusion and perspectives

Correctly designing and implementing a real-time sys-
tem is usually an error-prone task because of the gap
between the specification model and the implementation
model. This paper is a step toward bridging this gap. It
proposes a unified approach to design and to implement
component based systems. This approach aims at assisting
architects in the design and in the implementation of soft-
real-time systems by providing a set of tools that generate
the QoS monitors from the specification of those systems
using a Model Driven Engineering style. This approach is
based on an extended UML 2.0 standard to design the ser-
vices provided by component, to specify the component and
to give a first abstract implementation of the systems. It
clearly separates the functional level, the timing interaction
level at the implementation level.

We are currently working on a proof of correctness for
the transformation process. This proof must ensure that
the composition mechanism, at the concrete implementa-
tion level, is valid with respect to the composition mecha-
nism at the abstract level. This is needed to preserve the
results gained by validation at the abstract implementation
phase.

Finally, we intend to test our approach in the context
of the HRC componeent model provided in the SPEEDS
project [18].

References

[1] Webpage of the OMEGA IST project. http://www-
omega.imag.fr/.

[2] R. Alur and D.L. Dill. A theory of timed automata.
Theor. Comput. Sci., 126(2):183–235, 1994.

[3] AUTOSAR partners. AUTomotive Open System AR-
chitecture, August 2005. Version 1.5 light version.

[4] A. Beugnard, J-M. Jézéquel, N. Plouzeau, and
D. Watkins. Making components contract aware.
Computer, 32(7):38–45, 1999.

[5] K. Chan, I. Poernomo, H. W. Schmidt, and J. Jayaput-
era. A model-oriented framework for runtime mon-
itoring of nonfunctional properties. In Ralf Reuss-
ner, Johannes Mayer, Judith A. Stafford, Sven Over-
hage, Steffen Becker, and Patrick J. Schroeder, edi-
tors, QoSA/SOQUA, volume 3712 of Lecture Notes in
Computer Science, pages 38–52. Springer, 2005.

[6] J. B. Dabney and T. L. Harman. Mastering
SIMULINK. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1997.

[7] D. Garlan and M. Shaw. An introduction to soft-
ware architecture. In V. Ambriola and G. Tortora, ed-
itors, Advances in Software Engineering and Knowl-
edge Engineering, volume 1, pages 1–40. World Sci-
entific Publishing Company, 1993.

[8] T.A. Henzinger, C.M. Kirsch, and B. Horowitz.
Giotto: A time-triggered language for embedded pro-
gramming. Proceedings of the IEEE, 91(1):84–99,
January 2003.

[9] T. Kalibera and P. Tuma. Distributed component sys-
tem based on architecture description: The sofa expe-
rience. In On the Move to Meaningful Internet Sys-
tems - DOA, CoopIS and ODBASE, pages 981–994,
London, UK, October 2002. Springer-Verlag. ISBN:
3-540-00106-9.

[10] Kim G. Larsen, Paul Pettersson, and Wang Yi. UP-
PAAL in a Nutshell. Int. Journal on Software Tools for
Technology Transfer, 1(1–2):134–152, October 1997.

[11] N. Medvidovic and R. N. Taylor. A classification and
comparison framework for software architecture de-
scription languages. In IEEE Transactions on Soft-
ware Engineering, volume 26, page 23, January 2000.

[12] P-A. Muller, F. Fleurey, and J-M. Jézéquel. Weaving
executability into object-oriented meta-languages. In
Lionel C. Briand and Clay Williams, editors, MoD-
ELS, volume 3713 of Lecture Notes in Computer Sci-
ence, pages 264–278. Springer, 2005.

[13] Object Management Group OMG. Unified Modeling
Language: Superstructure, August 2003. Version 2.0.

[14] Object Management Group OMG. Meta-Object Facil-
ity (MOF) Specification, 2005. Version 2.0.

[15] As-2 Embedded Computing Systems Committee
SAE. Architecture Analysis & Design Language
(AADL). SAE Standards no AS5506, November
2004.

[16] Walkerdine J. Sommerville I. Sawyer P., Hutchison J.
Faceted service specification. In Proceedings of Work-
shop on Service-Oriented Computing Requirements
(SOCCER), August 2005.

[17] J.C. Tournier, J.P. Babau, and V. Olive. Qinna, a
component-based QoS architecture. In G.T. Heine-
man, I.Crnkovic, H.W. Schmidt, J.A. Stafford, C.A.
Szyperski, and K.C. Wallnau, editors, CBSE, volume
3489 of Lecture Notes in Computer Science, pages
107–122. Springer, 2005.



[18] A. Metzner B. Josko T. Peikenkamp E. Bde W. Damm,
A. Votintseva. Boosting re-use of embedded automo-
tive applications through rich components. In FIT’05
Foundations of Interface Technologies. Elsevier Sci-
ence, August 2005.


