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Abstract: We address the question of optimization of the biomass long term productivity
in the framework of microalgal biomass production in photobioreactors under the influence
of day/night cycles. For that, we propose a simple bioreactor model accounting for light
attenuation in the reactor due to biomass density and obtain the control law that optimizes
productivity over a single day through the application of Pontryagin’s maximum principle,
with the dilution rate being the control. An important constraint on the obtained solution
is that the biomass in the reactor should be at the same level at the beginning and at the
end of the day so that the same control can be applied everyday and optimizes the long term
productivity. Several scenarios are possible depending on the microalgae’s strain parameters
and the maximal admissible value of the dilution rate: bang-bang or bang-singular-bang
control or, if the growth rate of the algae is very strong in the presence of light, constant
maximal dilution. A bifurcation diagram is presented to illustrate for which values of the
parameters these different behaviors occur.
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Optimisation de la production de biomasse par un

photobioréacteur en utilisant la lumière naturelle

Résumé : Dans ce rapport, nous abordons la question de l’optimisation de la productivité
à long terme de la biomasse microalgale dans le cadre d’une production en photobioréac-
teur sous l’influence du cyle jour/nuit. Pour cela, nous proposons un modèle simple de
bioréacteur représentant l’atténuation de la lumière dans le réacteur due à l’auto-ombrage
de la biomasse. Nous obtenons une loi de commande qui utilise le taux de dilution comme
contrôle et optimise la productivité sur une seule journée par l’application du principe du
maximum de Pontryagin. Une contrainte importante à la solution obtenue est que la bio-
masse dans le réacteur devrait être au même niveau au début et à la fin de la journée pour
que le même contrôle puisse être appliqué tous les jours afin d’optimiser la productivité
à long terme. Plusieurs scénarios sont possibles en fonction des paramètres du modèle de
croissance de la micro-algues et de la valeur maximale admissible du taux de dilution: com-
mande bang-bang ou bang-singulière-bang ou, si le taux de croissance des algues est très
fort en présence de la lumière, dilution maximale constante. Un diagramme de bifurcation
est présenté pour illustrer pour quelles valeurs des paramètres ces différents comportements
se produisent.

Mots-clés : Contrôle optimal, systèmes biologiques, modélisation
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1 Introduction

Microalgae have recently received more and more attention in the frameworks of CO2 fixation
and renewable energy [5, 2]. Their high actual photosynthetic yield compared to terrestrial
plants (whose growth is limited by CO2 availability) leads to large potential algal biomass
productions in photobioreactors of several tens of tons per hectare and per year [2].

The objective of this paper is to develop an optimal control law that would maximize the
photobioreactor yield, while taking into account that the light source (i.e the primary energy
source) that will be used is the natural light. The light source is therefore periodic with a light
phase (day) and a dark phase (night). In addition to this time-varying periodic light source,
we will take the auto-shading in the photobioreactor into account: the pigment concentration
(mainly chlorophyll) affects the light distribution and thus the biological activity within the
reactor. As a consequence, for a too high biomass, light in the photobioreactor is strongly
attenuated and growth is low.

It is therefore necessary to develop a model that takes both features into account in order
to develop the control law, where the substrate concentration in the input (marginally) and
the dilution rate (mainly) will be used. This model should not be too complicated in order to
be tractable and should present the main features of the process. Since we want to develop
a control strategy that will be used on the long run, we could choose an infinite time-horizon
measure of the yield. However, we rather took advantage of the observation that, in the
absence of a discount rate in the cost functional, the control should be identical everyday
and force the state of the system to be identical at the beginning of the day and 24 hours
later. We therefore opted for optimizing a cost over one day with the constraint that the
initial and terminal state should be identical.

The paper is structured as follows: first, we present the model dealing with both substrate
limitation, light attenuation and light periodicity; then biomass productivity optimization
is presented in a constant light environment. The solution to the periodic light problem is
then presented. Finally, numerical results are presented with a bifurcation analysis.

2 A photobioreactor model with light attenuation

Micro-algae growth in a photobioreactor is often modelled through one of two models, the
Monod model [9] or the Droop Model [3]. The latter is more accurate as it separates the
process of substrate uptake and growth of the microalgae. The former gives a reasonable
representation of reality by coupling growth and uptake, and is more convenient for building
control laws since it is simpler. For sake of simplicity we will introduce the problem with the
Monod model, but the presented results are similar with the Droop model when considering
the working modes where nutrients are not limiting growth. The Monod model writes:

{

ds
dτ

= D(sin − s)− kν(s)x
dx
dτ

= ν(s)x−Dx
(1)
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4 Grognard & Akhmetzhanov & Masci & Bernard

where s and x are the substrate and biomass concentrations in the medium, while D is the
dilution rate, sin is the substrate input concentration and k is the substrate/biomass yield
coefficient. We will depart from this model in two directions. First, we introduce respiration
by the microalgae: contrary to photosynthesis, this phenomeneon takes place with or without
light; from a carbon point of view, it converts biomass into carbon dioxyde, so that we
represent it as a −ρx term in the biomass dynamics. Secondly, under the hypothesis of an
horizontal planar photobioreactor (or raceway) with vertical incoming light, we represent
light attenuation following an exponential Beer-Lambert law where the attenuation at some
depth z comes from the total biomass xz per surface unit contained in the layer of depth
[0, z]:

I(xz) = I0e
−axz (2)

where I0 is the incident light and a is a light attenuation coefficient. In microalgae, as we
proposed in (2) chlorophyll is mostly the cause of this shadow effect and, in model (1), it
is best represented by a fixed portion of the biomass [1]. Finally, the light source variation
will be introduced by taking a time-varying incident light I0(τ). With such an hypothesis
on the light intensity that reaches depth z, growth rates vary with depth: in the upper part
of the reactor, higher light causes higher growth than in the bottom part. Supposing that
light attenuation directly affects the maximum growth rate [4], the growth rate for a given
depth z can then be written as

νz(s, I(xz, τ)) =
ν̃I(xz, τ)

I(xz, τ) +KI

s

s+Ks

,

with I(xz, τ) = I0(τ)e
−axz

Then, we can compute the mean growth rate in the reactor:

ν(s, I0(τ), x) =
1

L

∫ L

0

νz(s, I(xz, τ))dz

where L is the depth of the reactor and where we have supposed that, even though the growth
rate is not homogeneous in the reactor due to the light attenuation, the concentrations of s
and x are kept homogeneous through continuous reactor stirring. It is this average growth
rate that will be used in the lumped model that we develop. We then have:

ν(s, I0(τ), x) =
ν̃

L

∫ L

0

I0(τ)e
−axz

I0(τ)e−axz +KI

dz
s

s+Ks

=
ν̃

axL
ln

(

I0(τ) +KI

I0(τ)e−axL +KI

)

s

s+Ks

The system for which we want to build an optimal controller is therefore







ds
dτ

= D(sin − s)− k ν̃
axL

ln
(

I0(τ)+KI

I0(τ)e−axL+KI

)

s
s+Ks

x

dx
dτ

= ν̃
axL

ln
(

I0(τ)+KI

I0(τ)e−axL+KI

)

s
s+Ks

x− ρx−Dx
(3)
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However, since we want to maximize the productivity, it seems clear that the larger s the
better, large values of s translating into large growth rates. The control sin should then
always be kept very large so as to always keep the substrate in the region where s

s+Ks
≈ 1.

We can then concentrate on the reduced model

dx

dτ
=

ν̃

axL
ln

I0(τ) +KI

I0(τ)e−axL +KI

x− ρx−Dx (4)

which then encompasses all the relevant dynamics for the control problem.
In order to more precisely determine the model, we should now indicate what the varying

light will be like. Classically, it is considered that daylight varies as the square of a sinusoidal
function so that

I0(τ) =

(

max

{

sin

(

2πτ

T

)

, 0

})2

where T is the length of the day. The introduction of such a varying light would how-
ever render the computations analytically untractable. Therefore, we approximate the light
source by a step function:

I0(τ) =

{

Ī0, 0 ≤ τ < T̄ — light phase
0, T̄ ≤ τ < T — dark phase

In a model where the time-unit is the day, T will be equal to 1. In the following, we will
consider T̄ = T

2 , but this quantity obviously depends on the time of the year.
Finally, we consider a last simplification to the model: instead of considering that the

biomass growth in the presence of light has the form ν̃
aL

ln Ī0+KI

Ī0e−axL+KI
, which is an increasing

and bounded function, we replace it with another increasing bounded function ν̄x
k+x

and
obtain the model

dx

dτ
=

ν(τ)x

κ+ x
− ρx−Dx

where ν(τ) = ν̄ during the light phase and 0 at night. It is possible to show that this
simplified model is a good numerical approximation of the original model.

3 Productivity optimization

The productivity problems that we will consider in the sequel will be put in a framework
where D is bounded, so that, ∀t ≥ 0, D(t) ∈ [0, Dmax]; such a bound makes sense in an
optimal control framework since it prevents infinite values of the control, which might occur
when harvesting the photobioreactor. In order to simplify notations, we then introduce the
following change of time and variable (t, y) = (Dmaxτ,

x
k
), which yields

dy

dt
= ẏ =

µ(t)y

1 + y
− ry − uy (5)

where r = ρ
Dmax

and u = D
Dmax

∈ [0, 1] is the new control. We also have µ(t) = µ̄ = ν̄
κDmax

for t ∈ [0, T̄ ] and 0 for t ∈ [T̄ , T ] (with T̄ = DmaxT̄ and T = DmaxT ).

RR n° 7378



6 Grognard & Akhmetzhanov & Masci & Bernard

3.1 Productivity optimization in constant light environment

In a previous work [8], we have studied the productivity optimization of a microalgae photo-
bioreactor with light-attenuation in the Droop framework with constant light. In that study,
since we wanted to optimize the long-term productivity, we looked for the control values for
D and sin that optimized the instantaneous biomass output flow at equilibrium, that is

max
u

uy∗V

where V is the photobioreactor volume (assumed here to be constant). This study was
complex because the shading was dependent on the internal substrate quota. In the present
case, it will greatly simplify with sin that does not need to be optimized. Indeed, for a given
dilution u, the equilibrium of (5) in the presence of light is

y∗ =
µ̄

r + u
− 1

which needs to be non-negative, so that 0 ≤ u ≤ µ̄ − r. The positivity of u imposes that
r ≤ µ̄, that is the respiration needs to be weaker than the maximal growth. For a given u,
the productivity rate at equilibrium is then

µ̄uV

r + u
− uV

whose optimum value is reached in

uσ =
√
µ̄r − r (6)

which is positive because r ≤ µ̄ but requires

µ̄ ≤ (r + 1)2

r
(7)

to be smaller or equal to 1 (otherwise, the optimal dilution is u = 1). This yields the optimal
productivity rate:

(
√
µ̄−

√
r)2V

It is important to note that the equilibrium is then

yσ =

√

µ̄

r
− 1 (8)

which maximizes the net production rate µ̄y
1+y

− ry = uy. We will use this definition of yσ
even when it is not achievable with some uσ ≤ 1.

INRIA
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3.2 Productivity optimization in day/night environment

In an environment with varying light we cannot settle for an instanteneous productivity rate
optimization since this equilibrium cannot be maintained during the night. In essence, we
want to optimize the long term productivity of the photobioreactor, that is we want that,
everyday, the same maximal amount is produced. The problem that we consider is therefore

max
u(t)∈ [0,1]

∫ T

0

u(t)V y(t)dt

We then need to add constraints to the solution that we want to obtain; indeed, at the end
of the day, we want to be able to start operating the photobioreactor in the same conditions
for the next day. This then requires that we add the constraint

y(T ) = y(0)

We therefore are faced with the following optimal control problem

max
u(t)∈ [0,1]

∫ T

0

u(t)y(t)dt

with ẏ = µ(t)y
1+y

− ry − uy

y(T ) = y(0)

(9)

3.2.1 Parameter constraints

In order to solve this problem, it is convenient to observe that y(T ) = y(0) cannot be
achieved for large values of y even without considering optimality. Indeed, for all t, we have

ẏ < 0 when y(t) >
µ̄− r

r
independently of the choice of u; therefore, an initial condition

such that y(0) >
µ̄− r

r
cannot be considered since necessarily y(T ) < y(0) in that case. We

then know that, for admissible initial conditions below that threshold, y(t) will stay below
this threshold for all times. It also implies that, whenever u(t) = 0 for such solution with
t ∈ [0, T̄ ), ẏ > 0 because y(t) then tends toward µ̄−r

r
;

We could make this bound stronger by noticing that, for a given y(0), the largest value
of y(T ) that can be achieved is reached by taking u(t) = 0 for all times; indeed, at any time,
applying u(t) > 0 implies that ẏ is smaller than if u(t) = 0 were applied. If the value of
y(T ) corresponding to u(t) = 0 is smaller than y(0), then the corresponding initial condition
cannot be part of the optimal solution. Solving (5) with u(t) = 0 in the interval [0, T̄ ], by
separating the variables yields

r ln

(

y(T̄ )

y0

)

− µ̄ ln

(

µ̄− r(1 + y(T̄ ))

µ̄− r(1 + y0)

)

r(µ̄ − r)
= T̄

RR n° 7378



8 Grognard & Akhmetzhanov & Masci & Bernard

where we denoted y(0) as y0. Trivially, the integration of (5), for the dark period (u(t) = 0)
on the interval [T̄ , T ], yields

y(T ) = y(T̄ )e−r(T−T̄ )

so that, introducing this equation in the previous one, we get

r ln

(

y(T )er(T−T̄)

y0

)

− µ̄ ln

(

µ̄− r(1 + y(T )er(T−T̄ ))

µ̄− r(1 + y0)

)

r(µ̄ − r)
= T̄

The equality y(T ) = y0 is then achieved with u(t) = 0 when solving this last equation for
y0 with y(T ) = y0, which yields

y0max =
µ̄− r

r

e
r
µ̄
(µ̄T̄−rT ) − 1

e
rT
µ̄

(µ̄−r) − 1

For larger values of y0, we have y(T ) < y0 independently of the choice of u(t); for smaller
values of y0, there exist control functions u(t) that guarantee y(T ) = y0. The constraint
µ > r, which is necessary for growth to occur in the light phase guarantees that the first
fraction and the denominator of the second one in y0max are positive. We then need to add
the constraint

µ̄ >
rT

T̄
(10)

to ensure the positivity of y0max and so the possibility of the existence of a solution to the
optimal control problem (9). Note that, in the case where T̄ = T

2 , this simply means that
µ̄ > 2r.

It is also interesting to see that, if a constant control u(t) = 1 is applied, a periodic
solution is obtained for

y0min =
µ̄− r − 1

r + 1

e
r+1
µ̄

(µ̄T̄−(r+1)T ) − 1

e
(r+1)T

µ̄
(µ̄−r−1) − 1

which can be positive if µ̄ > (r+1)T
T̄

. For any value of y0 smaller than y0min, any control law
would force y(T ) > y0. As a consequence, y0, solution of problem (9), should belong to the
interval [y0min, y0max].

3.2.2 Maximum principle

In order to solve problem (9), we will use Pontryagin’s Maximum Principle (PMP, [10]) in
looking for a control law maximizing the Hamiltonian

H(x, u, λ, t) ,

[

λ

((

µ(t)

1 + y
− r

)

y − uy

)

+ uy

]

INRIA



Optimization of a photobioreactor biomass production using natural light 9

with the constraint
{

ẏ = µ(t)y
1+y

− ry − uy

λ̇ = λ
(

− µ(t)
(1+y)2 + r + u

)

− u

In addition, we should add the constraint

λ(T ) = λ(0).

Indeed, the solution of the optimal control problem is independent of the reference initial
time: defining x(t) = x(t − T ), u(t) = u(t − T ), and λ(t) = λ(t − T ) for values of t larger
than T , we have that x(t), u(t) and therefore λ(t) are unchanged if we consider the interval
[t0, T + t0] (for 0 < t0 < T ) rather than [0, T ]. Since λ(t) is continuous inside the interval
when considering the problem over [t0, T + t0], it is continuous in time T and λ(0) = λ(T )
[6].

We see from the form of the Hamiltonian that

∂H

∂u
= 1− λ

so that, when λ > 1, we have u = 0, when λ < 1, we have u = 1, and when λ = 1 over some
time interval, intermediate singular control is applied.

In the sequel, we propose candidate solutions to the PMP by making various hypotheses
on the value of λ(0) = λ0.

Bang-bang with λ0 > 1: With λ0 > 1, we have u = 0 at times 0 and T . At any given
time 0 ≤ t ≤ T̄ before the first switch, the solution of (5) yields

r ln

(

y(t)

y0

)

− µ̄ ln

(

µ̄− r(1 + y(t))

µ̄− r(1 + y0)

)

r(µ̄ − r)
= t (11)

and, as stated earlier, y(t) is increasing because y(0) < y0max < µ−r
r

. The constancy of the
Hamiltonian during the light phase then imposes that

λ(t)y(t)

(

µ̄

1 + y(t)
− r

)

= λ0y0

(

µ̄

1 + y0
− r

)

(12)

for all times t ∈ (0, T̄ ) such that u(t) = 0. A switch to 1 then needs to occur between time
0 and T (otherwise the payoff would be 0) and this switch cannot take place in the dark
phase. Indeed, in that zone, as long as u(t) = 0, the λ dynamics are

λ̇ = rλ

with λ(t) > 1. The adjoint variable is therefore an increasing function in that region, and
cannot go through λ = 1. We will use this impossibility of switch from 0 to 1 in the dark
phase several times in the sequel.

RR n° 7378



10 Grognard & Akhmetzhanov & Masci & Bernard

For the solution that we study, a switch then needs to take place at time t01 in the (0, T̄ )
interval and for y(t01) = y01 and λ(t01) = 1 solutions of (11)-(12).

r ln

(

y01
y0

)

− µ̄ ln

(

µ̄− r(1 + y01)

µ̄− r(1 + y0)

)

r(µ̄ − r)
= t01 (13)

y01

(

µ̄

1 + y01
− r

)

= λ0y0

(

µ̄

1 + y0
− r

)

(14)

Another constraint that appears at the switching instant from u = 0 to u = 1 is that
λ̇ < 0, which amounts to µ̄

(1+y)2 > r or y < yσ (see (8)). After time t01, y(t) then converges

increasingly or decreasingly toward µ̄−r−1
r+1

Due to the constancy of the Hamiltonian, another switch can only take place at time t̃
before time T̄ if

y(t̃)

(

µ̄

1 + y(t̃)
− r

)

= y01

(

µ̄

1 + y01
− r

)

where we have used the fact that λ(t̃) = λ(t01) = 1 at the switching instants. This can
only happen for two values of y(t̃): y(t̃) = y01 and another value y(t̃) = µ̄

1+y01
− r which is

larger than yσ. Since y(t) was converging to µ̄−r−1
r+1 with u(t) = 1, y(t̃) cannot go through

y01 again unless y01 = µ̄−r−1
r+1 . In this last case, by considering the λ̇ dynamics, we see that

another switch could only take place if u(t) = 1 solves the conditions for being a singular
solution to the optimal control; this will be handled later. Generically, a single switch can
then only take place inside the interval (0, T̄ ).

The solution then reaches the time T̄ with (y(t), λ(t)) = (ȳ, λ̄) that solve the same kind
of equations as (11) and (12):

(r + 1) ln

(

ȳ

y01

)

− µ̄ ln

(

µ̄− (r + 1)(1 + ȳ)

µ̄− (r + 1)(1 + y01)

)

(r + 1)(µ̄− r − 1)
= T̄ − t01 (15)

λ̄ȳ

(

µ̄

1 + ȳ
− r − 1

)

+ ȳ = y01

(

µ̄

1 + y01
− r

)

(16)

Since λ(T̄ ) < 1 and λ(T ) > 1, a switch from u = 1 to u = 0 then needs to take place inside
the (T̄ , T ) interval. With the dynamics being in the form

ẏ = −(r + 1)y λ̇ = (r + 1)λ− 1

another switch can only take place if λ̄ > 1
r+1 ; otherwise λ cannot go through 1 again. The

switching point (t10, y10) is then characterized by

y10 = ȳe−(r+1)(t10−T̄ ) (17)

INRIA



Optimization of a photobioreactor biomass production using natural light 11

λ(t10) = 1 = λ̄e(r+1)(t10−T̄ ) − e(r+1)(t10−T̄ ) − 1

r + 1
(18)

After this switching, the dynamics become

ẏ = −ry λ̇ = rλ

so that no other switch can take place and these dynamics and the constraints y(T ) = y0
and λ(T ) = λ0 impose that

y0 = y10e
−r(T−t10) (19)

λ0 = er(T−t10) (20)

In the end, we have a system of 8 algebraic equations
(13)-(20) with eight unknowns, which we solve numerically.

Even though, we were not able to lead this study analytically all the way to the end, we
have shown the qualitative form of the solutions analytically. It is made of four phases:

• Growth with a closed photobioreactor until a sufficient biomass level is reached

• Maximal harvesting of the photobioreactor with simultaneous growth

• Maximal harvesting of the photobioreactor with no growth until a low level of biomass
is reached

• Passive photobioreactor: no harvesting, no growth, only respiration

The first two phases take place in the presence of light, the other two in the dark. In phase
3, harvesting of as much biomass produced in the light phase as possible is continued while
not going below the level where the residual biomass left is sufficient to efficiently start again
the next day.

Bang-singular-bang with λ0 > 1:
We will first look at what a singular arc could be. For that, we see that ∂H

∂u
= 1 − λ

should be 0 over a time interval and compute its time derivatives.

d

dt

(

∂H

∂u

)

|λ=1

= − µ(t)

(1 + y)2
+ r

When µ(t) = 0, that is in the dark phase, no singular arc is thus possible. When µ(t) = µ̄,
this derivative is equal to zero when y = yσ defined in (8). The singular control is then the
control that maintains this equilibrium, that is uσ =

√
µ̄r− r defined in (6). This control is

positive thanks to (10) but it is smaller or equal to 1 only if

µ̄ ≤ (r + 1)2

r
(21)
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12 Grognard & Akhmetzhanov & Masci & Bernard

No singular control can exist otherwise. When a singular branch appears in the optimal
solution, it is locally optimal because the second order Kelley condition

∂

∂u

(

d2

dτ2
∂H

∂u

)

=
2λµ

(1 + y)3
≥ 0

is satisfied on the singular arc [7].
The construction of the solution is very similar to that in the purely bang-bang case.

Similarly, a switch needs to occur in the interval (0, T̄ ). This switch can be from u = 0 to
u = 1 or from u = 0 to u = uσ and should occur with y ≤ yσ in order to have λ̇ ≤ 0. In fact,
if a switch first occurs to u = 1, an argument identical to the one in the previous section
shows that no switch back to 0 can take place before T̄ ; this same argument can in fact be
used to show that no switch to u = uσ can take place either since: in both cases, λ should
get back to 1, which we show to be impossible.

A switch from 0 to uσ then takes place once λ = 1 at (t0σ, yσ). Equations (11)-(12) can
then be used to identify this switching instant:

r ln

(

yσ
y0

)

− µ̄ ln

(

µ̄− r(1 + yσ)

µ̄− r(1 + y0)

)

r(µ̄ − r)
= t0σ (22)

yσ

(

µ̄

1 + yσ
− r

)

= λ0y0

(

µ̄

1 + y0
− r

)

(23)

From there, λ(t) = 1 and y(t) = yσ for some time. This could be until t = T̄ , followed
directly by u = 0 in the dark phase but, more generically, the singular arc ends at time
tσ1 < T̄ , where a switch occurs toward u = 1. From then on, things are unchanged with
respect to the bang-bang case. The equations that define the transitions from tσ1 to T̄ are
similar to (15) and (16):

(r + 1) ln

(

ȳ

yσ

)

− µ̄ ln

(

µ̄− ((r + 1)(1 + ȳ)

µ̄− (r + 1)(1 + yσ)

)

(r + 1)(µ̄− r − 1)
= T̄ − tσ1 (24)

λ̄ȳ

(

µ̄

1 + ȳ
− r − 1

)

+ ȳ = yσ

(

µ̄

1 + yσ
− r

)

(25)

The remainder of the solution is unchanged with respect to the bang-bang one, so that
we can compute the solution by solving system (17)-(20) and (22)-(25) of eight algebraic
equations with eight unknown variables.

Again, the analytical approach has helped us identify the qualitative form of the optimal
productivity solution. It now contains five phases:

• Growth with a closed photobioreactor until a sufficient biomass level is reached

INRIA
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• Maximal equilibrium productivity rate on the singular arc

• Maximal harvesting of the photobioreactor with simultaneous growth

• Maximal harvesting of the photobioreactor with no growth until a low level of biomass
is reached

• Passive photobioreactor: no harvesting, no growth, only respiration

For this form of solution, we see that maximal instantaneous productivity is achieved
during the whole second phase, when the singular solution occurs.

Solution with λ0 < 1:
Such a solution would mean that harvesting takes place during the whole dark phase

because no transition from u = 0 to u = 1 can take place in this phase, as we have already
shown. Two possibilities then occur: either u = 1 all the time or switches from u = 1 to
u = 0 or uσ and then back to u = 1 take place in the interval (0, T̄ ).

In the latter case, the first switch from u = 1 to u = 0 can only take place with y > yσ
because of the constraint that λ̇ > 0 with λ = 1 at that moment. Then, when the control
u = 0 is applied for some time, the solution y(t) is increasing. We also have that the switch
from u = 0 to u = 1 can only take place with y < yσ because of the constraint that λ̇ < 0
with λ = 1 at that moment. This is in contradiction with the fact that y(t) was increasing
from above yσ.

We can also show that no strategy in the (0, T̄ ) interval can have the form u = 1 →
uσ → u = 0 or 1. Indeed, in order to reach the singular arc with u = 1, a solution should
be coming from above it. If the switch that takes place at the end of the singular phase is
from uσ to 0, y(t) will increase and there should be a subsequent switch from 0 to 1 which
is impossible with y(t) > yσ. If the switch that takes place at the end of the singular phase
is from uσ to 1, y(t) will decrease all the time between tσ1 and T , which is in contradiction
with the fact that we had y(0) > yσ.

The only potential optimal control in that family is therefore u(t) = 1 for all times.
Using the expressions computed previously, this control can be a candidate optimal control
law only if y0 = y0min as we have seen earlier and the complete dynamics should satisfy:

λ̄ȳ

(

µ̄

1 + ȳ
− r − 1

)

+ ȳ = λ0y0

(

µ̄

1 + y0
− r

)

(26)

ȳ = y0e
(r+1)(T−T̄ ) (27)

λ0 = λ̄e(r+1)(T−T̄ ) − e(r+1)(T−T̄ ) − 1

r + 1
(28)

with λ0 < 1 and λ̄ < 1.
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14 Grognard & Akhmetzhanov & Masci & Bernard

4 Bifurcation analysis

In this section, we will consider fixed values of all parameters except of ν̄ and ρ. We build
a bifurcation diagram for these two parameters by identifying in which region no solution
is possible (where (10) is not satisfied, it is below the solid black line on Fig. 1), and where
the optimal solution is bang-singular-bang (Fig. 1, inside the blue curve), bang-bang (Fig. 1,
outside the blue curve and above the solid black line), and constant at value 1 (see Fig. 2).
But the last case is only realized for extremely large values of ν̄. We see that the region where
singular control can exist is smaller than what is defined by condition (21). This is due to
the fact that, though the singular control is possible, there is not enough time for the control
to reach that level (see Fig. 3(C)). For larger values of ν̄, no singular control is possible and
the optimal solution in the light region goes toward the equilibrium corresponding to u = 1
(see Fig. 3(A)). In that case, as well as in the bang-singular-bang case, the solutions go to
the optimal solution of the constant light problem (Fig. 3(B)).

5 Conclusions

We have shown that, because of the day-night constraint, the productivity rate cannot
be as high as it could have been without it. However, when the maximal growth rate is
sufficiently larger than the respiration rate, we manage to have a temporary phase where
the productivity rate is at or near this level. The maximal harvesting at the end of the
light phase and at the beginning of the dark phase minimizes the biomass during the dark
phase and, consequently, the net respiration. If the maximal growth rate is very large, the
optimal solution consists in constantly applying maximal control because the biomass that
is built-up in the light phase needs to be harvested even during the night.
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Figure 1: Bifurcation picture for Dmax = 12, κ = 1, T = 1, T̄ = T/2. The solid black line
is ν̄ = κρT/T̄ (see (10)), the dashed line is ν̄ = κ(ρ + Dmax)

2/ρ and it is related to (7).
Optimal patterns for A, B and C are shown on Fig. 3
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Figure 2: The region E with optimal constant control u = 1. Below this region, this diagram
is connected with Fig. 1
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Figure 3: Different optimal patterns: (A) ν̄ = 14, (B) ν̄ = 36, (C) ν̄ = 64; ρ = 5, Dmax = 12,
κ = 1, T = 1, T̄ = T/2. Red: u = 0, Blue: u = 1, Green: intermediate control u ∈ [0, 1].
Magenta line indicates the level x = κyσ (see (8))
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