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Finding Seure Curves with the Satoh-FGHAlgorithm and an Early-Abort StrategyMireille Fouquet1, Pierrik Gaudry1, and Robert Harley21 LIX, �Eole polytehnique, 91128 Palaiseau Cedex, Frane2 ArgoTeh, 26 ter rue Niola��, 75012 Paris, FraneAbstrat. The use of ellipti urves in ryptography relies on the abilityto ount the number of points on a given urve. Before 1999, the SEAalgorithm was the only eÆient method known for random urves. ThenSatoh proposed a new algorithm based on the anonial p-adi lift ofthe urve for p � 5. In an earlier paper, the authors extended Satoh'smethod to the ase of harateristis two and three. This paper presentsan implementation of the Satoh-FGH algorithm and its appliation to theproblem of �nding urves suitable for ryptography. By ombining Satoh-FGH and an early-abort strategy based on SEA, we are able to �nd seurerandom urves in harateristi two in muh less time than previouslyreported. In partiular we an generate urves widely onsidered to be asseure as RSA-1024 in less than one minute eah on a fast workstation.1 IntrodutionSine ellipti urve ryptosystems were �rst proposed in the mid-eighties byKoblitz [Kob87℄ and Miller [Mil87℄, their eÆieny and seurity have been thefous of intense study. In reent years, they have beome widely aepted asan alternative to ryptosystems based on fatorisation or disrete logarithms in�nite �elds, espeially for onstrained environments.One of the initial steps in protools based on ellipti urve ryptography is togenerate a suitable urve de�ned over a �nite �eld. To ensure that the system isseure, the urve must be hosen to have a number of points whih is divisible bya large prime so that omputing disrete logarithms on the urve is intratableusing known attaks. Hene it is neessary to know the ardinality of the urve.Among the ellipti urves de�ned over a given �nite �eld, there are somelasses of urves with partiular properties that are useful for ounting pointsor for aelerating arithmeti operations ourring in the protools. Howeverhoosing suh urves an be dangerous.Perhaps the most striking example is trae 1 urves. The number of pointsover Fq is simply q. However Smart [Sma99℄, Satoh-Araki [SA98℄ and Semaev[Sem98℄ independently disovered a polynomial-time attak.Another attak due to Menezes-Okamoto-Vanstone [MOV91℄, and gener-alised by Frey-R�uk [FR94℄, redues disrete logs on supersingular and trae2 urves to disrete logs in a small-degree extension of Fq . This yields an algo-rithm that runs in sub-exponential time.



A minor weakness is known for urves with many automorphisms [vOW99℄,[GLV℄, [DGM99℄ inluding urves de�ned over a small sub�eld, proposed byKoblitz, and some omplex-multipliation urves. Attaks on these urves takeless time than for generi urves, but remain in exponential time.It has reently been shown by Gaudry-Hess-Smart [GHS00℄ that urves de-�ned over omposite extension �elds are also weak in ertain ases, using aredution via hyperellipti urves.These results suggest that for maximum seurity one should avoid urveswith speial properties and instead hoose a random urve whose number ofpoints is divisible by a large prime, over a prime �eld or an extension of primedegree. This ideal proedure was made possible in pratie by the SEA algorithmdue to Shoof [Sh85℄, [Sh95℄, Elkies [Elk98℄, Atkin [Atk92℄ and others [Cou94℄[Cou96℄, [Mor95℄, [Ler97a℄, [M�ul95℄, [Dew98℄, et. With this method, ountingpoints on one given urve is reasonably fast.However �nding a ryptographially suitable urve requires testing manyurves and this takes muh more time. For instane, Johnson andMenezes [JM99℄reently desribed this proess as a \ompliated and umbersome task" requir-ing \a few hours on a workstation" for 200 bits.Reently, a new algorithm for ounting points on urves in small harater-isti p � 5 was designed by Satoh [Sat00℄ and we extended it to haraterististwo and three in [FGH00℄. An independent extension to harateristi two isdesribed by Skjernaa [Skj℄.Satoh's algorithm is asymptotially superior to SEA for �xed p, requiringO(log3+" q) deterministi time, instead of O(log4+" q) under reasonable hypothe-ses. As demonstrated in [FGH00℄, the Satoh-FGH algorithm is muh faster inpratie in harateristi two. Indeed we were able to ount points over muhlarger �elds (up to 8009 bits) than had previously been possible, and ould maththe largest size reahed with SEA (i.e. 1999 bits) in just three hours.In the following we will desribe a method for generating ryptographiallysuitable urves, over �elds of 113 to 571 bits, using an implementation of theSatoh-FGH algorithm ombined with an eÆient early-abort strategy based onideas from SEA. In this manner we redue substantially the time required forurve-generation, �nding suitable 200-bit urves in minutes rather than hourson a workstation, for instane.In setion 2, we reall some basi fats about ellipti urves de�ned over �nite�elds of harateristi two. Next we review some algorithms that an be usedto ompute the ardinality of a urve, and in partiular we give a desriptionof the Satoh-FGH algorithm. Setion 4 gives the onditions that a urve mustsatisfy in order to be suitable for ryptographi appliations. It also desribes theearly-abort strategy �rst used by Lerier in [Ler97a℄ for seleting good urves.Last but not least we desribe our implementation and the results we obtained byombining a more aggressive early-abort strategy and the Satoh-FGH algorithm.



2 Ellipti Curves over Finite Fields of Charateristi TwoIn this setion, we reall some basi fats about ellipti urves de�ned over Fqwhere q = 2d. We will only be onerned with harateristi two. For moreinformations on ellipti urves, the reader an refer to [Men93℄, [Sil86℄, [BSS99℄.For our purposes, we an hoose the equation of an ellipti urve E (withnon-zero j-invariant) to be:E : y2 + xy = x3 + a6 where a6 2 F �q .Its twist urve is: E� : y2 + xy = x3 + a2x2 + a6where a2 is some �xed element of trae 1.An important invariant of the urve is its j-invariant j(E) = 1=a6. In thefollowing we assume j(E) 62 F4 and in partiular that urves are ordinary i.e.,not supersingular.The set of points E(Fq ) of the urve is:E(Fq ) = f(x; y) 2 F 2q j (x; y) satis�es the equation of Eg [ fOEg;where OE is the point at in�nity.The Frobenius automorphism F is the map x 7! xq on Fq . It an be extendedto an endomorphism of E: F : E ! E(x; y) 7! (xq ; yq)Its harateristi equation is of the form:F 2 � F + q = 0:One an show that the number of points on E isN = q + 1� ; with jj � 2pqwhere  is the trae of Frobenius on E. The bound on  is due to Hasse [Has33℄.Note that 4 jN sine the point ( 4pa6;pa6) on E has order four. The number ofpoints on E� is N� = q + 1 +  and one has 2 k N�.The little Frobenius automorphism � is the map x 7! x2. It an be extendedto an isogeny from E to the onjugate urve E� : y2 + xy = x3 + a26 as follows:� : E ! E�(x; y) 7! (x2; y2):



3 Counting the Number of Points3.1 The Shoof-Elkies-Atkin AlgorithmThe �rst polynomial-time algorithm for ounting points on ellipti urves over�nite �elds was desribed by Shoof in [Sh85℄. The basi idea is to �nd the traeof the urve modulo small primes ` by studying the ation of F on the `{torsionpart of E. Restriting the harateristi equation of F to the `{torsion results in(Xq2 ; Y q2 )� [q℄(X;Y ) = [`℄(Xq; Y q)for eah point (X;Y ), where ` �  mod `. This equality an be tested, foreah andidate ` 2 [0 : : : `� 1℄, by doing polynomial arithmeti modulo the`{division polynomial. Now, it suÆes to ompute ` for many small primes `and then to reover the exat result using the Chinese Remainder Theorem. Thetime required for point-ounting over Fq with this algorithm is O(log5+" q) usingasymptotially fast methods for arithmeti (or O(log8 q) using na��ve arithmeti).The degree of the `{division polynomial is O(`2), whih grows quikly and ausesthis algorithm to be slow in pratie.In large harateristi, Elkies [Elk98℄ and Atkin [Atk92℄ improved Shoof'smethod yielding the so-alled SEA algorithm (see [Sh95℄) with run-time re-dued to O(log4+" q) (or O(log6 q)) under reasonable hypotheses. Their idea isto onstrut a fator of degree O(`) of the division polynomial and work with itinstead. Suh a fator an be found by fatoring the modular polynomial to �ndeigenspaes of the Frobenius endomorphism F restrited to E[`℄.Further work by Morain [Mor95℄ and others led to pratial implementationsof SEA for prime �elds. Couveignes extended SEA to work in small harateristiusing the formal group [Cou94℄ or the p-torsion [Cou96℄ and Lerier found aneÆient method for harateristi two [Ler97a℄.3.2 The Satoh-FGH AlgorithmHere we present our adaptation of Satoh's algorithm to the ase of harateristitwo. The reader an �nd more details, inluding for odd harateristi, in [Sat00℄and [FGH00℄.The prinipal idea of this new algorithm is to lift E to a urve E over a 2{adiring Zq and to ompute the trae of the Frobenius on E .Canonial Lift of the Curve Just as Fq is obtained from F2 by taking analgebrai extension modulo an irreduible polynomial f(x), one an obtain Zqfrom the 2{adi integers Z2 by taking an extension modulo a polynomial g(x)whih redues modulo 2 to f(x). Thus we have Zq = Z2[x℄=(g(x)). We representthis situation with the following �gure.
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FqA Frobenius morphism F an also be de�ned on Zq. In this ase it is not asimple q-th powering operation but something muh more ompliated. We donot de�ne it expliitly sine we will never have to ompute it. Similarly, thereexists a little Frobenius morphism �. For further details on Zq and its Frobeniusmaps, see [Ser68℄.A theorem of Lubin, Serre and Tate [LST64℄ guarantees the existene anduniqueness of a anonial lifted urve E over Zq suh that End(E) = End(E), viaa anonial lift of the j-invariant. Indeed J = j(E) is haraterised by J � j(E)modulo 2 and �2(J;�(J)) = 0, where �2 is the 2{modular polynomial.A ruial part of Satoh's ontribution is an eÆient algorithm for lifting j-invariants. Instead of lifting j(E) in isolation, he suggests lifting the whole yleof onjugate j's simultaneously. He also proposes onsidering the duals �̂i of thelittle Frobenius isogenies instead of�i themselves. Indeed the duals are separableand hene are determined by their kernel. After having lifted the j-invariantsusing Satoh's method, we lift the oeÆients of the urves and then ompute thekernels by lifting a 2{torsion point on eah onjugate urve, using the methodsfrom [FGH00℄. As a result, we ompute the following diagram:E0�

��

�̂0
// E1�

��

�̂1
// � � � �̂d�2

// Ed�1�
��

�̂d�1
// E0E0 �̂0

// E1 �̂1
// � � � �̂d�2

// Ed�1 �̂d�1
// E0Here the top row is over Zq to preision O(2d=2+o(d)) and � is redution modulo2 down to Fq .Computing the Trae in Zq Sine traes are preserved by taking the dualand by anonial lifting, we have the equation:Tr(F ) = Tr(F̂ ) = Tr(F̂):Moreover F̂ an be written as the ompositionF̂ = �̂d�1 Æ : : : Æ �̂1 Æ �̂0:



To �nd its trae we go to the formal groups of the urves. In formal groups,isogenies are represented by power series and omposing isogenies is done byomposing the power series. The �rst oeÆient 1 of the power series of F̂ isrelated to its trae as follows: Tr F̂ = 1 + q1 :Therefore, omputing the trae an be done by omputing 1, and the latteran be omputed by omposing all the power series of the �̂i. Only the �rstoeÆients gi of the �̂i have to be determined, and this an be done with V�elu'sformulae [V�el71℄. More preisely, g2i is given by an expliit formula involving thelifted urves and 2{torsion. Taking one of the square roots of Q g2i produes thetrae to suÆient preision for it to be reovered exatly using Hasse's bound.3.3 Desription of the AlgorithmIn this setion, we give a syntheti desription of the algorithm. For a moredetailed one, we refer the reader to [FGH00℄. The general proedure is:Proedure MainAlgorithmInput: An ellipti urve E de�ned over Fq , with j(E) 62 F4 .Output: The trae of the urve.1. Compute the yle of d urves Ei and their j-invariants ji.2. Lift all the ji's simultaneously, yielding Ji.3. Lift eah urve by lifting its a6 oeÆient.4. Lift the kernel of eah �̂i.5. Compute the trae from the lifted data.In this proedure, points 2, 3 and 4 onern the lifting of the yle of urvesand of the kernels. We will detail these �rst. An essential ingredient is Newton'siteration for improving the (2{adi) preision of a root of a funtion.Proedure LiftCurvesAnd2TorsionInput: A yle of d onjugate urves, and their j-invariants.Output: The anonial lift of this yle over Zq.1. Lift the j-invariants simultaneously using an adaptation of the Newton iter-ation to the multivariate ase. The funtion to be onsidered ats on a 1� dvetor: �(x0; : : : ; xd�1) = (�2(x0; x1); �2(x1; x2); � � � ; �2(xd�1; x0)) and theinitial approximation of the root is the vetor (j0; j1; : : : ; jd�1) modulo 2.2. Lift eah urve Ei by lifting its a6 oeÆient, yielding Ai, using a Newtoniteration with the funtion f(x) = 1+ J(x+432x2) and the initial approxi-mation �1=Ji modulo 16.3. Lift the 2{torsion point in the kernel of eah �̂i yielding (Xi; Yi) on Ei, usinga Newton iteration based on the funtion f(x) = 8x3 + x2 +Ai with initialapproximation 1=Ji+1 modulo 4.



With these algorithms, one an perform the lifting eÆiently. One this isdone, it remains to ompute the trae of F̂ . The equations in the followingalgorithm are derived from V�elu's formulae.Proedure ComputeTraeInput: A yle of d urves, given by Ai, and 2{torsion absissae Xi.Output: The trae of F̂ .1. Compute the square of the �rst oeÆient of the expansion of eah �̂i in theformal group of Ei using V�elu's formulae. The result is:g2i = 1� 252Xi + 19008Ai(1 + 120(Xi + 6X2i )) (1 + 864Ai+1) :2. Compute 2 =Q g 2i .3. Compute  by omputing a square root of 2 and by determining the signusing  � 1 mod 4.4 Good Ellipti Curves in CryptographyThe seurity of ellipti urve ryptosystems depends on the diÆulty of solvingthe ellipti urve disrete logarithm (ECDL) problem. As mentioned in the in-trodution, there are several attaks against urves with speial properties suhas the one against trae 1 urves, or the MOV redution for supersingular urves,et.For random urves, the hane that one of these methods an apply is van-ishingly small. However there are other attaks that work for generi abelian�nite groups.The �rst is Pohlig-Hellman redution [PH78℄. When the group order N hasall its prime fators small, disrete logs an be omputed quikly by working insmall subgroups. Thus for good seurity it is essential to pik a group whoseorder is divisible by a large prime.The other attaks are algorithms that run in time O(pN). They inludeShanks' baby-step giant-step algorithm (see [Coh96℄) and Pollard's � method[Pol78℄. In pratie, the most diÆult ECDL that has been omputed is on aKoblitz urve over F2109 using a distributed version of Pollard{� [Har00℄.By extrapolating the work required to larger sizes and allowing safety marginsfor future inreases in omputing power, it is generally believed (see [FIPS186℄,[LV00℄, [P1363℄, [Sil00℄) that a random urve whose order is divisible by a primeof at least 160 bits will o�er reasonable seurity, omparable to 80-bit symmet-ri systems or 1024-bit RSA. For appliations with the highest seurity require-ments, one may take larger safety margins.To �nd a seure urve, Lerier [Ler97a℄ proposed an early-abort strategy touse when omputing the ardinality of the urve using SEA. The idea is to teston the y if q + 1 �  � 0 mod `. If the test is true, then we throw away theurve and try again with another one. Sine SEA omputes  mod `, this testis easy to implement and osts no extra run-time. In large harateristi where



Satoh-FGH does not apply this is still the best known method and we refer tothe existing literature on the subjet [LM95℄, [IKNY98℄, [MP98℄.A diÆulty that arises when designing an early-abort strategy to use withthe Satoh-FGH algorithm is that  mod ` is not available (exept for ` a powerof p). Our solution is to implement a simpli�ed version of SEA to determinewhether the urve has a rational point of `-torsion or not for the �rst few primes`, as a preliminary step before launhing Satoh-FGH. There is a trade-o� to bemade between the extra ost of these alulations and the bene�t to be gained byavoiding an entire ardinality omputation. In pratie we found this strategy tobe very worthwhile and obtained run-times lower than those previously reportedin the literature.5 Implementation and Results5.1 Implementation DetailsWe wrote optimised implementations of the early-abort strategy and the Satoh-FGH algorithm for harateristi two, in the C programming language. Thisimplementation of the early-abort strategy is independant of Lerier's one. Formultipliation in Fq we used Karatsuba's algorithm; in Zq we used Toom's al-gorithm. To ensure that modular redution took very little time, we hose theirreduible polynomial to be a trinomial or pentanomial. For division we usedthe binary Eulidean algorithm in Fq , and inversion by Newton iterations in Zq.Most of our timing tests were run on a 750 MHz EV6 Alpha. In order toompare results with [Ler97a℄, we also ran some tests on a 266 MHz EV4 Alphaidential to the one Lerier used. Note that the di�erene between these proes-sors is more than what we ould think by just omparing the lok speeds: forusual appliations, the gain is by a fator of about 15. Finally we timed urvegeneration for one small �eld on a 275 MHz StrongARM hip.In the early-abort part, as explained below, the most time onsuming partsare lazy fatorizations of small-degree polynomials over Fq . The most frequentoperation is multipliation in Fq . We give relevant timings obtained on the 750MHz Alpha in Table 1.Field size 163 bits 193 bits 239 bits 409 bits 571 bitsCost of a multipliation in Fq 0.488 �s 0.639 �s 0.917 �s 2.632 �s 4.685 �sTable 1. Cost of a multipliation in Fq on a 750 MHz EV6 Alpha.The most frequent operation in the point-ounting part is multipliation inZq. In Table 2, we give the time for one suh operation at the highest 2{adipreision required i.e., dd=2e+3 bits, for various �eld sizes d. These measurementswere also done on the 750 MHz Alpha.



Base �eld size 163 bits 193 bits 239 bits 409 bits 571 bitsMaximal preision 85 100 123 208 289Cost of a multipliation in Zq 0.19 ms 0.24 ms 0.36 ms 4.6 ms 8.0 msTable 2. Cost of a multipliation in Zq on a 750 MHz EV6 Alpha.Field size SEA (timings from [Ler97b℄) Satoh-FGH RatioMin Max Avg155 bits 58.8 s 132 s 86.5 s 36.3 s 2.4196 bits 212 s 1029 s 308 s 68.8 s 4.5300 bits 1519 s 3686 s 2434 s 408.4 s 6Table 3. Times for point-ounting on a 266 MHz EV4 Alpha5.2 Counting the Number of Points on One CurveWhen omputing the ardinality of a urve, one has to deide whether to useSEA or Satoh. Two ases have to be dealt with di�erently: the ase of largeharateristi and the ase of small harateristi.The omplexity of Satoh's algorithm has a bad dependeny in the harater-isti p of the base �eld and when p is large, it is not eÆient at all. This is dueto the use of the modular equation �p for the lifting of the urves. This equationhas O(p2) oeÆients that have to be known at least modulo p(d=2)+O(1). Henea omplexity whih is exponential in p appears to be unavoidable. On the otherhand, the SEA algorithm is polynomial-time independently of p. For instane,Morain sueeded in ounting the number of points of a urve over a �eld of size10499 + 153 [Mor95℄.However in small harateristi Satoh's algorithm is eÆient. In partiular inharateristi two, Satoh-FGH is learly faster than SEA in pratie. To illustratethe di�erene in speed between the two algorithms, we ompare Lerier's results[Ler97b℄ with the timings we get over the same �elds, using an idential 266 MHzAlpha. The results are given in Table 3. We do not give minimal or maximaltimes for Satoh-FGH sine the runtime of this algorithm is essentially onstantwhen treating di�erent urves over the same �eld. These results show that thebigger the �eld the greater the advantage for Satoh-FGH, as expeted from theasymptotis.We give timings for point-ounting on the 750 MHz Alpha in Table 4. Mostof the �eld sizes that we hose are reommended in ryptographi standards(ANSI X9.63, IEEE P1363, IPSe, NIST, WAP).Remark: In some ases, the SEA and Satoh-FGH algorithms an be ombinedto speed-up point-ounting. This works partiularly well when the �eld size issuh that the maximum preision required in Satoh-FGH is a little more thana multiple of the mahine word-size. A good example is q = 2251: the maximumpreision in the lifting alulations is d 2512 e+3 = 129 bits. In this ase, omputing



Field size Satoh-FGH Field size Satoh-FGH Field size Satoh-FGH157 bits 2.39 s 197 bits 4.45 s 283 bits 26.5 s163 bits 2.76 s 233 bits 6.57 s 409 bits 76.3 s193 bits 4.10 s 239 bits 6.94 s 571 bits 257 sTable 4. Times for point-ounting on a 750 MHz EV6 Alphathe trae modulo 3 with the SEA algorithm allows the preision to be reduedto 128 bits whih �ts perfetly in a whole number of words. This approah ouldertainly be pushed further, although implementation omplexity would appearto outweigh the moderate gain in speed.5.3 Finding a Good CurveThe na��ve strategy to �nd a urve suitable for ryptographi use is to ount thenumber of points for many urves, until one with almost prime order is found.As mentioned before, if the SEA algorithm is used then many bad urves an bedeteted early; this nie property does not hold for the Satoh-FGH algorithm.Hene, for small to medium sizes, the na��ve strategy using Satoh-FGH is notbetter than the early-abort strategy with SEA. For instane over F2155 , Lerier[Ler97b℄ was able to selet the good urves among a set of 1000 random onesin 14112 seonds. On the same omputer, the Satoh-FGH method takes 36:5seonds per urve, so that seleting the good ones would take 36500 seondswith the naive strategy, and would be worse by a fator 2:5. (For larger sizes,this phenomenon vanishes and Satoh-FGH is always better.)To ounter this, we take advantage of both methods: we �rst eliminate manyandidate urves by an early-abort strategy based on SEA's tehniques, and thenrun Satoh-FGH on the remaining ones.Let E be a urve over Fq . For a small prime `, E is alled `-good if its orderis oprime to `, and `-bad otherwise. Early-abort works as follows for eah `:1. Compute the number of roots of �`(X; j(E)). It an be 0, 1, 2 or `+1. (Theases 1 or `+ 1 annot our unless q is a square modulo `.)2. If there are no roots, E is `-good.3. Otherwise, for eah root of �`, build the orresponding fator of the `-divisionpolynomial and searh for a root x of the fator. If there is suh an x in Fqand a orresponding y too, then (x; y) is an `-torsion point over Fq and E is`-bad.4. Otherwise E is `-good.The major ost in step 1 is that of omputing Xq modulo �`(X; j(E)), whihhas degree ` + 1. To aelerate the alulation, we replae �` by the anonialmodular polynomial �̀, whih has the same degree but is sparser and involveslower powers of j. We refer to [Mor95℄ for the onstrution and the propertiesof these equations.



q = 2163 q = 2239` Root �nding Average Root �nding Averageof �̀(X; j) total time of �̀(X; j) total time3 0.17 ms 0.17 ms 0.28 ms 0.28 ms5 0.34 ms 0.38 ms 0.61 ms 0.68 ms7 0.34 ms 1.18 ms 0.56 ms 2.18 ms11 4.42 ms 6.93 ms 9.14 ms 14.1 ms13 1.07 ms 4.19 ms 1.94 ms 8.36 ms17 3.71 ms 8.63 ms 7.34 ms 17.9 ms19 4.97 ms 11.6 ms 10.1 ms 23.7 msTable 5. Average runtime for heking if E is `-good (EV6 { 750 MHz)Heuristially, in half of the ases there will be no root (in suh a ase ` isalled an Atkin prime) and we are done. Otherwise, we have to ontinue to step 3.The fator of the division polynomial orresponding to a root of the modularpolynomial is alulated using a system of formulae due to Lerier [Ler97a℄. Forsmall ` the solution to this system an be written expliitly, and the fator isobtained at almost no ost. (For larger ` the system ould be solved eÆiently byan algorithm also due to Lerier.) The ost of searhing for a root is dominatedby the omputation of Xq modulo the fator, whih has degree (`� 1)=2.In Table 5 we give the run-time for this proedure, measured on the 750 MHzAlpha.It is neessary to bound the maximum size of ` in order to balane theost of early-abort against the gain obtained by avoiding point-ounting. Intheory, it would be bene�ial to inrease ` until the above early-abort proeduretook approximately one `-th of the time required for point-ounting. Hene themaximum size of ` would grow with the �eld size.However almost all of the advantage to be gained omes from using the �rstfew primes and in pratie we found ` � 19 to be a good trade-o�. For theseprimes it is not diÆult to determine if urves are `-good: Lerier's onstrutionof isogenies is relatively easy, as in the searh for `-torsion points. Thus we wereable to keep our ode simple and reliable.For omparison with Lerier's results reported in [Ler97b℄, we ran some fur-ther tests on the 266 MHz Alpha. We hose a similar early-abort strategy, searh-ing for good urves with order 4p without onsidering the twist urves at all (butsee below). The results an be found in Table 6. As a �rst step in the early-abort,we determine whether the order is divisible by 8. This an be deided very quiklyby omputing Tra6. Note that we measured our timings for 157 and 197 bits in-stead of 155 and 196 beause omposite extension �elds may be weak in ertainases, as mentioned in the introdution.Next, in order to maximise the performane of urve generation we deided tosearh simultaneously for twist urves with order 2p and this allowed us roughlyto double the speed. As is lear from setion 2, the ardinality of the twist anbe found immediately from that of the urve itself. Furthermore, the early-abort



Field size SEA (from [Ler97b℄) Satoh-FGH + early-abort155 bits 14112 s 4490 s196 bits 30254 s 7850 sTable 6. Time to selet good urves among 1000 (EV4 { 266 MHz)Field size Time for e.-a. Remaining Time to ount Good Average time to(in bits) on 10000 urves urves remaining urves urves �nd a good urve157 21.1 s 435 17.3 min 45 23.6 s163 23.1 s 473 21.7 min 55 24.1 s193 25.1 s 402 27.5 min 33 50.7 s197 30.8 s 415 30.8 min 43 43.6 s233 40.3 s 402 44 min 29 92,4 s239 43.5 s 435 50.3 min 29 105.6 s283 122 s 418 3h 4 min 20 9.2 min409 245 s 467 9h 54 min 22 27 min571 524 s 375 26h 40 min 11 146 minTable 7. Average time to �nd a good urve (EV6 { 750 MHz)strategy an easily be adapted to take the twist into aount sine it has the samej-invariant and the same division polynomials. (This is beause the urve andits twist are isomorphi over an algebrai losure and the isomorphism preservesthe absissae.)One possibility would be to rejet a pair onsisting of a urve and its twistonly when the early-abort strategy determines that both urves are ryptograph-ially unsuitable. Alternatively one may pursue a more aggressive strategy byrejeting them both as soon as either one is found to be unsuitable, and immedi-ately moving on to a new pair. Using the latter method for 10000 random urvepairs on the 750 MHz Alpha, we measured the timing results shown in Table 7.Although the O(d3) spae omplexity of Satoh's algorithm grows quikly, thetriks desribed in [FGH00℄ keep the onstant fator small. With these triks,the largest key size we dealt with (571 bits) requires under 10 megabytes andfor moderate key sizes the memory usage was only a few hundred kilobytes. Wehose a di�erent trade-o�, using more memory in exhange for slightly higherspeed.To investigate the possibility of generating urves in onstrained environ-ments, we ran some tests at 113 bits on an ARM hip. This small key sizeis reommended for key-exhange in the Wireless Appliation Forum's WTLSstandard (WAP) and an be used for short-term seurity at a level omparableto DES. The results an be seen in Table 8.



Field size Frequeny Time to Average time to RAM + ROM usedount one urve �nd a good urve113 bits 275 MHz 5.9 s 38 s 240 KB + 136 KBTable 8. Time to �nd a good WAP urve on an ARM hipField size Time Field size Time Field size Time157 bits 0.50 s 197 bits 0.91 s 283 bits 6.32 s163 bits 0.56 s 233 bits 1.39 s 409 bits 19.4 s193 bits 0.84 s 239 bits 1.47 s 571 bits 58.2 sTable 9. New times for point-ounting on a 750 MHz EV6 Alpha6 ConlusionThe Satoh-FGH algorithm has proven to be the method of hoie whenever onewants to ompute the ardinality of a random ellipti urve de�ned over a �nite�eld of harateristi two. But in spite of Satoh-FGH's exellent performane(see Table 4), the SEA algorithm should not be abandoned too quikly. In thease of large harateristi it is the only pratial method available. Moreoverthe early-abort strategy, whih is losely related to it, is valuable when lookingfor a urve for ryptographi use, even in small harateristi. By ombining thistehnique and the Satoh-FGH algorithm, we obtain an eÆient way of omputingseure urves (see Table 7). We onlude that it is no longer neessary to usepreomputed urves in ryptography sine one an easily ompute new urves asdesired. Finding a urve with a seurity level omparable with RSA-1024 takesminutes or less. Curve generation for short-term seurity, with a level equivalentto DES, is feasible on a low-power hip. Finally, very high seurity levels similarto the highest AES level are now possible albeit in several hours.RemarkWe have reently implemented a new and quite di�erent point-ounting algo-rithm with lower memory requirements and a gain in speed by a fator rangingfrom 4 to 5 depending on key-size. For instane a seure 113-bit urve an befound in 8 seonds using 36 KB of RAM on the 275 MHz StrongARM. Repeatingthe alulations from Tables 4 and 7 gave the times in Table 9 and Table 10.AknowledgementsWe would like to thank Fran�ois Morain for his ontinuous support and manyinvaluable suggestions during this work.We are also grateful to Rajit Manohar from Cornell Computer Systems Labo-ratory. He provided the omputer resoures needed for many of our alulations.
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