
HAL Id: inria-00514912
https://hal.inria.fr/inria-00514912

Submitted on 3 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Expressiveness of Polyadic and Synchronous
Communication in Higher-Order Process Calculi

Ivan Lanese, Jorge Peréz, Davide Sangiorgi, Alan Schmitt

To cite this version:
Ivan Lanese, Jorge Peréz, Davide Sangiorgi, Alan Schmitt. On the Expressiveness of Polyadic and
Synchronous Communication in Higher-Order Process Calculi. 37th International Colloquium on
Automata, Languages and Programming (ICALP 2010), Jul 2010, Bordeaux, France. pp.442–453.
�inria-00514912�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50059162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00514912
https://hal.archives-ouvertes.fr

On the Expressiveness of Polyadic and Synchronous

Communication in Higher-Order Process Calculi

Ivan Lanese1, Jorge A. Pérez2, Davide Sangiorgi1, and Alan Schmitt3

1 Laboratory FOCUS (University of Bologna / INRIA)
2 CITI - Department of Computer Science, FCT New University of Lisbon

3 INRIA

Abstract. Higher-order process calculi are calculi in which processes can be

communicated. We study the expressiveness of strictly higher-order process cal-

culi, and focus on two issues well-understood for first-order calculi but not in the

higher-order setting: synchronous vs. asynchronous communication and polyadic

vs. monadic communication. First, and similarly to the first-order setting, syn-

chronous process-passing is shown to be encodable into asynchronous process-

passing. Then, the absence of name-passing is shown to induce a hierarchy of

higher-order process calculi based on the arity of polyadic communication, thus

revealing a striking point of contrast with respect to first-order calculi. Finally,

the passing of abstractions (i.e., functions from processes to processes) is shown

to be more expressive than process-passing alone.

1 Introduction

Higher-order process calculi are calculi in which processes can be communicated. In

this paper, we study the expressive power of strictly higher-order process calculi, and

concentrate on fundamental questions of expressiveness in process calculi at large:

asynchronous vs. synchronous communication and polyadic vs. monadic communi-

cation. These are well-understood issues for first-order process calculi: several works

(see, e.g., [1,2,3]) have studied the asynchronous π-calculus [4,5] and its relationship

with the (synchronous) π-calculus. Also, the encoding of polyadic communication into

monadic communication in the π-calculus [6] is simple and very robust [7,8]. However,

analogous studies are lacking for calculi in the higher-order setting.

We approach these questions in the context of HOπ, a strictly higher-order process

calculus (i.e., it has no name-passing features) [9]. HOπ is very expressive: it is Tur-

ing complete and several modelling idioms are expressible in it as derived constructs.

Hence, answers to the questions we are interested in are far from obvious. We shall

consider SHO and AHO, the synchronous and asynchronous variants of HOπ with

polyadic communication (Section 2). SHO and AHO represent two families of higher-

order process calculi: given n ≥ 0, SHOn (resp. AHOn) denotes the synchronous

(resp. asynchronous) higher-order process calculus with n-adic communication.

A fundamental consideration in strictly higher-order process calculi is that scope

extrusions have a limited effect. In a process-passing setting, received processes can

only be executed, forwarded, or discarded. Hence, an input context cannot gain access

to the (private) names of the processes it receives; to the context, received processes are

much like a “black box”. Although higher-order communications might lead to scope

extrusion of the private names contained in the transmitted processes, such extrusions

are of little significance: without name-passing, a receiving context can only use the

names contained in a process in a restricted way, namely the way decreed by the sender

process.4 In a process-passing setting, sharing of (private) names is thus rather limited.

We begin by investigating the relationship between synchrony and asynchrony. Our

first contribution is an encodability result: an encoding of SHOn into AHOn (Section

4). This reveals a similarity between first- and higher-order process calculi. Intuitively,

a synchronous output is encoded by an asynchronous output that communicates both

the communication object and its continuation. In Section 5 we move to examine the

situation for polyadic communication. We consider variants of SHO with different arity

in communications, and study their relative expressive power. Interestingly, in the case

of polyadic communication, the absence of name-passing causes a loss in expressive

power. Our second contribution is a non-encodability result: for every n > 1, SHOn

cannot be encoded into SHOn−1. We thus obtain a hierarchy of higher-order process

calculi of strictly increasing expressiveness. Hence, polyadic communication is a strik-

ing point of contrast between first- and higher-order process calculi. Finally, in Section

6 we consider the extension of SHO with abstraction-passing. An abstraction is an

expression parametric on processes; the expressiveness of abstraction-passing is thus

specific to the higher-order setting. We consider SHOn
a , the extension of SHOn with

abstractions of order one (i.e., functions from processes to processes). We show that

SHOn can be encoded into SHO1
a. Our final contribution uses this result to show that

there is no encoding of SHOn
a into SHOm for n,m > 0.

Our notion of encoding exploits a refined account of internal actions: in SHO, the

internal actions that result from synchronizations on restricted names are distinguished

from those resulting from synchronizations on public names. Only the former are con-

sidered as internal actions; the latter are regarded as visible actions. While this distinc-

tion might appear as demanding in the light of recent proposals for “good encodings”

(e.g., [10]), we find it useful to focus on compositional encodings that are robust with

respect to interferences, that is, encodings that work in an arbitrary context of the tar-

get language (i.e., not necessarily a context in the image of the encoding). Further, the

distinction is crucial in certain technical details of our proofs.

Extended discussions and full technical details can be found in [11, Chapter 6].

2 The Calculi

We define SHOn and AHOn, the two families of higher-order process calculi we shall

be working with.

Definition 1 Let x, y range over process variables, and a, b, . . . r, s, . . . denote names.

The language of SHO processes is given by the following syntax:

P,Q, . . . ::= a(x̃).P | ā〈Q̃〉.P | P1 ‖ P2 | νr P | x | 0

4 Here we refer to process-passing without passing of abstractions, i.e. functions from processes

to processes. As we shall see, the situation is rather different with abstraction-passing.

2

INP

a(x̃).P
a(x̃)
−−−→ P

OUT

a〈Q̃〉.P
a〈Q̃〉
−−−→ P

ACT1
P1

α
−→ P ′

1 cond(α, P2)

P1 ‖ P2
α
−→ P ′

1 ‖ P2

RES
P

α
−→ P ′ r 6∈ n(α)

νr P
α
−→ νr P ′

OPEN
P

(νs̃)a〈P̃ ′′〉
−−−−−−−→ P ′ r 6= a, r ∈ fn(P̃ ′′)− s̃

νr P
(νrs̃)a〈P̃ ′′〉
−−−−−−−→ P ′

TAU1
P1

(νs̃)a〈P̃ 〉
−−−−−−→ P ′

1 P2
a(x̃)
−−−→ P ′

2 s̃ ∩ fn(P2) = ∅

P1 ‖ P2
aτ
−−→ νs̃ (P ′

1 ‖ P ′
2{P̃/x̃})

INTRES
P

aτ
−−→ P ′

νaP
τ
−→ νaP

Fig. 1. The LTS of SHO. Symmetric rules ACT2 and TAU2 are omitted.

Using standard notations and properties for tuples of syntactic elements, polyadicity

in process-passing is interpreted as expected: an output prefixed process a〈Q̃〉.P sends

the tuple of processes Q̃ on name (or channel) a and then continues as P ; an input

prefixed process a(x̃).P can receive a tuple Q̃ on name a and continue as P{Q̃/x̃}. In

both cases, a is said to be the subject of the action. We write | x̃ | for the length of tuple

x̃; the length of the tuples that are passed around determines the actual arity in polyadic

communication. In interactions, we assume inputs and outputs have the same arity; we

shall rely on notions of types and well-typed processes as in [9]. Parallel composition

allows processes to interact, and νr P makes r private (or restricted) to the process P .

Notions of bound and free names and variables (bn(·), fn(·), bv(·), and fv(·), resp.) are

defined in the usual way: an input a(x̃).P binds the free occurrences of variables in x̃
in P ; similarly, νr P binds the free occurrences of name r in P . We abbreviate a(x̃).P
as a.P when none of the variables in x̃ is in fv(P); a〈0̃〉.P as a.P ; a〈Q〉.0 as a〈Q〉;

and νa νb P as νa b P . Notation
∏k

P stands for k copies of process P in parallel.

The semantics for SHO is given by the Labelled Transition System (LTS) in Figure

1; we use cond(α, P) to abbreviate bv(α) ∩ fv(P) = ∅ ∧ bn(α) ∩ fn(P) = ∅. As an-

ticipated, we distinguish between internal and public synchronizations. The former are

given by synchronizations on restricted names, are the only source of internal behavior,

and are denoted as
τ

−−→. The latter are given by synchronization on public names: a

synchronization on the public name a leads to the visible action
aτ
−→. We thus have four

kinds of transitions: in addition to internal and public synchronizations, there are input

transitions P
a(x̃)
−−−→ P ′, and output transitions P

(νs̃)a〈Q̃〉
−−−−−−→ P ′ (with extrusion of the

tuple of names s̃), which have the expected meaning. We use α to range over actions.

The signature of α, sig(α), is defined as sig(a(x̃)) = a in, sig((νs̃)a〈Q̃〉) = a out,
sig(aτ) = aτ , sig(τ) = τ , and is undefined otherwise. Notions of bound/free names

and variables extend to actions as expected. We use ~α to denote a sequence of actions

α1, . . . , αn. Weak transitions are defined in the usual way. We write =⇒ for the reflexive,

transitive closure of
τ

−−→. Given an action α 6= τ , notation
α
=⇒ stands for =⇒

α
−→=⇒ and

τ
=⇒ stands for =⇒. Given a sequence ~α = α1, . . . , αn, we define

~α
=⇒ as

α1==⇒ · · ·
αn==⇒.

By varying the arity in polyadic communication, Definition 1 actually gives a family

of higher-order process calculi. We have the following notational convention:

3

Convention 2 For each n > 0, SHOn corresponds to the calculus obtained from the

syntax given in Definition 1 in which polyadic communication has arity at most n.

Definition 3 AHO corresponds to the fragment of SHO where output actions have no

continuations. All the definitions extend to AHO processes as expected; AHOn is thus

the asynchronous calculus with n-adic communication.

The following definition is standard.

Definition 4 (Barbs) Given a process P and a name a, we write (i) P ↓a —a strong

input barb— if P can perform an input action with subject a; and (ii) P ↓a —a strong

output barb— if P can perform an output action with subject a. Given µ ∈ {a, a}, we

define a weak barb P ⇓µ if, for some P ′, P =⇒ P ′ ↓µ.

3 The Notion of Encoding

Our definition of encoding is inspired by the notion of “good encoding” in [10]. We

say that a language L is given by: (i) an algebra of processes P , with an associated

function fn(·); (ii) a labeled transition relation −→ on P , i.e., a structure (P,A,−→)
for some set A of actions (or labels) with an associated function sig(·); and (iii) a weak

behavioral equivalence ≈ such that: if P ≈ Q and P
α
=⇒ P ′ then Q

α′

==⇒ Q′, P ′ ≈ Q′,

and sig(α) = sig(α′). Given languages Ls = (Ps,−→s,≈s) and Lt = (Pt,−→t,≈t),
a translation of Ls into Lt is a function [[·]] : Ps → Pt. We shall call encoding any

translation that satisfies the following syntactic and semantic conditions.

Definition 5 (Syntactic Conditions) Let [[·]] : Ps → Pt be a translation of Ls into Lt.

We say that [[·]] is:

1. compositional if for every k-ary operator op of Ls and for all S1, . . . , Sk with

fn(S1, . . . , Sk) = N , there exists a k-ary context CN
op

∈ Pt that depends on N and

op such that [[op(S1, . . . , Sk)]] = CN
op
[[[S1]], . . . , [[Sk]]];

2. name invariant if [[σ(P)]] = σ([[P]]), for any injective renaming of names σ.

Definition 6 (Semantic Conditions) Let [[·]] : Ps → Pt be a translation of Ls into Lt.

We say that [[·]] is:

1. complete if for every S, S′ ∈ Ps and α ∈ As such that S
α
=⇒s S′, it holds that

[[S]]
β
=⇒t ≈t [[S

′]], where β ∈ At and sig(α) = sig(β);

2. sound if for every S ∈ Ps, T ∈ Pt, β ∈ At such that [[S]]
β
=⇒t T there exists an

S′ ∈ Ps and an α ∈ As such that S
α
=⇒s S

′, T =⇒≈t [[S
′]], and sig(α) = sig(β);

3. adequate if for every S, S′ ∈ Ps, if S ≈s S
′ then [[S]] ≈t [[S

′]];
4. diverge-reflecting if for every S ∈ Ps, [[S]] diverges only if S diverges.

Adequacy is crucial to obtain composability of encodings (see Prop. 7 below). We

stress that we always use weak behavioral equivalences. Some properties of our notion

of encoding are given in the following proposition, whose proof we omit for space

reasons.

4

Proposition 7 Let [[·]] be an encoding of Ls into Lt. Then [[·]] satisfies:

Barb preservation For every S ∈ Ps it holds that S ⇓a (resp. S ⇓a) if and only if

[[S]] ⇓a (resp. [[S]] ⇓a).

Preservation of free names Let a be a name. If a ∈ fn(P) then a ∈ fn([[P]]).
Composability If C[[·]] is an encoding of L1 into L2, and D[[·]] is an encoding of L2

into L3 then their composition (D · C)[[·]] is an encoding of L1 into L3.

4 An Encodability Result for Synchronous Communication

Here we study the relationship between synchronous and asynchronous communica-

tion. While it is easy to define an encoding of SHOn into AHOn+1 (i.e., by sending

the communication object and the continuation of the output action in a single synchro-

nization, the continuation being an additional parameter), an encoding of asynchronous

process-passing into synchronous communication of the same arity is much more chal-

lenging. We now describe such an encoding. Intuitively, the idea is to send a single

process consisting of a guarded choice between a communication object and the con-

tinuation of the synchronous output. For the monadic case the encoding is as follows:

[[a〈P 〉.S]] = νk l (a〈k. ([[P]] ‖ k) + l. ([[S]] ‖ k)〉 ‖ l) [[a(x).R]] = a(x). (x ‖ [[R]])

where “+” stands for the encoding of disjoint choice proposed for HOCORE [12]; k, l
are names not in fn(P, S); and [[·]] is an homomorphism for the other operators in SHO1.

The encoding exploits the fact that the continuation should be executed exactly once,

while the communication object can be executed zero or more times. In fact, there is

only one copy of l, the trigger that executes the encoding of the continuation. Notice

that l releases both the encoding of the continuation and a trigger for executing the

encoding of the communication object (denoted k); such an execution will only occur

when the choice sent by the encoding of output appears at the top level. This way, it is

easy to see that a trigger k is always available. This idea can be generalized as follows:

Definition 8 (Synchronous to Asynchronous) For each n > 0, the encoding of SHOn

into AHOn is defined as follows:

[[a〈P1, . . . , Pn〉.S]] = νk l (a〈[[P1]], . . . , [[Pn−1]], Tk,l[[[Pn]], [[S]]]〉 ‖ l)

[[a(x1, . . . , xn).R]] = a(x1, . . . , xn). (xn ‖ [[R]])

with Tk,l[M1,M2]
def
= k. (M1 ‖ k) + l. (M2 ‖ k), {k, l} ∩ fn(P1, . . . , Pn, S) = ∅, and

where [[·]] is an homomorphism for the other operators in SHOn.

Correctness of the encoding (i.e. proofs that the encoding satisfies the conditions

in Section 3) is presented in [11]. The encoding provides compelling evidence on the

expressive power of (asynchronous) process-passing. The observation that the encod-

ing of synchronous into asynchronous communication is a particular case of that of

polyadic into monadic communication leaves open the possibility that an encoding as

in the π-calculus might exist in a process-passing setting. In the next section we prove

that this is not the case.

5

5 Separation Results for Polyadic Communication

Here we present the separation results for SHO. Section 5.1 introduces the notion of

disjoint forms, which are useful to capture a number of stability conditions, i.e., in-

variant properties of higher-order processes with respect to their sets of private names.

Stability conditions are essential in defining the hierarchy of SHO calculi based on

polyadic communication, which is reported in Section 5.2.

5.1 Disjoint Forms

The disjoint forms for SHO processes are intended to capture the invariant structure

of processes along communications, focusing on the private names shared among the

participants. Their definition exploits contexts, that is, processes with a hole. We shall

consider multi-hole contexts, that is, contexts with more than one hole. More precisely,

a multi-hole context is n-ary if at most n different holes [·]1, . . . , [·]n, occur in it. (A

process is a 0-ary multi-hole context.) We will assume that any hole [·]i can occur more

than once in the context expression. Notions of free and bound names for contexts are

as expected and denoted bn(·) and fn(·), respectively.

Definition 9 The syntax of (guarded, multihole) contexts is defined as:

C,C ′, . . . ::= a(x).D | ā〈D〉.D | C ‖ C | νr C | P

D,D′, . . . ::= [·]i | C | D ‖ D | νrD

Definition 10 (Disjoint Form) Let T ≡ νñ(P ‖ C[R̃]) be a SHOm process where

1. ñ is a set of names such that ñ ⊆ fn(P, R̃) and ñ ∩ fn(C) = ∅;

2. C is a k-ary (guarded, multihole) context;

3. R̃ contains k closed processes.

We then say that T is in k-adic disjoint form with respect to ñ, R̃, and P .

A disjoint form captures the fact that processes R̃ and context C do not share private

names, i.e., that their sets of names are disjoint. A disjoint form can arise as the result of

the communication between two processes that do not share private names; processes R̃
would be then components of some process P0 that evolved into P by communicating

R̃ to C. The above definition decrees an arbitrary (but fixed) arity for the context. We

shall say that processes in such a form are in n-adic disjoint form, or NDF. By restricting

the arity of the context, this general definition can be instantiated:

Definition 11 (Monadic and Zero-adic Disjoint Forms) Let T be a process in dis-

joint form with respect to some ñ, R̃, and P . If | R̃ |= 1 then T is said to be in

monadic disjoint form (or MDF) with respect to ñ, R, and P . If | R̃ |= 0 then T is said

to be in zero-adic disjoint form (or ZDF) with respect to ñ and P .

Proposition 12 (Encodings preserve ZDFs) Let [[·]] be an encoding. If T is in ZDF

with respect to some ñ and P then [[T]] is in ZDF with respect to ñ and [[P]].

6

Properties of Disjoint Forms I: Stability Conditions. Stability conditions are central

to capture the following insight: without name-passing, the set of names private to a

process remains invariant along computations. Hence, two processes that interact re-

specting the stability conditions and do not share any private name will never be able to

establish a private link. The distinction on internal actions is essential to define stability

conditions for internal synchronizations (Lemma 13) and output actions (Lemma 14).

Lemma 13 Let T ≡ νñ (P ‖ C[R̃]) be a process in NDF with respect to ñ, R̃, and P .

If T
τ
−→ T ′ then: T ′ ≡ νñ (P ′ ‖ C ′[R̃]); fn(P ′, R̃) ⊆ fn(P, R̃) and fn(C ′) ⊆ fn(C);

T ′ is in NDF with respect to ñ, R̃, and P ′.

The following results state that there is a stability condition for output actions, and

the way in which a ZDF evolves after a public synchronization.

Lemma 14 Let T ≡ νñ (P ‖ C[R̃]) be a process in NDF with respect to ñ, R̃, and

P . If T
(νs̃)a〈Q〉
−−−−−−→ T ′ then: there exist P ′, C ′, ñ′ such that T ′ ≡ νñ′ (P ′ ‖ C ′[R̃]);

fn(P ′, R̃) ⊆ fn(P, R̃), fn(C ′) ⊆ fn(C) and ñ′ ⊆ ñ hold; T ′ is in NDF with respect to

ñ′, R̃, and P ′.

Lemma 15 Let T be a SHOn process in ZDF with respect to ñ and P . Suppose T
aτ
−→

T ′ where
aτ
−→ is a public n-adic synchronization with P

(νñ)a〈R̃〉
−−−−−−→ P ′ as a premise.

Then T ′ is in n-adic disjoint form with respect to ñ, R̃, and P ′.

Properties of Disjoint Forms II: Origin of Actions. We now give some properties

regarding the order and origin of internal and output actions of processes in DFs.

Definition 16 Let T = νñ (A ‖ C[R̃]) be a process in NDF with respect to ñ, R̃, and

A. Suppose T
α
−→ T ′ for some action α.

– Let α be an output action. We say that α originates in A if A
α′

−→ A′ occurs as a

premise in the derivation of T
α
−→ T ′, and that α originates in C if C[R̃]

α′

−→ C ′[R̃]

occurs as a premise in the derivation of T
α
−→ T ′. In both cases, α = (νs̃)α′ for

some s̃.

– Let α = τ . We say that α originates in A if, for some a ∈ ñ, A
aτ
−→ A′ occurs as

a premise in the derivation of T
α
−→ T ′, or if A

τ
−→ A′ occurs as a premise in the

derivation of T
α
−→ T ′. We say that α originates in C if C[R̃]

τ
−→ C ′[R̃] occurs as a

premise in the derivation of T
α
−→ T ′.

The lemma below formalizes when two actions of a disjoint form can be swapped.

Lemma 17 (Swapping Lemma) Let T = νñ (A ‖ C[R̃]) be a process in NDF with

respect to ñ, R̃, and A. Consider two actions α and β that can be either output actions

or internal synchronizations. Suppose that α originates in A, β originates in C, and

that there exists a T ′ such that T
α
−→

β
−→ T ′. Then T

β
−→

α
−→ T ′ also holds, i.e., action β

can be performed before α without affecting the final behavior.

7

The converse of the Swapping Lemma does not hold: since an action β originated in

C can enable an action α originated in A, these cannot be swapped. We now generalize

the Swapping Lemma to a sequence of internal synchronizations and output actions.

Lemma 18 (Commuting Lemma) Let T = νñ (A ‖ C[R̃]) be a NDF with respect to

ñ, R̃, and A. Suppose T
~α
=⇒ T ′, where ~α is a sequence of output actions and internal

synchronizations. Let ~αC (resp. ~αA) be its subsequence without actions originated in A
(resp. C) or in its derivatives. Then, there exists a process T1 such that

1. T
~αC==⇒ T1

~αA==⇒ T ′.

2. T1 ≡ νñ′ (A ‖
∏m1 R1 ‖ · · · ‖

∏mk Rk ‖ C ′[R̃]), for some m1, . . . ,mk ≥ 0.

5.2 A Hierarchy of Synchronous Higher-Order Process Calculi

We introduce a hierarchy of synchronous higher-order process calculi. The hierarchy is

defined in terms of the impossibility of encoding SHOn into SHOn−1. We first present

the result that sets the basic case of the hierarchy, namely that biadic process-passing

cannot be encoded into monadic process-passing (Theorem 19). The proof exploits the

notion of MDF and its associated stability conditions. We then state the general result,

i.e., the impossibility of encoding SHOn+1 into SHOn (Theorem 20).

Theorem 19 There is no encoding of SHO2 into SHO1.

Proof (Sketch). Assume, towards a contradiction, that an encoding [[·]] : SHO2 →
SHO1 does indeed exist. In what follows, we use i, j to range over {1, 2}, assuming

that i 6= j. Assume processes S1 = s1 and S2 = s2. Consider the SHO2 process

P = E(2) ‖ F (2), where E(2) and F (2) are defined as follows:

E(2) = a〈S1, S2〉.0

F (2) = νb (a(x1, x2). (b〈b1.x1〉.0 ‖ b〈b2.x2〉.0 ‖ b(y1). b(y2). y1))

where both b1, b2 6∈ fn(E(2)) (with b1 6= b2) and s1, s2 6∈ fn(F (2)) (with s1 6= s2) hold.

P can perform only the following computations:

P
aτ
−→ P0

τ
−−→

τ
−−→ P1

b1−→ P2
s1−→ 0 (1)

P
aτ
−→ P0

τ
−−→

τ
−−→ P ′

1
b2−→ P ′

2
s2−→ 0 . (2)

In P0 there is an internal choice on b, which has direct influence on: (i) the output

action on bi and (ii) the output action on si. Notice that each of these actions enables

the following one, and that an output on bi precludes the possibility of actions on bj and

sj . The behavior of [[P]] —the encoding of P— can thus be described as follows:

[[P]]
aτ
==⇒≈ [[P0]] =⇒≈ [[P1]]

b1=⇒≈ [[P2]]
s1==⇒≈ 0 and (3)

[[P]]
aτ
==⇒≈ [[P0]] =⇒≈ [[P ′

1]]
b2=⇒≈ [[P ′

2]]
s2==⇒≈ 0 . (4)

8

Actually, outputs may have parameters, but this does not change our results. The first

(weak) transition, namely [[P]]
aτ
==⇒≈ [[P0]], is the same in both possibilities. For SHO1

processes T, T ′, and T0, it holds

[[P]] =⇒ T
aτ
−→ T ′ =⇒ T0 ≈ [[P0]] . (5)

By examining the disjoint forms in the processes in (5) and using the stability con-

ditions (Prop. 12, Lemma 15, Lemma 13) one can show that T0 is in MDF with re-

spect to a set of names l̃, and some processes R and A0. Indeed, for some context C0

(with private name b), we have that T0 = νl̃ (A0 ‖ C0[R]). Notice that (5) ensures that

T0 ≈ [[P0]]. Hence, by definition of ≈, T0 should be able to match each action from [[P0]]
by performing either the sequence of actions given in (3) or the one in (4). Crucially,

both (3) and (4) involve only internal synchronizations and output actions. Therefore,

by Lemmas 13 and 14, every derivative of T0 intended to mimic the behavior of [[P0]]
(and its derivatives) is in MDF with respect to R, some li and some Ai.

By analyzing the bisimilarity game between T0 and [[P0]], it is possible to infer the

following behavior starting in T0:

T0 =⇒ T1
b1=⇒ T2

s1==⇒≈ 0 and (6)

T0 =⇒ T ′
1

b2=⇒ T ′
2

s2==⇒≈ 0. (7)

where, by definition of ≈, [[Pi]] ≈ Ti for i ∈ {0, 1, 2} and [[P ′
j]] ≈ T ′

j for j ∈ {1, 2}.

Call C2 and C ′
2 the derivatives of C0 in T2 and T ′

2, respectively. It is worth noticing that

by conditions on names, output actions on s1 and s2 cannot originate in C2 and C ′
2.

The behavior of T0 described in (6) and (7) can be equivalently described as T0
α1==⇒

0 and T0
α2==⇒ 0, where α1 contains outputs on b1 and s1, and α2 contains outputs on b2

and s2, respectively. Using the Commuting Lemma (Lemma 18) on T0, we know there

exist processes T ∗
1 , and T ∗

2 such that

1. T ∗
1 ≡ νñ1 (A0 ‖

∏m
R ‖ C∗

1 [R]) and T ∗
2 ≡ νñ2 (A0 ‖

∏m′

R ‖ C∗
2 [R]), for

some m,m′ ≥ 0. Recall that T ∗
1 and T ∗

2 are the results of performing every output

action and internal synchronization originated in C0. Since the encoding does not

introduce divergence, we have that C∗
1 [R] 6−→ and C∗

2 [R] 6−→.

2. T ∗
1 (resp. T ∗

2) can only perform an output action on s1 (resp. s2) and internal ac-

tions. Hence, we have that T ∗
1 ⇓s1 , T ∗

1 6⇓s2 and T ∗
2 ⇓s2 , T ∗

2 6⇓s1 should hold.

Item (1) allows to observe that the only difference between T ∗
1 and T ∗

2 is in the

number of copies of R (the sets of restricted names are also different, but these do not

involve the names we are interested in). This number has direct influence on performing

an output action on s1 or on s2; as such, it has influence on the bisimulation game

between [[P2]] and T2, and that between [[P ′
2]] and T ′

2. More precisely, we have both

T0
b1=⇒ T ∗

1 (with T ∗
1 ⇓s1) and T0

b2=⇒ T ∗
2 (with T ∗

2 ⇓s2). By assuming m > m′,

we obtain that T ∗
1 corresponds to the composition of T ∗

2 and a number of copies of R.

Hence, T ∗
1 ⇓s2 and T0

b1=⇒ T ∗ with T ∗ ↓s2 . By operational correspondence, we have

P0
b1=⇒ P ′ such that T ∗ =⇒ T ′ with T ′ ≈ [[P ′]]. Notice that since the strong barb on s2

9

in T ∗ cannot disappear (there is no reception on s2), it is still in T ′. Thus P ′ has a weak

barb on s2, which is impossible. ⊓⊔

The scheme used in the proof of Theorem 19 can be generalized for calculi with

arbitrary polyadicity. Therefore we have the following.

Theorem 20 For every n > 1, there is no encoding of SHOn into SHOn−1.

Remark 21 (A hierarchy for asynchronous calculi) Theorem 20 holds for calculi in

AHO as well. The main structure of the proof is the same, but one needs to adapt the

different pieces.

6 The Expressive Power of Abstraction-Passing

In this section we show that abstraction-passing, i.e., the communication of parameter-

izable processes, is strictly more expressive than process-passing. We consider SHOn
a ,

the extension of SHOn with the communication of abstractions of order one, i.e., func-

tions from processes to processes. The language of SHOn
a processes is obtained by

extending the syntax of SHOn processes (Definition 1) in the following way:

P,Q, . . . ::= · · · | (x)P | P1⌊P2⌋

That is, we consider abstractions (x)P and applications P1⌊P2⌋, that allow to ap-

ply an abstraction P1 to an argument P2. As usual, (x1) . . . (xn)P is abbreviated as

(x1, . . . , xn)P . The LTS of SHOn
a extends that of SHOn with the rule:

APP
(x)P ⌊Q⌋

τ
−−→ P{Q/x}

.

Moreover, for SHOn
a we rely on types and well-typed processes as in [9]; roughly

speaking, the type system ensures consistent uses of application w.r.t. abstractions.

We now show that abstraction-passing increases the expressive power of pure process-

passing in SHO. The result is based on the encoding below.

Definition 22 (Monadic abstraction-passing can encode polyadic communication)

The encoding [[·]] : SHO2 → SHO1
a is defined as:

[[a〈P1, P2〉.R]] = a(z). ([[R]] ‖ νmn c (n ‖ z⌊n. (c ‖ m) +m. ([[P1]] ‖ m)⌋

‖ c. z⌊[[P2]]⌋))

[[a(x1, x2).Q]] = νb (a〈(y)b〈y〉〉 ‖ b(x1). (x1 ‖ b(x2). [[Q]]))

where [[·]] is an homomorphism for the other operators in SHO2.

The encoding is correct, except that it does not preserve signatures (as inputs are

translated into outputs and viceversa); a correct encoding can be written by resorting to

abstractions with abstractions as parameters. This encoding leads also to the separation

result below. The result is remarkable since it formalizes the fact that the expressive

power of abstraction-passing is beyond any arity of polyadic communication.

10

Theorem 23 For every n,m > 1, there is no encoding of SHOn
a into SHOm.

Proof. Suppose, for the sake of contradiction, there is an encoding A[[·]] : SHOn
a →

SHOm. Thanks to Def. 22, we have an encoding B[[·]] : SHOm+1 → SHOn
a . 5 Now, the

composition of two encodings is an encoding (Prop. 7), and so (A·B)[[·]] is an encoding

of SHOm+1 into SHOm. However, by Theorem 20 such an encoding does not exist,

and we reach a contradiction. ⊓⊔

7 Concluding Remarks

Summary. In first-order process calculi (a)synchronous and polyadic communication

are well-understood mechanisms. In this paper, we have studied the expressiveness of

these mechanisms in the context of strictly higher-order process calculi. Our results

strengthen and complement expressiveness studies for higher-order process calculi in

[12,13,11,9,14]. We have studied two families of higher-order process calculi: the first

one, called AHOn, is the asynchronous higher-order process calculus with n-adic com-

munication; the second, called SHOn, is the synchronous variant of AHOn. Our first

contribution was an encodability result of SHOn into AHOn. We then moved to ana-

lyze polyadic communication, and showed that in this case the absence of name-passing

does entail a loss in expressiveness; this is represented by the impossibility of encod-

ing SHOn into SHOn−1. This non-encodability result induces a hierarchy of higher-

order process calculi based on the arity allowed in process-passing communications.

This hierarchy holds for AHO as well. Finally, we showed an encoding of SHOn into

SHO1 extended with abstraction-passing, and used it in our final contribution: the non-

existence of an encoding of abstraction-passing into process-passing of any arity.

Related Work. Sangiorgi [9] proposed a hierarchy of HOπ fragments, based on the

degree of the abstractions allowed (the level of arrow nesting in the type of the abstrac-

tion). This hierarchy is shown to match the expressiveness of a hierarchy of first-order

calculi with only internal mobility. The argument that the hierarchy is strict is however

intensional, counting the causal dependencies among names. In contrast, the hierarchy

we consider here is given by the size of the tuples that can be passed around in polyadic

communications. Also related are [12,13,11], in which expressiveness/decidability is-

sues of HOCORE—roughly, the fragment of HOπ without restriction— are addressed.

Other works have used the distinction between internal and public synchronizations

that we have used in the LTS for SHO. In [15], labels of internal actions are annotated

with the name on which the synchronization occurs so as to define located semantics

for the π-calculus; such semantics are then used to study concurrent semantics using

a standard LTS. In the higher-order setting, [16] defines a variant of CHOCS in which

synchronizations on so-called activation channels (i.e., the fresh channels used in the

encoding of CHOCS into the π-calculus to trigger a copy of a process) are distinguished

from other synchronizations. An LTS based on such a distinction is shown to be finitely

branching; its induced bisimilarity is shown to coincide with bisimulation in CHOCS.

5 The fact that the encoding does not preserve signatures can be overcome with a direct proof.

11

Future Work. It would be interesting to explore whether the hierarchy in Section 5 can

be presented without resorting to the distinction on internal actions. This would require

to formalize the concept of encoding robust with respect to interferences. Also, the

result in Section 6 gives the base case of a hierarchy based on abstraction-passing. Here

we have considered abstractions of order one; we plan to generalize such a result to

abstractions of arbitrary order so as to define a hierarchy based on abstraction-passing.

Acknowledgments. We are grateful to J. Aranda and F. Valencia for discussions on the

topics of this paper, and to the anonymous reviewers for their suggestions. This research

was carried out while the second author was a PhD student at University of Bologna.

This research has been partially supported by INRIA Equipe Associée BACON, by

Project FP7- 231620 HATS, and by FCT / MCTES (CMU-PT/NGN44-2009-12).

References

1. Palamidessi, C.: Comparing the expressive power of the synchronous and asynchronous

pi-calculi. Mathematical Structures in Computer Science 13(5) (2003) 685–719

2. Nestmann, U.: What is a "good" encoding of guarded choice? Inf. Comput. 156(1-2) (2000)

287–319 A preliminary version appeared in EXPRESS’97.

3. Cacciagrano, D., Corradini, F., Palamidessi, C.: Separation of synchronous and asyn-

chronous communication via testing. Theor. Comput. Sci. 386(3) (2007) 218–235

4. Boudol, G.: Asynchrony and the π-calculus (note). Technical report, Rapport de Recherche

1702, INRIA, Sophia-Antipolis (1992)

5. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In: Proc. of

ECOOP. Volume 512 of Lecture Notes in Computer Science., Springer (1991) 133–147

6. Milner, R.: The Polyadic pi-Calculus: A Tutorial. Technical Report ECS-LFCS-91-180,

University of Edinburgh (1991)

7. Quaglia, P., Walker, D.: Types and full abstraction for polyadic pi-calculus. Inf. Comput.

200(2) (2005) 215–246

8. Yoshida, N.: Graph types for monadic mobile processes. In: Proc. of FSTTCS. Volume 1180

of Lecture Notes in Computer Science., Springer (1996) 371–386

9. Sangiorgi, D.: π-calculus, internal mobility and agent-passing calculi. Theor. Comput. Sci.

167(2) (1996) 235–274

10. Gorla, D.: Towards a unified approach to encodability and separation results for process cal-

culi. In: Proc. of CONCUR. Volume 5201 of Lecture Notes in Computer Science., Springer

(2008) 492–507

11. Pérez, J.A.: Higher-Order Concurrency: Expressiveness and Decidability Results. PhD the-

sis, University of Bologna (2010) Draft in www.japerez.phipages.com/.

12. Lanese, I., Pérez, J.A., Sangiorgi, D., Schmitt, A.: On the expressiveness and decidability of

higher-order process calculi. In: Proc. of LICS’08, IEEE Computer Society (2008) 145–155

13. Di Giusto, C., Pérez, J.A., Zavattaro, G.: On the expressiveness of forwarding in higher-order

communication. In: Proc. of ICTAC. Volume 5684 of Lecture Notes in Computer Science.,

Springer (2009) 155–169

14. Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order

Paradigms. PhD thesis CST–99–93, University of Edinburgh, Dept. of Comp. Sci. (1992)

15. Lanese, I.: Concurrent and located synchronizations in pi-calculus. In: Proc. of SOFSEM.

Volume 4362 of Lecture Notes in Computer Science., Springer (2007) 388–399

16. Amadio, R.M.: On the reduction of Chocs bisimulation to π-calculus bisimulation. In: Proc.

of CONCUR. Volume 715 of Lecture Notes in Computer Science., Springer (1993) 112–126

12

www.japerez.phipages.com/

	On the Expressiveness of Polyadic and Synchronous Communication in Higher-Order Process Calculi
	Ivan Lanese, Jorge A. Pérez, Davide Sangiorgi, and Alan Schmitt

