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Abstract

Given a parameterization of an algebraic rational curve in a projective space of arbitrary dimension, we introduce and
study a new implicit representation of this curve which consists in the locus where the rank of a single matrix drops.
Then, we illustrate the advantages of this representation by addressing several important problems of Computer Aided
Geometric Design: The point-on-curve and inversion problems, the computation of singularities and the calculation
of the intersection between two rational curves.

1. Introduction

Algebraic curves that are used in Computer Aided Geometric Design (CAGD) are often given in parametric form.
Such curves form a particular class of algebraic curves that are called rational. For many applications it is helpful to
turn a parametric representation into an implicit representation, so that implicitization of algebraic curves has been
and is always an active research topic.

The case of plane curves can be considered as well understood. Indeed, the implicitization problem can be solved
by a simple resultant computation and an implicit equation is obtained as the determinant of a square matrix. The case
of rational curves in a space of higher dimension is much more involved. One of the main reason of this fact is that a
single equation can not serve as an implicit representation, several equations are necessary. The determination of these
equations in good shape and in small number is a difficult problem (see for instance [11], [21] and [15]). The aim of
this paper is to propose new implicit representations of rational curves which are based on a matrix formulation and
which have the advantage to be given by a single matrix, whatever the dimension of the space the curve is embedded
in. This representation can be seen as an extension of the Sylvester matrix whose determinant provides an implicit
equation in the case of a plane rational curve. It uses the notion of a µ-basis of a parameterization of a rational curve
that we will recall in Section 2. The new matrix-based representations of rational curves which we propose will be
exposed in Section 3.

In the rest of this paper, we will show how to use matrix-based implicit representations of rational curves to solve
some important problems in CAGD, namely the point-on-curve and inversion problems in Section 4, the detection of
singularities in Section 5 and the computation of the intersection locus between two rational curves in Section 6 and
Section 7. All these problems have been considered recently in [21], [23] and [15] with methods based on a set of
equations that are built from a µ-basis of the parameterization. We will show in this paper how the use of matrix-
based representations allow to remove the limitations of the above methods in terms of the degree of the curve and the
multiplicities of singular points.

The paper ends with Section 8 where a construction of matrix-based representations of rational curves that does
not require the computation of a µ-basis is given. As we will see, the price to pay to avoid this computation is to get
matrices of significantly bigger size, but on the other hand, these matrix-based representations can be implemented in
a programming environment where exact linear algebra routines are not available.

Throughout this paper, we will assume that K is an algebraically closed field for simplicity. However, most of
the results in this paper, notably the matrix-based representations of curves we will introduce could be given over an
infinite field.
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2. The defining ideal of a rational curve and µ-bases

Let f0, f1, . . . , fn be n + 1 homogeneous polynomials in K[s, t] of the same degree d ≥ 1 such that their greatest
common divisor (GCD) is a non-zero constant in K. Consider the regular map

P1
K

φ
−→ Pn

K
(s : t) 7→ ( f0 : f1 : · · · : fn)(s, t).

The image of φ is an algebraic curve C in Pn
K which is called a rational curve. The degree of C is the number

of intersection points counted properly between C and any hyperplane in Pn
K not containing C. By a well known

formula, it is related to the degree of the fi’s and the degree of the map φ co-restricted to C through the equation

deg(C) deg(φ) = d.

Recall that deg(φ) is, by definition, the degree of the canonical field extension induced by φ, namely

deg(φ) = [K(s) : K( f0(s, 1), . . . , fn(s, 1))] = [K(t) : K( f0(1, t), . . . , fn(1, t))].

Roughly speaking, deg(φ) is the number of pre-images of a generic point on C via φ.

2.1. The defining ideal of a rational curve
The parameterization φ is a very practical representation of C and it is widely used in CAGD. However, for many

problems it is useful to have an implicit representation of C, that is to say a representation in terms of the coordinates
of Pn

K; hereafter we will denote these coordinates by (x0 : · · · : xn). One of the most commonly used implicit
representation of C in Pn

K is the defining ideal of C, that we will denote by IC. By definition, it is the kernel of the
ring morphism

h : K[x0, . . . , xn] → K[s, t]
xi 7→ fi(s, t) i = 0, . . . , n.

In other terms, IC is the set of polynomials P ∈ K[x0, . . . , xn] that satisfy to the equality P( f0, . . . , fn) = 0. It is
a graded ideal of K[x0, . . . , xn] which is moreover prime (hence radical) because K[s, t] is a domain. It is finitely
generated and any collection of generators of IC provides a representation of C since we have, in terms of algebraic
varieties

V(IC) = {(x0 : · · · : xn) ∈ Pn
K : P(x0, . . . , xn) = 0 for all P ∈ IC} = C.

Such a representation can be hard to compute and is not easy to handle for applications in CAGD; see for instance
[12, 11] and the references therein for the case of space curves (i.e. n = 3).

2.2. µ-basis of a rational curve
The concept of a µ-basis has been introduced in [8]. It can be seen as a bridge between the parametric representation

φ of C and its implicit representation IC. We recall here briefly its definition and main properties that all follow from
a classical structure theorem of commutative algebra called the Hilbert-Burch Theorem (see for instance [9, §20.4]).

Consider the set of syzygies of f := ( f0, . . . , fn), that is to say the set

Syz(f) =

(g0(s, t), . . . , gn(s, t)) :
n∑

i=0

gi(s, t) fi(s, t) = 0

 ⊂ n⊕
i=0

K[s, t]

It is known to be a free and graded K[s, t]-module of rank n. Moreover, there exist non-negative integers µ1, . . . , µn

and n vectors of polynomials(
ui,0(s, t), ui,1(s, t), . . . , ui,n(s, t)

)
∈ Syz(f) ⊂ K[s, t]n+1 (i = 1, . . . , n) (1)

such that
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• for all i ∈ {1, . . . , n}, j ∈ {0, . . . , n}, ui, j(s, t) is a homogeneous polynomial in K[s, t] of degree µi ≥ 0,

• the n vectors in (1) form a K[s, t]-basis of Syz(f),

•
∑n

i=1 µi = d,

• For all j ∈ {0, . . . , n}, the determinant of the matrix obtained by deleting the column (ui, j)i=1,...,n from the matrix

M(s, t) :=


u1,0(s, t) u1,1(s, t) . . . u1,n(s, t)
u2,0(s, t) u2,1(s, t) . . . u2,n(s, t)
. . . . . . . . . . . .

un,0(s, t) un,1(s, t) . . . un,n(s, t)

 (2)

is equal to (−1) jc f j(s, t) ∈ K[s, t] where c ∈ K \ {0}.

A collection of vectors as in (1) that satisfy the above properties is called a µ-basis of the parameterization φ. It is
important to notice that a µ-basis is far from being unique, but the collection of integers (µ1, µ2, . . . , µn) is unique if
we order it. Therefore, in the sequel we will always assume that a µ-basis is ordered so that 0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µn.
We refer the interested reader to [21] for more details on the topic of µ-basis.

2.3. Projection of the graph of φ

Here is an important property of a µ-basis as a tool for the representation of the curve C. Recall that M(s, t) denotes
the matrix (2) built from a µ-basis of φ.

Lemma 1. For any point (s0 : t0) ∈ P1
K, the kernel of M(s0, t0) is K-generated by the nonzero vector

< f0(s0, t0), f1(s0, t0), . . . , fn(s0, t0) >

so that it has dimension exactly one. In particular, M(s0, t0) is full rank for any point (s0 : t0) ∈ P1
K.

Proof. Straightforward from the properties of a µ-basis and the classical Cramer’s rules.

For all i = 1, . . . , n set

ui(s, t, x0, x1, . . . , xn) =

n∑
j=0

ui, j(s, t)x j ∈ K[s, t, x0, . . . , xn]. (3)

An immediate consequence of Lemma 1 is that the algebraic variety W defined by the zero locus of the µ-basis, i.e.

W := {(s : t) × (x0 : · · · : xn) : u1 = u2 = · · · = un = 0} ⊂ P1
K × P

n
K,

is nothing but the graph of the parameterization φ. Therefore, the canonical projection

π : P1
K × P

n
K → Pn

K : (s : t) × (x0 : · · · : xn) 7→ (x0 : · · · : xn)

sends W on C; we have π(W) = C. But the situation is actually even nicer: this equality is not only true at the level of
algebraic varieties, but also at the level of ideals. To be more precise we need some additional notation.

Define the polynomial ring A := K[x0, . . . , xn], so that K[s, t, x0, . . . , xn] = A[s, t], the ideal I := (u1, . . . , un) of
A[s, t] and consider its resultant ideal (also called the projective elimination ideal in [7, Chapter 8, §5]) A with respect
to the ideal m = (s, t) of A[s, t]. By definition, we have

A = {P ∈ A such that ∃ ν ∈ N : (s, t)νP ⊂ I} ⊂ A.

Proposition 2 ([5, Corollary 3.8]). With the above notation, we have A = IC as ideals of A.
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In the next section, we will take advantage of this proposition to produce a matrix-based representation of C.
For that purpose, we will need a property that relates resultant ideals with certain annihilators. Define the quotient
B := A[s, t]/I and recall that it inherits of a structure of graded ring from the canonical grading of C := A[s, t] and the
homogeneous ideal I: deg(s) = deg(t) = 1 and deg(a) = 0 for all a ∈ A. Set m := (s, t) ⊂ C and for any integer ν ∈ N
consider

annA(Bν) = {P ∈ A such that P.Bν = 0} ⊂ A.

Corollary 3. For all integer ν ≥ µn + µn−1 − 1 we have annA(Bν) = A = IC.

Proof. Since A = IC, we will explain why annA(Bν) = A for all ν ≥ µn + µn−1 − 1. First, define

H0
m(B) :=

∞⋃
k=0

(0 :B mk) = {s ∈ B : ∃k ∈ N such that mk s = 0}.

It is a graded C-module and it is clear that A = H0
m(B)∩A = H0

m(B)0. Moreover, for any η ∈ N such that H0
m(B)η = 0,

we have A = annA(Bη); see for instance [2, Proposition 1.2].
Now, for any point (s0 : t0) ∈ P1

K the variety V(u1(s0, t0), . . . , un(s0, t0)) is of codimension n in Pn
K by Lemma 1.

Therefore, the polynomials u1, . . . , un form a regular sequence in A[s, t] outside V(m). It follows that we can apply
the techniques developed in [16, §2.10] and deduce that H0

m(B)ν = 0 for all ν ≥ µn + µn−1 − 1 (recall that we have
assumed that 0 ≤ µ1 ≤ · · · ≤ µn−1 ≤ µn).

3. Matrix-based implicit representations of a rational curve

The aim of this section is to produce a matrix-based representation of C which is geometrically faithful to the
parameterization φ. In this order, we will exhibit ideals that are good approximations (in a sense that we will make
precise hereafter) of the ideal IC. In view of Corollary 3, certain Fitting ideals associated to a µ-basis of φ are natural
candidates for that purpose.

3.1. The initial Fitting ideal of a µ-basis
Taking again the notation of the previous section, the quotient ring B is, by definition, equal to the cokernel of the

following graded map:

⊕n
i=1C(−µi)

u1,...,un
−−−−−→ C : (g1, . . . , gn) 7→

n∑
i=1

uigi. (4)

Recall that we consider the grading of C given by deg(s) = deg(t) = 1 and deg(a) = 0 for all a ∈ A. Recall also that,
given an integer ν ∈ N, the notation Cν stands for the set (actually a A-module) of homogeneous elements of degree
ν in C, so that C = ⊕i≥0Cν. Finally, the notation C(k), k ∈ Z, denotes the graded ring such that C(k)ν = Ck+ν for all
ν ∈ Z.

By taking graded parts in (4), we deduce that for all ν ∈ N the cokernel of the A-linear map

⊕n
i=1Cν−µi

u1,...,un
−−−−−→ Cν : (g1, . . . , gn) 7→

n∑
i=1

uigi (5)

is exactly the A-module Bν. From here, a well known result of commutative algebra allows to approximate the ideal
annA(Bν) with the initial Fitting ideal of Bν, denoted F(Bν), which is the ideal of A generated by the (ν + 1)-minors of
a matrix of (5). Indeed, it is well known that (see for instance [9, Proposition 20.7] or [20, Theorem 5, Chapter 3])

annA(Bν)ν+1 ⊂ F(Bν) ⊂ annA(Bν). (6)

In particular, V(F(Bν)) = V(annA(Bν)) ⊂ Pn−1
K . Therefore, we deduce the following

Theorem 4. For all integer ν ≥ µn + µn−1 − 1, we have V(F(Bν)) = C.
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Proof. Straightforward from the Corollary 3 and (6).

For all integer ν ≥ µn + µn−1 − 1 denote by M(φ)ν a matrix of the A-linear map (5). Observe that M(φ)ν depends on
the choice of the µ-basis of φ and the choices of the A-basis of Cν and Cν−µi , i = 1, . . . , n (monomial basis, Bernstein
basis, etc). Theorem 4 shows that a point P ∈ Pn belongs to the curve C if and only if all the (ν + 1)-minors of M(φ)ν
(which form a set of generators of the ideal F(Bν)) vanish at this point, and hence if and only if the rank of the matrix
M(φ)ν evaluated at P is not equal to ν + 1 (its maximal possible value). So we deduce that we have a collection of
matrices indexed by ν with the property that for all ν ≥ µn + µn−1 − 1

(i) M(φ)ν is generically full rank, that is to say generically of rank ν + 1,

(ii) the rank of M(φ)ν drops exactly on the curve C.

These properties suggest that any matrix M(φ)ν, ν ≥ µn + µn−1 − 1, can be seen as an implicit representation of the
curve C. Set-theoretically, the implicit representation of C as the simultaneous vanishing locus of several polynomial
equations (e.g. generators of the defining ideal of C) is replaced by a drop of rank of a single matrix.

Definition 5. For any ν ≥ µn + µn−1 − 1, we will call a matrix M(φ)ν a representation matrix of the curve C, or more
rigorously a representation matrix of φ.

Before moving on, let us justify the fact that a representation matrix really depends on φ, and not only on the curve
C. Given an integer ν ≥ µn + µn−1 − 1, the ideal F(Bν) is not equal to the defining ideal IC of the rational curve C in
general (see Example 7). However, F(Bν) is almost everywhere algebraically faithful to the parameterization φ in the
following sense.

Theorem 6. For all integer ν ≥ µn + µn−1 − 1, we have the following equality of ideals in the ring AIC which denotes
the localization of A by the prime ideal IC:

F(Bν)IC = IC
deg(φ) AIC .

In other words, the ideals F(Bν) and IC
deg(φ) are equal at all points of C except a finite number (possibly zero) of them.

Proof. Since IC = A = annA(Bν), Bν has a canonical structure of A/AA-module. Moreover, since A is a prime ideal,
we get that (Bν)A is a AA/AAA-vector space. Therefore, we only need to prove that dimAA/AAA

(Bν)A = deg φ. This
result is a consequence of the equality (12) in the proof of Theorem 2.5 in [5] (see also the proof of Theorem 5.2 in
loc. cit.).

Now, we have that (Bν)A ' (A/AA)deg(φ)
A

. Using classical properties of Fitting ideals (see for instance [20, §3.1])
we deduce that

F(Bν)A ' F((A/AA)deg φ
A

) = Adeg φAA

as claimed.

This theorem shows that the ideal F(Bν) is equal to IC
deg(φ) plus a finite number (possibly zero) of embedded

isolated points on C. We illustrate this property with the following example.
Notice that in the rest of this paper, when dealing with parameterized curves in P3

K we will often adopt the more
commonly used notation (x, y, z,w) and (p, q, r) for the homogeneous coordinates of P3

K and a µ-basis instead of the
notation (x0, x1, x2, x3) and (u1, u2, u3).

Example 7. Let C be the rational space curve parameterized by

P1
K

φ
−→ P3

K
(s : t) 7→ (s4 : s3t : s2t2 : t4).

A µ-basis of C is given by

p = −tx + sy

q = −ty + sz,

r = −t2z + s2w.
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We have µ1 = µ2 = 1, µ3 = 2 and hence µ3 + µ2 − 1 = 2. Therefore, we obtain the following representation matrix of
φ:

M(φ)2 =

 y 0 z 0 w
−x y −y z 0
0 −x 0 −y −z

 .
Using the computer algebra system Macaulay2 [13], we get that IC = (z2 − xw, y2 − xz) and that

F(B2) = IC ∩ (x, y2, z3, yz2) ∩ (w, x, z3, yz2, y2z, y3).

This computation shows that φ is birational onto C by Theorem 6 and also that F(B2) has an embedded component
supported at the point (0 : 0 : 0 : 1) ∈ C. Therefore, F(Bν) , IC (notice that the third component in the decomposition
of F(Bν) is (x, y, z,w)-primary).

3.2. Computational aspects

We start by giving an algorithm to compute a representation matrix of a parameterized curve.

Algorithm 1: Matrix representation of a rational curve
Input: A parameterization φ of a rational curve which is defined by the polynomials

f0(s, t), f1(s, t), ..., fn(s, t) ∈ K[s, t].
Output: The smallest possible matrix representation of C among the ones given in Definition 5.
1. Compute a µ-basis as (1) of f0(s, t), f1(s, t), ..., fn(s, t).
2. Build the polynomials ui(s, t), i = 1, 2, ..., n, as in (3).
3. Compute the degree µi, i = 1, . . . , n, of the µ-basis.
4. Build the matrix M(φ)δ where δ := max{µi + µ j − 1 : 1 ≤ i , j ≤ n}.

Observe that only the first step in this algorithm requires a computation which is the computation of a µ-basis. An
efficient algorithm to compute such a µ-basis, which is mainly based on Gaussian elimination, is given in [21].

The step 4 consists in the building of a matrix whose entries are the coefficients of the polynomials ui(s, t), i =

1, . . . , n. It requires the choice of basis for the A-modules Ck, k ∈ N. For the sake of simplicity we choose hereafter
the usual monomial basis, but we could choose any other basis, for instance the Bernstein basis that are widely used
in CAGD and for which there exists a dedicated algorithm to compute a µ-basis (see [4]) so that Algorithm 1 can be
run entirely in these basis.

For all integer i = 1, . . . , n and all integer ν ∈ N, consider the matrix Sylvν(ui) that satisfies to the identity[
sν sν−1t · · · stν−1 tν

]
× Sylvν(ui) =

[
sν−µi ui sν−µi−1tui · · · stν−µi−1ui tν−µi ui

]
.

It is a (ν + 1) × (ν − µi + 1)-matrix which usually appears as a building block in well known Sylvester matrices. It
follows that the matrix

Sylvν(u1, . . . , un) =

 Sylvν(u1) Sylvν(u2) · · · Sylvν(un)


is a matrix of the map (5). It has ν + 1 rows and n(ν + 1) − d columns. Its entries are linear forms in K[x0, . . . , xn]; in
particular, it can be evaluated at any point (x0 : · · · : xn) ∈ Pn

K and yields a matrix with coefficients in K.
From the results we proved above, for all ν ≥ µn + µn−1 − 1 the matrix Sylvν(u1, . . . , un) is a matrix-based

representation of the curve C. Of course, in practice the most useful matrix is the smallest one, that is to say
Sylvµn+µn−1−1(u1, . . . , un). We will illustrate in the next sections how one can take advantage of such a representation to
perform important operations of CAGD as the point-on-curve and inversion problems, the computation of singularities
and the calculation of the intersection between two rational curves.
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3.3. Rational curves contained in a plane
Matrix representations of plane rational curves have been widely studied in the literature, so for the sake of

completeness we briefly mention it and show how the results presented in the previous sections encapsulate it.
Assume that n = 2. Then C is a plane curve and IC is a principal ideal. It follows that C is the zero locus of a

single polynomial equation called an implicit equation (this property never happens again if n > 2). A µ-basis is made
of two elements u1 u2 such that µ2 + µ1 = d and it is well known that the Sylvester matrix of u1 and u2 is a square
matrix whose determinant is an implicit equation of C raised to the power deg(φ). With the notation of the previous
sections, this Sylvester matrix is nothing but the representation matrix M(φ)d−1. The particularity in the case n = 2 is
that this matrix is square, which rarely happens (even in the case n = 2 since M(φ)ν is non square for ν ≥ d). Also,
Theorem 6 contains the fact the det(M(φ)d−1) is equal to an implicit equation of C raised to the power deg(φ). Here
again, the particularity is that F(Bd−1) = Ideg(φ) since F(Bd−1) is a principal ideal and hence cannot have embedded
components.

Another interesting situation is the case of a curve C in Pn which is contained in a plane. By a linear change of
coordinates, we can assume that the parameterization is of the form

P1
K

φ
−→ Pn

K
(s : t) 7→ ( f0(s, t) : f1(s, t) : f2(s, t) : 0 : · · · : 0)

so that C is included in the plane of equation x3 = x4 = . . . = xn = 0. Therefore a µ-basis is given by ui = xi,
i = 3, . . . , n and u1, u2 is a µ-basis of the plane curve parameterized by

P1
K

φ
−→ P2

K : (s : t) 7→ ( f0(s, t) : f1(s, t) : f2(s, t)).

Then it is not hard to see that the representation matrix M(φ)d−1 (notice that µ1 + µ2 = d − 1) is of the form
x3 0 xn 0

M
(
φ
)

d−1

. . . · · ·
. . .

0 x3 0 xn

 .
Let us end this paragraph with a last particular case: a line in P3 (we restrict ourselves to P3 for simplicity).

Such a case occurs when µ1 = µ2 = 0. By a linear change of coordinates, we can suppose that u1 = x, u2 = y and
u3 = p(s, t)z + q(s, t)w. Notice that necessarily µ3 = d. In other words, the curve C is parameterized by

P1
K

φ
−→ P3

K
(s : t) 7→ (0 : 0 : f2 : f3)(s, t).

We obtain the following matrix representation of φ where, notably, f2 and f3 does not appear (because C−1 = ∅):

M(φ)d−1 =


x 0 . . . 0 y 0 . . . 0
0 x . . . 0 0 y . . . 0
...

... . . .
...

...
... . . .

...
0 0 . . . x 0 0 . . . y

 .
It is a d × 2d-matrix from we see easily find that F(Bd−1) = (x, y)d. It turns out that d is actually equal to deg(φ) from
we get easily that F(Bν) = ICdeg(φ) in this case. This last property follows from Luröth Theorem (see for instance [17]).
Indeed, this theorem implies that there exists a commutative diagram

P1
K

ϕ //

φ ��?
??

??
??

P1
K

ρ
����

��
��

�

P3
K
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where

P1
K

ρ
−→ P3

K
(x : y) 7→ (0 : 0 : x : y)(s, t),

P1
K

ϕ
−→ P1

K

(t : s) 7→ ( f2 : f3)(s, t),

and deg(φ) = deg(ρ) deg(ϕ), deg ρ = 1 and degϕ = d. Therefore, deg φ = d.

4. Point-on-curve and inversion problems

In this section we will show how to utilize matrix representations of rational curves to solve two basic problems
for rational space curves: point-on-curve problem, that is to say determining if a point lies on a curve, and inversion
problem, that is to say finding the parameter of a point on a curve given by its homogeneous coordinates.

These problems have been treated previously in the literature by means of a GCD computation of the µ-basis in
[21], and also by describing the curve C as the intersection of three surfaces in [15], although this latter method is
limited to some particular types of curves. Using the results we got in the previous sections, we propose the following
new approach to the point-on-curve problem.

Suppose given a parameterization φ of a rational curve C and a point P in P3. Denote by M(φ)ν a matrix
representation of φ for some integer ν ≥ δ := µn + µn−1 − 1. Since its entries are linear forms in the variables
x0, . . . , xn, one can evaluate M(φ)ν at P and get a matrix with coefficients in the ground field K. Then, we have that

rank
(
M(φ)ν(P)

)
< ν + 1 if and only if P ∈ C.

This property answers the point-on-curve problem.

Example 8. Suppose that the parameterization φ is given by

f0(s, t) = 3s4t2 − 9s3t3 − 3s2t4 + 12st5 + 6t6,

f1(s, t) = −3s6 + 18s5t − 27s4t2 − 12s3t3 + 33s2t4 + 6st5 − 6t6,

f2(s, t) = s6 − 6s5t + 13s4t2 − 16s3t3 + 9s2t4 + 14st5 − 6t6,

f3(s, t) = −2s4t2 + 8s3t3 − 14s2t4 + 20st5 − 6t6.

A µ-basis for C is

p = (s2 − 3st + t2)x + t2y

q = (s2 − st + 3t2)y + (3s2 − 3st − 3t2)z,
r = 2t2z + (s2 − 2st − 2t2)w.

From deg(p) = deg(q) = deg(r) = 2, we have µn + µn−1 − 1 = 3 and hence a matrix representation of C is given by

M(φ)3 =


x + y 0 3y − 3z 0 2z − 2w 0
−3x x + y −y − 3z 3y − 3z −2w 2z − 2w

x −3x y + 3z −y − 3z w −2w
0 x 0 y + 3z 0 w

 .
Let P = (1 : 1 : 1 : 1) ∈ P3. Evaluating M(φ)3 at P we find that

M(φ)3 =


2 0 0 0 0 0
−3 2 −4 0 −2 0
1 −3 4 −4 1 −2
0 1 0 4 0 1
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is of rank 4 so that P does not lie on C.
This example is taken from [15, Example 3.7]. There, the authors’ approach is to represent the curve C as the

intersection of three surfaces, namely

Res(p, q) = det


x + y 0 3y − 3z 0
−3x x + y −y − 3z 3y − 3z

x −3x y + 3z −y − 3z
0 x 0 y + 3z

 = 0,

Res(p, r) = det


x + y 0 2z − 2w 0
−3x x + y −2w 2z − 2w

x −3x w −2w
0 x 0 w

 = 0,

Res(r, q) = det


3y − 3z 0 2z − 2w 0
−y − 3z 3y − 3z −2w 2z − 2w
y + 3z −y − 3z w −2w

0 y + 3z 0 w

 = 0.

It turns out that P belongs to the intersection of these three surfaces, but does not belong to the curve C. It is interesting
to notice how the rank condition on the matrix M(φ)3, which is a kind of join of the three above matrix, corrects this
default.

Another classical problem is the inversion problem. In [21] this problem is treated through a GCD computation of
a µ-basis. Using a matrix representation of the curve, we propose another approach which is based on the computation
of the kernel of a matrix with coefficients in the ground field K.

Suppose given a point in homogeneous coordinates P and let M(φ)ν be a representation matrix of φ for a given
integer ν ≥ µn + µn−1 − 1. If rank M(φ)ν(P) = rank M(φ)ν − 1 = ν then P has a unique pre-image (s0 : t0) by φ and
moreover, this pre-image can be recovered from the computation of a generator, say WP = (w0, . . . ,wν) ∈ Kν+1, of
the kernel of the transpose of M(φ)ν(P). Indeed, if b0(s, t), . . . , bν(s, t) is the basis of Cν that has been chosen to build
M(φ)ν, then there exists λ ∈ K \ {0} such that

WP = λ (b0(s0, t0), . . . , bν(s0, t0)) .

For instance, suppose that bi(s, t) = sitν−i, i = 0, . . . , ν (the usual monomial basis), then (s0 : t0) = (w1 : w0) if w0 , 0,
otherwise (s0 : t0) = (1 : 0).

We point out that the points P ∈ C such that rank M(φ)ν(P) = rank M(φ)ν − 1 = ν are precisely the regular points on
C, that is to say that all the points that do not verify this property are singular points on C. We will come back again
on this property and on the treatment of the singular points on C in the next section. We close this section with an
illustrative example.

Example 9. Take again Example 8. Evaluating the matrix M(φ)3 at the point P = (9 : 9 : 9 : 6) ∈ P3 we obtain the
matrix

M(φ)3(P) =


18 0 0 0 6 0
−27 18 −36 0 −12 6

9 −27 36 −36 6 −12
0 9 0 36 0 6

 .
which has rank 3. Therefore, P is a smooth point on the curve C. Moreover, the computation of the kernel of the
transpose of M(φ)3(P) returns the vector (1, 1, 1, 1) . Thus, we deduce that P = φ(1 : 1).
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5. Computing the singular points of a rational curve

This section is devoted to the computation of the singular points of a rational curve. Hereafter, we will restrict
ourselves to the case of rational space curves for simplicity, and also to emphasize our new methods in a case which
is of particular interest in CAGD. However, all our results can be easily extended to a rational curve in a projective
space of arbitrary dimension.

In [23], the authors derive correspondences between the singularities of rational space curves and a µ-basis. They
also show how to employ µ-bases to compute all the singularities of rational space curves of low degree. We propose
another approach to compute the singularities of rational space curves which is based on the matrix representations
introduced in Section 3. It can be seen as an extension of what is called singular factors for the case of rational plane
curves in [6]; see also [3].

5.1. Rank of a representation matrix at a singular point

Let C be a rational space curve of degree d ≥ 1 parameterized by the regular map

P1
K

φ
−→ P3

K
(s : t) 7→ ( f0 : f1 : f2 : f3)(s, t).

where f0, f1, f2, f3 are four homogeneous polynomials in K[s, t] of the same degree d such that their GCD is a nonzero
element in K.

Let P be a point on C. There exists at least one point (s1 : t1) ∈ P1 such that P = φ(s1 : t1). Now, letH be a plane
in P3 passing through P, not containing C and denote by H(x, y, z,w) an equation (a linear form in K[x, y, z,w]) ofH .
We have the following degree d homogeneous polynomial in K[s, t]

H( f0(s, t), f1(s, t), f2(s, t), f3(s, t)) =

d∏
i=1

(tis − sit) (7)

where the points (si : ti) ∈ P1, i = 1, . . . , d are not necessarily distinct. We define the intersection multiplicity of C
withH at the point P, denoted iP(C,H), as the number of points (si : ti)i=1,...,d such that φ(si : ti) = P.

Definition 10. The multiplicity mP(C) of the point P on C is defined as the minimum of the intersection multiplicity
iP(C,H) where H runs over all the hyperplanes not containing C and passing through the point P ∈ C, minimum
which is reached with a sufficiently generic suchH .

Definition 11. An inversion formula of the point P on C is a homogeneous polynomial hP(s, t) ∈ K[s, t] of degree
mp(C) such that hP divides (7) for any hyperplaneH going through P. It is uniquely defined up to multiplication by a
nonzero element in K.

Given a µ-basis of the parameterization φ, say

p(s, t; x, y, z,w) = p0(s, t)x + p1(s, t)y + p2(s, t)z + p3(s, t)w,
q(s, t; x, y, z,w) = q0(s, t)x + q1(s, t)y + q2(s, t)z + q3(s, t)w,
r(s, t; x, y, z,w) = r0(s, t)x + r1(s, t)y + r2(s, t)z + r3(s, t)w,

where p, q, r are of degree m ≥ n ≥ l respectively, on can extract an inversion formula of a given point in P3 with the
following result that appears in [23] (we provide here a short proof for the sake of completeness).

Lemma 12. Let P be a point on C. Then the GCD of the three homogeneous polynomials p(s, t; P), q(s, t; P), r(s, t; P)
in K[s, t] is an inversion formula of P.
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Proof. By a linear change of coordinates in P3, one can assume without loss of generality that P = (0 : 0 : 0 : 1),
because µ-bases have the expected property under linear change of coordinates. It follows that p(s, t; P) = p3(s, t),
q(s, t; P) = q3(s, t) and r(s, t; P) = r3(s, t). Set K(s, t) := gcd(p3, q3, r3).

From the definition of inversion formula we immediately deduce that hP(s, t) := gcd( f0, f1, f2). So we have to
prove that K and hP are equal up to multiplication by a nonzero element in K.

From the properties of the µ-basis there exists c ∈ K \ {0} such that

c f0 =

∣∣∣∣∣∣∣∣
p1 p2 p3
q1 q2 q3
r1 r2 r3

∣∣∣∣∣∣∣∣ , c f1 = −

∣∣∣∣∣∣∣∣
p0 p2 p3
q0 q2 q3
r0 r2 r3

∣∣∣∣∣∣∣∣ , c f2 =

∣∣∣∣∣∣∣∣
p0 p1 p3
q0 q1 q3
r0 r1 r3

∣∣∣∣∣∣∣∣ .
Therefore, it is clear that K divides hP.

Now, since
p0(s, t) f0(s, t) + p1(s, t) f1(s, t) + p2(s, t) f2(s, t) = −p3(s, t) f3(s, t)

we deduce that hP divides p3 f3. But f0, f1, f2 all vanish at the roots of hP so hP and f3 cannot share a common root
because φ is regular. It follows that hP divides p3. With the same argument, we get that hP divides q3 and r3 as well.
Therefore, hP divides K.

Taking again the notation of Section 3, for all integer ν ≥ m + n − 1 we have a representation matrix M(φ)ν of the
curve C which is built from the µ-basis p, q, r. Its entries are linear forms in K[x, y, z,w] so that it makes sense to
evaluate M(φ)ν at a point in P3 to get a matrix M(φ)ν(P) with entries in K.

Theorem 13. Given a point P in P3, for all integer ν ≥ m + n − 1 we have

rank M(φ)ν(P) = ν + 1 − mP(C),

or equivalently corank M(φ)ν(P) = mP(C).

Proof. From Lemma 12, we have that hP(s, t) = gcd(p(s, t; P), q(s, t; P), r(s, t; P)) is a homogeneous polynomial in
R := K[s, t] of degree mP(C). From Section 3, we recall that M(φ)ν(P) is a matrix of the map

R(−m)ν ⊕ R(−n)ν ⊕ R(−l)ν
(p(s,t;P),q(s,t;P),r(s,t;P))
−−−−−−−−−−−−−−−−−→ Rν

so that corank M(φ)ν = dimK(R/I)ν for all integer ν, where I stands for the ideal of K[s, t] generated by the polynomials
p(s, t; P), q(s, t; P) and r(s, t; P).

Now, the homogeneous polynomials p(s, t; P)/hP, q(s, t; P)/hP, r(s, t; P)/hP are relatively prime other K[s, t] so
it follows that the saturation of the homogeneous ideal J = (p(s, t; P)/hP, q(s, t; P)/hP, r(s, t; P)/hP) ⊂ K[s, t] with
respect to the ideal m = (s, t) is equal to m. Therefore, we get the following result that we already used: Jν = mν for
all ν ≥ m + n − 2mP(C) − 1. But then, multiplying this equality by the homogeneous polynomial hP we obtain

Iν+mP(C) = hP (p(s, t; P)/hP, q(s, t; P)/hP, r(s, t; P)/hP)ν = (s, t)ν = (hP)ν+mP(C)

for all ν ≥ m + n − 1 − 2mP(C). We conclude that

corank M(φ)ν(P) = dimK(R/(hP))ν = ν + 1 − (ν − mP(C) + 1) = mP(C)

for all ν ≥ m + n − 1 − mP(C), which finishes the proof since mP(C) ≥ 0 for any P ∈ P3.

This result provides a stratification of the points in P3 with respect to the curve C. Indeed, we have that

• if P is such that rank M(φ)ν(P) = ν + 1 then P < C,

• if P is such that rank M(φ)ν(P) = ν then P is a regular point (i.e. of multiplicity 1) on C,

• if P is such that rank M(φ)ν(P) = ν − 1 then P is singular point of multiplicity 2 on C,
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• and so on.

Moreover, an immediate consequence of this theorem and Lemma 12 is that if P is a singular point on C then
necessarily

2 ≤ mP(C) ≤ n or mP(C) = m. (8)

We refer the reader to [23] for more results of this kind about the possible singularities on C with respect to a µ-basis
of its parameterization φ.

5.2. Singular factors
Theorem 13 suggests to introduce the singular factors of a representation, similarly to what has been done in [6],

then in [3], for the case of plane curves. Although we are not able to get results similar to those proved in [3] for
plane curves, because the geometry of space curves is much less constrained than the one of plane curves, we will
nevertheless see that these singular factors allow to compute all the singularities of a rational space curve.

As above, suppose given an integer ν ≥ m + n − 1 and a representation matrix M(φ)ν of the curve C which is
built from the µ-basis p, q, r of degree m ≥ n ≥ l respectively. We denote by M(φ)ν(s, t) the matrix M(φ)ν where we
substitute x, y, z,w by f0(s, t), f1(s, t), f2(s, t), f3(s, t) respectively. It is then clear that rank M(φ)ν(s, t) < ν + 1 for any
point (s : t) ∈ P1.

Definition 14. A collection of homogeneous polynomials d1(s, t), . . . , dν+1(s, t) in K[s, t] such that for all integer
i = 1, . . . , ν + 1 the product

dν+1(s, t)ν+1−i+1dν(s, t)ν+1−i · · · di+1(s, t)2di(s, t)

is equal to the GCD of all the (ν + 2 − i)-minors of M(φ)ν(s, t) is called a collection of singular factors of the
parameterization φ.

Notice that these singular factors are defined up to multiplication by a nonzero element in K. Moreover, their
existence is guaranteed because the ground variety is P1

K, or in other words by homogenizing with some care the
invariant factors of the matrix M(φ)ν(s, 1), K[s] being a principal ideal domain.

Theorem 15. We have dν+1(s, t) = dν(s, t) = · · · = dm+1(s, t) = 1 and d1(s, t) = 0. Moreover, for any singular point
P ∈ C, the inversion formula hP(s, t) divides dmP(C)(s, t) and is coprime with dk(s, t) for all k > mP(C).

Proof. The entries of the matrix M(φ)ν are linear forms in K[x, y, z,w]. Therefore, its determinantal ideals, denoted
Ik(−) and which correspond to the ideals generated by all the k-minors of M(φ)ν, k = 1, . . . , ν + 1, are homogeneous
ideals in K[x, y, z,w].

Then, by using Lemma 12 we deduce that

V(Ik(M(φ)ν)) = ∅ ⊂ P3

for all k = 1, . . . , ν + 1 − m, as there cannot be any common factor of degree more than m of the three element of the
µ-basis after specialization at a given point. It follows then that

V(Ik(M(φ)ν(s, t))) = ∅ ⊂ P1

for all k = 1, . . . , ν + 1 − m, and this implies dk(s, t) = 1 for all k > m.
Now, assume for simplicity that P = (0 : 0 : 0 : 1) . As we did above, we have P < V(Ik(M(φ)ν)) for all

k = 1, . . . , ν + 1 − mP(C) which implies that hP(s, t) and dk(s, t) are relatively prime polynomials for all k > mP(C).
On the other hand, P ∈ V(Iν+1−mP(C)+1(M(φ)ν)), that is Iν+1−mP(C)+1(M(φ)ν) ⊂ (x0, x1, x2), and hence

Iν+1−mP(C)+1(M(φ)ν(s, t)) ⊂ ( f0(s, t), f1(s, t), f2(s, t)) ⊂ (hP(s, t)) ⊂ K[s, t].

It follows that hP(s, t) divides
dν+1(s, t)ν+1−mP(C)+1 · · · dmP(C)+1(s, t)2dmP(C)(s, t)

and therefore that hP(s, t) divides dmP(C)(s, t).
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Here are two consequences of this theorem that allows to characterize the multiplicity of a singular point and to
compute the singular points.

Corollary 16. Let P = φ(s0 : t0) be a point on C, then dmP(C)(s0 : t0) = 0 and dk(s0 : t0) , 0 for all k > mP(C). In
particular, the multiplicity of P is the highest integer k such that dk(s0 : t0) = 0.

Corollary 17. For any integer k such that 2 ≤ k ≤ m, the product∏
P∈C : mP(C)=k

hp(s, t)

that runs over all the singular points on C of multiplicity k, divides the singular factor dk(s, t).

5.3. Computational aspects
The computation of the singular factors can be done through Smith form computations. Indeed, the matrix

M(φ)ν(s, 1) is a matrix with entries in the principal ideal domain K[s]. Therefore it is equivalent to the diagonal
matrix 

dν+1(s, 1)
dν+1dν(s, 1)

dν+1dνdν−1(s, 1)
. . .

dν+1 · · · d3(s, 1)
dν+1 · · · d3d2(s, 1)

0


.

So, the computation of this Smith form (or equivalently its invariant factors) yields the dehomogenized singular factors
where t is set to 1. It follows that if the point P = φ(1 : 0) is not a singular point, then the singularities of the curve C
can be recovered after a single Smith form computation. If not, it is necessary to either perform the same computation
for the matrix M(φ)ν(1, t) to get the dehomogenized singular factors where now s is set to 1, or either obtain directly
the information on the possible singular point φ(1 : 0) by performing the GCD computation from Lemma 12.

We conclude this section with two illustrative examples.

Example 18 ([23, Example 7.6]). Let C be the rational space curve parameterized by

φ : P1
K → P3

K : (s : t) 7→ (s5 : s3t2 : s2t3 : t5).

A µ-basis for C is given by

p = ty − sz

q = t2x − s2y,

r = t2z − s2w.

Since deg(q) = deg(r) = 2, we can choose ν = 3, then a matrix representation of C is given by

M(φ)3 =


y 0 0 x 0 z 0
−z y 0 0 x 0 z
x −z y −y 0 −w 0
0 0 −z 0 −y 0 −w

 .
Substituting x = s5, y = s3t2, z = s2t3,w = t5, we obtain

M(φ)3(s, t) =


s3t2 0 0 s5 0 s2t3 0
−s2t3 s3t2 0 0 s5 0 s2t3

0 −s2t3 s3t2 −s3t2 0 −t5 0
0 0 −s2t3 0 −s3t2 0 −t5

 .
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Now, the Smith form of M(s, 1) and M(1, t) are respectively
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 s2 0 0 0 0
0 0 0 0 0 0 0

 and


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 t2 0 0 0 0
0 0 0 0 0 0 0

 .
Therefore, the singular factors of C are d4(s, t) = 1, d3(s, t) = 1, d2(s, t) = s2t2. Thus, C has only two singular points
of multiplicity 2, the points A = (0 : 0 : 0 : 1) and B = (1 : 0 : 0 : 0) that correspond to the parameters (0 : 1) and
(1 : 0) respectively.

Example 19. Let C be the classical rational twisted cubic which is parameterized by

φ : P1
K → P3

K : (s : t) 7→ (s3 : s2t : st2 : t3).

A µ-basis for C is given by

p = −tx + sy

q = −ty + sz,

r = −tz + sw.

Since deg(q) = deg(r) = 1, we can choose ν = 1 and then a matrix representation of C is

M(φ)1 =

(
−x −y −z
y z w

)
.

Substituting x = s3, y = s2t, z = st2,w = t3, we obtain

M(φ)1(s, t) =

(
−s3 −s2t −st2

s2t st2 t3

)
.

The Smith forms of M(s, 1) and M(1, t) are respectively:(
1 0 0
0 0 0

)
and

(
1 0 0
0 0 0

)
.

It follows that the singular factors of C are d3(s, t) = 1, d2(s, t) = 1: we recover the well known fact that C has no
singular point.

6. Intersection problem

In this section, we deal with the problem of computing the intersection between two algebraic curves given by
parameterizations. The approach which we develop below is based on the use of a representation matrix of one of the
two curves. With such a matrix, we show that the intersection problem become completely similar to the intersection
between a curve and a surface when a representation matrix is used for the surface, as treated for instance in [19, 1, 18].

6.1. Matrix representations and curve/curve intersection
Suppose given two rational curves, say C1 parameterized by

P1 φ1
−→ Pn : (s : t) 7→ ( f0 : · · · : fn)(s, t) (9)

and C2 parameterized by the regular map

P1 φ2
−→ Pn : (s : t) 7→ (g0 : · · · : gn)(s, t). (10)
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Let M(φ1)ν be a representation matrix of C1 for a suitable integer ν, as described in Section 3. The substitution in
M(φ1)ν of the variables x, y, z,w by the homogeneous parameterization of C2 yields the matrix

Mν(φ1, φ2)(s, t) := M(φ1)ν(g0(s, t), . . . , gn(s, t))

As a consequence of the properties of a representation matrix, we have the following easy property.

Lemma 20. Let (s0 : t0) ∈ P1, then rank Mν(φ1, φ2)(s0, t0) < ν + 1 if and only if the point φ2(s0, t0) belongs to the
intersection locus C1 ∩ C2.

The set C1∩C2 is in correspondence with the points of P1 where the rank of Mν(φ1, φ2)(s, t) drops. By setting t = 1,
the determination of the values of s such that the rank of Mν(φ1, φ2)(s, 1) can be treated at the level of matrices (that is to
say without any symbolic computation and in particular without any determinant computations) by using linearization
techniques and generalized eigenvalues computations. These techniques are quite classical for square matrices but
representation matrices are rarely square (except for plane curves where the smallest representation matrix is always
a square matrix). Recently, they have been extended for non-square matrices in [18]. In the rest of this section we will
briefly reproduce them for the convenience of the reader and give an illustrative example. We refer to [18] for more
details.

Before moving on, mention that we use linearization techniques, but we could also compute a Smith form of
Mν(φ1, φ2). We chose this option because linearization techniques are powerful tools from linear algebra that are
very efficient and stable and that are widely available in softwares. In comparison, the computation of a Smith form
requires exact computations and the more efficient algorithms, for instance the one given in [22], are tricky and
not easily available in softwares. Moreover, point out that the study of theoretical complexity seems to be in favor
of linearization techniques (the complexity of linearization techniques is given in [18] and the one of Smith form
computation in [22]), although these algorithms are not really comparable because they are not computing the same
outputs and they are not using the same arithmetics. In practice, linearization techniques had always shown to be
faster than Smith form computations in our context.

6.2. Linearization of a polynomial matrix

We begin with some notation. Let A and B be two matrices of size m × n with coefficients in K. We will call a
generalized eigenvalue of A and B a value in the set

λ(A, B) := {t ∈ K : rank(A − tB) < min{m, n}}.

In the case m = n, the matrices A and B have n generalized eigenvalues if and only if rank(B) = n. If rank(B) < n, then
λ(A, B) can be finite, empty or infinite. Moreover, if B is invertible then λ(A, B) = λ(AB−1, I), which is the ordinary
spectrum of the matrix AB−1.

Suppose given an m×n-matrix M(t) = (ai, j(t)) with polynomial entries ai, j(t) ∈ K[t]. It can be equivalently written
as a polynomial in t with coefficients m × n-matrices with entries in K: if d = maxi, j{deg(ai, j(t))} then

M(t) = Mdtd + Md−1td−1 + . . . + M0

where Mi ∈ Km×n.

Definition 21. The generalized companion matrices A, B of the matrix M(t) are the matrices with coefficients in K of
size ((d − 1)m + n) × dm that are given by

A =



0 I . . . . . . 0
0 0 I . . . 0
...

...
...

...
...

0 0 . . . . . . I
Mt

0 Mt
1 . . . . . . Mt

d−1
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B =



I 0 . . . . . . 0
0 I 0 . . . 0
...

...
...

...
...

0 0 . . . I 0
0 0 . . . . . . −Mt

d


where I stands for the identity matrix and Mt

i stands for the transpose of the matrix Mi.

Theorem 22. With the above notations, the following equivalence holds:

rank M(t) drops⇔ rank(A − tB) drops.

6.3. Extracting the regular part of a non square pencil of matrices
We start with a pencil A − tB where A, B are constant matrices of size p × q with coefficients in a field K. Set

ρ = rank B. In the following algorithm, all computational steps are easily realized via the classical LU-decomposition.

Step 1 Transform B into its column echelon form; that amounts to determine unitary matrices P0 and Q0 such that

B1 = P0BQ0 = [ B1,1︸︷︷︸
ρ

| 0︸︷︷︸
q−ρ

]

where B1,1 is an echelon matrix. Then, compute

A1 = P0AQ0 = [ A1,2︸︷︷︸
ρ

| A1,2︸︷︷︸
q−ρ

]

Step 2 Transform A1,2 into its row echelon form; that amounts to determine unitary matrices P1 and Q1 such that

P1A1,2Q1 =

(
A′1,2

0

)
where A′1,2 has full row rank while keeping B1,1 in echelon form.

At the end of step 2, matrices A and B are represented under the form

A′1 =

(
A′1,1 A′1,2
A2 0

)
B′1 =

(
B′1,1 0
B2 0

)
where

• A′1,2 has full row rank,

•

(
B′1,1
B2

)
has full column rank,

•

(
B′1,1
B2

)
and B2 are in echelon form.

After steps 1 and 2, we obtain a new pencil of matrices, namely A2 − tB2.

Step 3 Starting from j = 2, repeat the above steps 1 and 2 for the pencil A j − tB j until the p j × q j matrix B j has full
column rank, that is to say until rank B j = q j.

Step 4 If B j is not a square matrix, then we repeat the above procedure with the transposed pencil At
j − tBt

j.

At last, we obtain the regular pencil A′ − tB′ where A′, B′ are two square matrices and B′ is invertible. Moreover,
we have the
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Theorem 23. With the above notation, the following equivalence holds:

rank(A − tB) drops⇔ rank(A′ − tB′) drops.

We are now ready to state our algorithm for solving the curve/curve intersection problem:

Algorithm 2: Intersection of two parameterized curves
Input: Two parameterized curves C1 and C2 given by (9) and (10).
Output: The intersection points of C1 and C2.
1. Compute the matrix representation M(φ1)ν of C1 for a suitable ν.
2. Compute the generalized companion matrices A and B of Mν(φ1, φ2).
3. Compute the companion regular matrices A′ and B′.
4. Compute the eigenvalues of (A′, B′).
5. For each eigenvalue t0, φ2(t0 : 1) is an intersection point.

Before illustrating the above algorithm with two examples, we would like to make two comments. First, it should
be noticed that this algorithm returns all the points in C1 ∩ C2 except possibly the point φ(1 : 0). However, this is not
a limitation because this latter point can be treated independently. Second, the eigenvalues of (A′, B′) in the step 4 of
Algorithm 2 comes with their multiplicities (as eigenvalues). These multiplicities are definitely in relation with the
intersection multiplicities of the intersection points of C1 and C2. We already noticed such a link in our study of the
curve/surface intersection problem in [18]. However, the situation here appears much more complicated, especially
when the point is already a singular point on C1, or on C2, or on both C1 and C2.

Example 24. Let C1 be the rational space curve given by the parameterization

f0(s, t) = 3s4t2 − 9s3t3 − 3s2t4 + 12st5 + 6t6,

f1(s, t) = −3s6 + 18s5t − 27s4t2 − 12s3t3 + 33s2t4 + 6st5 − 6t6,

f2(s, t) = s6 − 6s5t + 13s4t2 − 16s3t3 + 9s2t4 + 14st5 − 6t6,

f3(s, t) = −2s4t2 + 8s3t3 − 14s2t4 + 20st5 − 6t6.

We want to compute the intersection of C1 with the twisted cubic C2 which is parameterized by

g0(s, t) = s3, g1(s, t) = s2t, g2(s, t) = st2, g3(s, t) = t3.

First, we compute a representation matrix of C1:

M(φ1)3 =


x + y 0 3y − 3z 0 2z − 2w 0
−3x x + y −y − 3z 3y − 3z −2w 2z − 2w

x −3x y + 3z −y − 3z w −2w
0 x 0 y + 3z 0 w

 .
A point P at finite distance belongs to the intersection locus of C1 and C2 if and only if P = (1 : t : t2 : t3) and t is one
of the generalized eigenvalues of the matrix

M(t) := M3(φ1, φ2) =


1 + t 0 3t − 3t2 0 2t2 − 2t3 0
−3 1 + t −t − 3t2 3t − 3t2 −2t3 2t2 − 2t3

1 −3 t + 3t2 −t − 3t2 t3 −2t3

0 1 0 t + 3t2 0 t3

 ,
We have M(t) = M3t3 + M2t2 + M1t + M0 and the generalized companion matrices of M(t) are

A =

 0 I 0
0 0 I

Mt
0 Mt

1 Mt
2

 , B =

 I 0 0
0 I 0
0 0 −Mt

3
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Applying Algorithm 2, we find that the regular part of the pencil A − tB is the pencil A′ − tB′ where A′, B′ are given
by

A′ =

(
0 0
0 0

)
, B′ =

(
1 0
0 1

)
.

Therefore, the computation yields a single eigenvalues t = 0, and thus C1 intersect C2 at the only point P = (1 : 0 : 0 :
0).

We can also determine the parameter(s) corresponding to P through the parameterization φ1 of C1. For that
purpose, we first evaluate the rank of the matrix M3(φ1, φ2)(P). It is equal to 2. Therefore, P is a singular point of
multiplicity 2. It follows that it is not possible to apply the inversion method given in Section 4, but rather the method
for computing the singular points of C1 given in Section 5. We get that P is obtained through the two parameters
(1 : 1

2 (3 +
√

5)) and (1 : 1
2 (3 −

√
5)) via φ1.

Example 25. We have implemented Algorithm 2 in the software Maple. The corresponding files are available at
http://www-sop.inria.fr/members/Luu.Ba_Thang/. Consider the two curves parameterized, in affine coordinate,
by

f0(t) = −33 +
115

2
t −

49
2

t2 + t4,

f1(t) = −36 + 61 t − 25 t2 + t4,

f2(t) = −8 +
27
2

t − 13/2 t2 + t3,

f3(t) = 1.

and

g0(t) = −3 + 17/2 t − 11/2 t2 + t3,

g1(t) = −6 + 12 t − 6 t2 + t3,

g2(t) = −38 +
125

2
t −

51
2

t2 + t4,

g3(t) = 1.

Running our algorithm, we find 4 values of the parameter t that corresponds to an intersection point, namely t =

−5, 1, 2, 3. These four intersection points, of coordinates (1, 0, 0), (1, 2, 3), (0, 1, 1) and (−308,−341,−363) can be
visualized in the following pictures.

7. Line intersection of two ruled surfaces

The aim of this section is to show that curves in a projective space of higher dimension than 3 can be useful
for applications in CAGD. Hereafter, we consider the problem of computing line intersections between two ruled
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surfaces. As we will see, this can be done by computing the intersection of two rational curves in a P5, a problem that
can be solved by using the techniques we have presented in the previous section.

It is worth mentioning that the computation of the intersection lines between two ruled surfaces is interesting
because it corresponds to the singular case in the methods given in [14] and [10] to compute the complete intersection
locus between two ruled surfaces.

Rational ruled surfaces. A rational ruled surface S is meant to be a surface given by a rational map

ΦS : P1
K × P

1
K → P3

K (11)
(s : s̄) × (t : t̄) 7→ ( f0(s, s̄, t, t̄) : · · · : f3(s, s̄, t, t̄))

where fi ∈ K[s, s̄; t, t̄] are bi-homogeneous polynomials of degree (n, 1), by which we mean that they are homogeneous
polynomials of degree n + 1 and that degs,s̄( fi) = n and degt,t̄( fi) = 1 for all i = 0, 1, 2, 3. We assume that
gcd( f0, f1, f2, f3) = 1 so that we can rewrite

fi = t̄ s̄n1−n0 fi0 + t fi1
where fi0, fi1 ∈ K[s, s̄], n0 = max degs( fi0), n1 = max degs( fi1) and where we assume that n1 ≥ n0 (otherwise we can
re-parameterize ΦS by exchanging t and t̄). Therefore, n1 = n. We also assume that ( f00, ..., f30) and ( f01, ..., f31) are
K[s, s̄]-linearly independent to exclude the degenerate case where ΦS does not parameterize a surface.

For almost all parameter (s : s̄) ∈ P1
K, the image of map

LS
(s:s̄) : P1

K → P3
K

(t : t̄) 7→ ( f0(s, s̄, t, t̄) : · · · : f3(s, s̄, t, t̄))

is the line passing through the two distinct points ( f00(s : s̄), ..., f30(s : s̄)) and ( f01(s : s̄), ..., f31(s : s̄)) in P3
K. The

ruled surface S can be considered as the closure of the union of these lines.

Plücker coordinates. Let L be a line in the projective space P3. Given two distinct points A, B on L with homogeneous
coordinates (a0 : a1 : a2 : a3), (b0 : b1 : b2 : b3) respectively, we define the Plücker coordinates of L as the point
(p01 : p02 : p03 : p23 : p31 : p12) ∈ P5 where

pi j := det
(

ai bi

a j b j

)
= aib j − a jbi.

It is not hard to see that the Plücker coordinates of L are well defined (it does not depend on the choice of the points
A, B ∈ L) and satisfy to the quadratic relation p01 p23 + p02 p31 + p03 p12 = 0, that is to say belongs to the Klein quadric

S = {(x0 : x1 : x2 : x3 : x4 : x5) ∈ P5 : x0x3 + x1x4 + x2x5 = 0}.

Conversely, to any point in S one can associate a line in P3 and hence we see that Plücker coordinates give a bijective
correspondence between lines in P3 and points in S ⊂ P5.

Plücker curves. Now, returning to the ruled surface (11), we define the Plücker curve as the image of the rational map

ΨS : P1 → P5

(s : s̄) 7→ (p01 : p02 : p03 : p23 : p31 : p12)

where pi j = fi0 f j1− fi1 f j0 are the Plücker coordinates of the line in P3 defined by the two points ( f00(s : s̄), ..., f30(s : s̄))
and ( f01(s : s̄), ..., f31(s : s̄)). Since there is a one to one correspondence between the points ΨS(s : s̄) on the Plücker
curve and the associated line L(s:s̄) on the ruled surface S, we obtain the following algorithm to compute intersection
lines between two ruled surfaces.

Algorithm 3: Intersection lines between two ruled surfaces
Input: Two rational ruled surfaces S1 and S2.
Output: The intersection lines of S1 and S2.
1. Compute the Plücker curves C1 and C2 associated to the ruled surfaces S1 and S2 respectively.
2. Compute the intersection points of C1 and C2 using Algorithm 2.
3. Each intersection point is obtained as a value (s : s̄) ∈ P1 that corresponds to the intersection line LS1

(s:s̄).
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8. Complement: matrix representations without µ-bases

In Section 3 we defined matrix representations of a rational curve. To build such a matrix it is necessary to first
compute a µ-basis of the parameterization of the curve. There exist efficient algorithms to compute µ-basis (see [24,
21]), but they all require the use of exact linear algebra routines. Therefore, in order to make matrix representations
accessible to any programming environment having linear algebra routines (but not necessarily exact), we provide a
new family of matrix representations that does not require symbolic computations to be built. As we will see, the
price to pay for this property is that the matrices we obtain are of bigger size than the ones obtained from a µ-basis.

Take again the notation of Section 3 and set

∆i, j =

∣∣∣∣∣∣ fi(s, t) f j(s, t)
xi x j

∣∣∣∣∣∣
for all 0 ≤ i < j ≤ n. The ∆i, j’s are the 2-minors of the matrix(

f0(s, t) f1(s, t) · · · fn−1(s, t) fn(s, t)
x0 x1 · · · xn−1 xn

)
.

They are homogeneous polynomial in K[s, t; x0, . . . , xn]. More precisely they are linear forms in the homogeneous
variables x0, . . . , xn and homogeneous polynomials of degree d in the homogeneous variables s, t.

As in Section 3, set A = K[x0, . . . , xn], C = A[s, t] and consider the grading of C such that deg(s) = deg(t) = 1
and deg(a) = 0 for all a ∈ A. Now, consider the graded map⊕

0≤i< j≤n

C(−d)
(...,∆i, j,...)
−−−−−−−→ C : (· · · : gi, j : · · · ) 7→

∑
0≤i< j≤n

gi, j∆i, j (12)

and denote by B its cokernel.

Proposition 26. For all integer ν ≥ 2d − 1, we have Bν = Bν.

Proof. Consider the Koszul complex associated to the sequence ( f0, . . . , fn) over the ring C. It is of the form

· · · →
⊕

0≤i< j≤n

C(−2d)
∂2
−→

⊕
0≤i< j≤n

C(−d)
∂1
−→ C.

Observe then that the kernel of ∂1 is exactly the ideal generated by a µ-basis of φ and that the image of ∂2 is in
correspondence with the syzygies of the fi’s that are of the form given by the ∆i, j’s. Therefore, the difference between
B and B is controlled by the first homology group H1 of this Koszul complex.

Now, by a classical property of Koszul complexes, H1 is annihilated by the ideal ( f0, . . . , fn). Since φ is a regular
map, we deduce that Bν = Bν for ν >> 0. Now, a classical spectral sequence (see for instance [16]) shows that we
have a graded isomorphism, for all ν ∈ Z,

(H1)ν ' H2
m(C(−3d))ν.

Therefore, we deduce that (H1)ν = 0 for all ν ≥ 3d − 1 and the result follows by noting that H1 is embedded in the
twisted graded ring C(−d).

By taking graded parts (12), for all integer ν ∈ N we obtain the A-linear map⊕
0≤i< j≤n

Cν−d
(...,∆i, j,...)
−−−−−−−→ Cν.

Denote by M(φ)ν a matrix of this map. Then, by Proposition 26, we have

Corollary 27. For all integer ν ≥ 2d − 1, the matrix M(φ)ν is a representation matrix of C.

20



The matrices M(φ)ν have exactly the same properties as the matrices M(φ)ν that are built from a µ-basis. On the
one hand, they do not require symbolic computations, but on the other hand their sizes are much bigger. For instance,
the matrix M(φ)2d−1 (the smallest one) is of size (2d) ×

(
n+1

2

)
d whereas the matrix M(φ)d−1 (the smallest one) is of size

d × (n − 1)d.

Example 28. Let C be the classical rational twisted cubic which is parameterized by

φ : P1
K → P3

K : (s, t) 7→ (s3 : s2t : st2 : t3).

We have {∆i, j : 0 ≤ i < j ≤ 4} = {s3y − s2tx, s3z − st2x, s3w − t3x, s2tz − st2y, s2tw − t3y, st2w − t3z}. Choosing ν = 5
and the usual monomial basis, we obtain the following matrix representation of C:

M(φ)5 =



y 0 0 z 0 0 w 0 0 0 0 0 0 0 0 0 0 0
−x y 0 0 z 0 0 w 0 z 0 0 w 0 0 0 0 0
0 −x y −x 0 z 0 0 w −y z 0 0 w 0 w 0 0
0 0 −x 0 −x 0 −x 0 0 0 −y z −y 0 w −z w 0
0 0 0 0 0 −x 0 −x 0 0 0 −y 0 −y 0 0 −z w
0 0 0 0 0 0 0 0 −x 0 0 0 0 0 −y 0 0 −z


.
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