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On using an inexact floating-point LP solver for

deciding linear arithmetic in an SMT solver

Frédéric Besson⋆

Inria, Centre Rennes - Bretagne Atlantique
Campus Universitaire de Beaulieu

FR-35042 Rennes cedex

Abstract Off-the-shelf linear programming (LP) solvers trade sound-
ness for speed: for efficiency, the arithmetic is not exact rational arith-
metic but floating-point arithmetic. As a side-effect the results come
without any formal guarantee and cannot be directly used for decid-
ing linear arithmetic. In this work we explain how to design a sound
procedure for linear arithmetic built upon an inexact floating-point LP
solver. Our approach relies on linear programming duality to instruct
a black-box off-the-shelf LP solver to output, when the problem is not
satisfiable, an untrusted proof certificate. We present a heuristic post-
processing of the certificate which accommodates for certain numeric
inaccuracies. Upon success it returns a provably correct proof witness
that can be independently checked. Our preliminary results are promis-
ing. For a benchmark suite extracted from SMT verification problems
the floating-point LP solver returns a result for which proof witnesses
are successfully and efficiently generated.

1 Introduction

Satisfiability Modulo Theories (SMT) consists in solving formulae belonging to
a combination of theories [4] such as the theory of uninterpreted function sym-
bols, arrays, bit-vectors or linear real arithmetic (LRA). In practise linear arith-
metic formulae are pervasive. Therefore, to be competitive, SMT solvers need
an efficient linear arithmetic decision procedure. For fragments of LRA there
exist scalable algorithms. For instance, difference logic (constraints of the form
x − y ≤ c) is solved by variations of the shortest-path algorithm [12,2]. Decid-
ing full LRA is more challenging. State-of-the-art SMT solvers, such as Yices
and Z3, re-implement from scratch a Simplex solver [6,3] in exact rational arith-
metic. In terms of engineering it would be much more cost-effective to simply
use off-the-shelf state-of-the-art Simplex implementations.

Dutertre and De Moura [6] explain how to design an efficient Simplex algo-
rithm that fulfills the requirements of SMT solvers. They put the emphasis on
distinctive features that are key for efficiency e.g., fast backtracking and the-
ory propagation. Other important features are generation of conflict clauses and
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handling of strict inequalities. In their work there is one obvious and essential
property that is only alluded to: soundness. From an SMT solver perspective,
soundness is of course mandatory and not negotiable. On the contrary, scalable
off-the-shelf Simplex implementations, e.g., Glpk[10] and CPLex [8], are inex-
act because they use floating-point instead of exact rational arithmetic. When
the Simplex method is used as a decision procedure for linear arithmetic, this
is an issue because even the slightest approximation can be responsible for an
unsound result.

Previous works [11,7] propose approaches allowing to leverage inexact floating-
point Linear Programming (LP) solvers in an SMT solver. The present paper
belongs to this trend. Like previous approaches we consider the LP solver as
an untrusted oracle. Its output is therefore post-processed, using exact rational
arithmetic, in order to obtain a proof witness.

The contribution of this work is to develop an approach exploiting linear
programming duality. The benefit of a dual encoding is that it minimises the
requirements on LP solvers. More precisely, we present a dual formulation of
the original (primal) linear problem with the following properties: a) it has no
strict inequalities; b) it is incremental; c) it generates conflict clauses; d) it
allows for conflict-driven theory propagation. Such properties have engineering
consequences and make it easier to interface an SMT solver with existing of-the-
shelf exact rational arithmetic LP solvers that might neither be incremental nor
support strict inequalities nor generate conflict clauses. The other contribution of
the paper is a fast post-processing of the output of an inexact floating-point LP
solver allowing to accommodate for numeric inaccuracy. Compared to previous
approaches our post-processing is faster and always succeeds for a benchmark
suite representative of SMT verifications problems.

The rest of the paper is organised as follows. Section 2 exploits linear duality
in order to derive a notion of witness for LRA. Section 3 shows how a witness
can be found by solving a single linear problem. Section 4 emphasises that the
formulation of the problem is compatible with the requirements of SMT solvers.
Section 5 presents an algorithm to reconstruct an exact result from an untrusted
oracle obtained from a floating-point LP solver. The approach is validated ex-
perimentally in Section 6. Section 7 compares with related work and Section 8
concludes. Notations are fairly standard; for completeness, they are given in
Appendix A. Detailed proofs can be found in Appendix B.

2 Witnesses for LRA

Our notion of witnesses for LRA originates from the duality theory of linear
programming. The original problem is called the primal problem. Primal and
dual are such that: if the primal is not satisfiable then the dual is satisfiable;
and if the primal is satisfiable then the dual is unsatisfiable. As a result, to
prove that a conjunctive LRA formula F is unsatisfiable, it suffices to exhibit
a model w of the dual of F . The model w is a witness that F is unsatisfiable.
In the following, we show how to derive witnesses from Motzkin’s transposition



theorem, a duality theorem, which generalises Farkas’ lemma in the presence of
strict inequalities.

2.1 LRA formulae

Atoms of LRA formulae are linear constraints of the form a1x1 + . . . + anxn 1 b
where a1, . . . , an and b are rational constants, x1, . . . , xn are real variables and
1 belongs to the set {=,≤, <}. (Other operators such as ≥, >, 6= can easily be
encoded.) In an SMT solver the SAT engine proposes boolean models of the
formula that are fed into a decision procedure for the conjunctive fragment of
the theory. Therefore, we only consider conjunctive formulae of LRA.

In the sequel we use matrix notations for reasoning about conjunctive LRA
formulae. We write A · x < a, B · x ≤ b , C · x = c for the LRA formula

m
^

i=1

Ai,1x1+· · ·+Ai,jxj < ai∧

n
^

i=1

Bi,1x1+· · ·+Bi,jxj ≤ bi∧

o
^

i=1

Ci,1x1+· · ·+Ci,jxj = ci

2.2 Proof witnesses for LRA

In this section we derive a notion of proof witness for LRA from Motzkin’s
transposition theorem. For a comprehensive presentation and formal proofs of
this result we refer the reader to [13, Chapter 7]. The notion of witness we come
up with has the advantage of simplifying the interface with an SMT solver (see
Section 4).

Lemma 1 (Motzkin’s transposition theorem [13, Corollary 7.1k]). Let
A ∈ Qp×n and B ∈ Qq×n be matrices and a ∈ Qn and b ∈ Qn be vectors.

∃x, A · x < a ∧ B · x ≤ b

if and only if

∀(y, z), y ≥ 0 ∧ z ≥ 0 ⇒

{

At · y + Bt · z = 0 ⇒ at · y + bt · z ≥ 0
At · y + Bt · z = 0 ∧ ¬(y = 0) ⇒ at · y + bt · z > 0

Using Lemma 1 we define a notion of witness (Definition 1) which handles equal-
ities, strict and non-strict inequalities. Equalities could be easily dealt with by
rewriting an equality a1x1 + · · · + anxn = b into two non-strict inequalities i.e.,
a1x1 + · · · + anxn ≤ b and (−a1)x1 + · · · + (−an)xn ≤ (−b). Such an encoding
would have the disadvantage of potentially doubling the size of the problem.
Definition 1 keeps the size of the problem unchanged.

Definition 1 (wit). A triple of vectors (y, z, t) is a witness that A · x < a and
B · x ≤ b and C · x = c is unsatisfiable (written wit(A, a,B, b, C, c, (y, z, t))) if
the following conditions hold:

i) y ≥ 0, z ≥ 0



ii) At · y + Bt · z + Ct · t = 0
iii) at · y + bt · z + ct · t < 0 or ¬(y = 0) ∧ at · y + bt · z + ct · t ≤ 0

Definition 1 provides a sound and complete notion of proof witnesses for con-
junctions of formulae with strict and non-strict inequalities. These facts, direct
consequence of Lemma 1, are established by Corollary 1 and Corollary 2. Their
proofs can be found in Appendix B.

Corollary 1 (Soundness of wit). Let A, B be matrices and a, b be vectors.
We have ∀(y, z),wit(A, a,B, b,0,0, (y, z,0)) ⇒ ∀x,¬(A · x < a ∧ B · x ≤ b).

Corollary 2 (Completeness of wit). Let A, B be matrices and a, b be vectors.
We have ∀x,¬(A · x < a ∧ B · x ≤ b) ⇒ ∃(y, z),wit(A, a,B, b,0,0, (y, z,0)).

The soundness and completness results generalise to formulae with equations,
strict and non-strict inequalities. The proof relies on the fact that equalities
can be transformed into pairs of inequalities and that it is always possible to
reconstruct a witness for the initial formula from a witness of the transformed
formulae (and vice-versa).

Theorem 1. Let A, B and C be matrices and a, b and c be vectors.

∃(y, z, t),wit(A, a,B, b, C, c, (y, z, t)) iff ∀x,¬(A · x < a ∧ B · x ≤ b ∧ C · x = c)

Theorem 1 establishes that Definition 1 provides a sound and complete notion
of witness for LRA. The next section is about computing a witness by solving a
linear program.

3 Witness linear program

We show how proof witnesses that a conjunctive LRA formula is not satisfiable
can be computed by solving linear programs in the form accepted by off-the-shelf
LP solvers such as Glpk [10] and CPLex [8]. To our knowledge, the formulation
is original and has never been exploited by SMT solvers.

3.1 Linear programming

Linear programming consists in optimising a linear function under a conjunc-
tion of linear constraints. There exist several forms of linear programs that can
be proved equivalent [13]. Available LP solvers usually take problems in the
following standard form.

Definition 2. Let A ∈ Qm,n, c ∈ Qn, l ∈ (Q∪ {−∞})n and u ∈ (Q∪ {+∞})n.
A linear program is written max{ct ·x | A ·x = 0, l ≤ x ≤ u} where 1) ct ·x is the
objective function to optimise with respect to x; 2) A is the constraint matrix;
3) l is a lower bound for x; 4) u is an upper bound for x. If li = −∞ (resp.
ui = +∞) then xi has no lower bound (resp. no upper bound).



For our purpose, an LP solver is a black-box procedure for solving linear pro-
grams. The specification of an exact LP solver is as follows. If the linear program
is not feasible, the LP solver detects it. If the problem is feasible and has an op-
timal value v, the LP solver returns v and a feasible vector x allowing to reach
v i.e, ct · x = v. Finally, if the problem is feasible but the objective function has
no upper bound, the LP solver reports that the linear program is unbounded.

3.2 Witnesses as linear programs

A witness for a conjunction of linear constraints (Definition 1) cannot be directly
found by solving a linear program (Definition 2). The reasons are that the syn-
tactic definition of witnesses i) makes use of strict inequalities and; ii) exhibits
a disjunction. Definition 3 remedies these deficiencies and reinterpret a witness
as the solution of a linear program.

Definition 3 (Witness Linear Program wlp). Given A · x < a, B · x ≤ b
and C · x = c the witness linear program wlp(A, a,B, b, C, c) is defined by

max
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a© At · y + Bt · z + Ct · t = 0
b© u + at · y + bt · z + ct · t = 0
c© v − u − 1t · y = 0
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d© 0 ≤ y ≤ +∞

e© 0 ≤ z ≤ +∞

f© −∞ ≤ t ≤ +∞

g© 0 ≤ u ≤ +∞
h© 1 ≤ v ≤ +∞























For this linear program the objective function to optimise is the constant function
0. As a result, the optimisation problem is turned into a feasibility problem. Any
other objective function would increase the running time. The constraint matrix
and the lower and upper bounds of the linear problem encode the conditions (i),
(ii) and (iii) of Definition 1. Equation a© corresponds syntactically to condition
(ii). The bound conditions d© and e© directly encode condition (i). The bound
condition f© states that the vector t is actually unconstrained. The remaining
equations i.e., b© and c© together with the remaining bound conditions i.e.,
g© and h© are more intricate and encode condition (iii)

at · y + bt · z + ct · t < 0 or ¬(y = 0) ∧ at · y + bt · z + ct · t ≤ 0

In the linear problem, equation b© and bound condition g© constrain the
quantity at ·y + bt ·z + ct · t to be smaller or equal to zero. From the definition of
a witness the equality with zero is only allowed if ¬y = 0 i.e., if there is at least
one strict inequality for which yi is strictly positive. This is catered for by the
equation c© and bound h© . In particular, the term 1t · y is strictly positive as
soon as there exists yi > 0 for some i.

Lemma 2 and Lemma 3 formalise the above discussion and show how to
obtain a witness by solving the linear program wlp. Full proofs can be found in
Appendix B.

Lemma 2 (Soundness of wlp). If wlp(A, a,B, b, C, c) has optimum (y/z/t/u/v)
then wit(A, a,B, b, C, c, (y, z, t)) holds.



Lemma 3 (Completeness of wlp). If wit(A, a,B, b, C, c, (y, z, t)) then there
exists α > 0, u and v such that wlp(A, a,B, b, C, c) has optimum α ·(y/z/t/u/v).

4 Witness linear program for SMT solvers

A SMT-compatible LP solver has to provide a number of extra-features [6] :
strict inequalities, conflict clauses, theory propagation and backtracking. The
advantage of the witness linear program encoding is that it makes almost any
LP solver compatible with an SMT solver.

Strict inequalities are absent from our dual formulation. Because inexact solvers
do not support them this is essential for not incurring an additional loss of
precision. The encoding used by previous approaches (see [11, Section 3] and [7,
Section 4]) are approximate and have the drawback of potentially changing the
status of the problem. In an exact rational, strict inequalities are modeled by
introducing a symbolic infinitesimal parameter [6, Section 5]. This complication
is avoided by our dual formulation.

Conflict clauses are a by-product of the notion of witness. A zero entry of a
witness w, say wi = 0, means that the contradiction is independent from the

ith formula of the primal problem. In other words, the minimal conflict clause
of a witness is obtained by collecting the formulae corresponding to the non-
zero entries of the witness. Therefore, the LP solver does not need to support
explanations or conflict clauses.

Theory propagation can be implemented on top of a core decision procedure. A
more specific conflict-driven theory propagation can be obtained by inspection
of a witness. If a witness vector allows to exhibit a contradiction i.e., a conflict
clause; a sub-vector of a witness can be interpreted as a logic consequence of the
input formula i.e., an intermediate clause used to establish the contradiction.
Those clauses can be exported by theory propagation.

Example 1. Consider the following conjunction:

2x + y ≤ 1 ∧ −x − y ≤ −2 ∧ y ≤ 1 ∧ 2y + z ≤ 1

The vector (1, 2, 1, 0) is a witness and the conflict clause is ¬(2x+y ≤ 1)∨¬(−x−
y ≤ 2) ∨ ¬(y ≤ 1). Conflict-driven theory propagation could also generate the
clauses: ¬(2x + y ≤ 1) ∨ ¬(−x − y ≤ −2) ∨ (−y ≤ −3), ¬(2x + y ≤ 1) ∨ ¬(y ≤
1) ∨ (2x + 2y ≤ 2) and ¬(−x − y ≤ −2) ∨ ¬(y ≤ 1) ∨ (−2x − y ≤ −3).

Backtracking is implemented by updating a bound condition of the linear pro-
gram. Our dual approach is therefore incremental in the sense of Dutertre and
de Moura [6, Section 3]. Removing the ith formula of the primal problem has
the simple effect of updating the bound condition of the ith variable of the wlp
such that 0 ≤ xi ≤ 0. The reverse operation consists in updating the bound



condition so that xi is unbounded for equalities and positive for inequalities.
To be incremental the Simplex method must return a final tableau obtained by
pivoting the initial constraint matrix. This precludes certain pre-solving optimi-
sations that would exploit a bound condition, say 0 ≤ x ≤ 0, to simplify the
constraint matrix. Pre-solving can usually be disabled. This is for instance the
case for Glpk [10], the Simplex solver we use in our experiments.

5 From untrusted oracles to proof witnesses

In Section 3 we have shown that finding a witness could be done by solving the
witness linear program wlp. In this section we propose an optimistic algorithm
for finding a witness by post-processing the result of an inexact floating-point
LP solver. In the following, we detail the algorithm given in Figure 1.

Require: A · x < a, B · x ≤ b, C · c = c

1: lp ← wlp(A, a, B, b, C, c) = max{0 |M · y = 0, l ≤ y ≤ u}
2: LPsolve(lp)
3: if status(lp) = not feasible then return unknown //probably sat
4: if status(lp) = error then return unknown

5: //status(lp) == optimal

6: r ← Solution(lp)

7: r ←

8

<

:

ri if li ≤ ri ≤ ui

li if li 6= −∞
ui otherwise

8: M ′

i,j ←



Mi,j if rj 6= 0
0 otherwise

9: U ← Echelon(M ′)
10: w ← Eval(U, r)
11: if l ≤ w ≤ u then return unsat // the witness is w
12: return unknown // probably unsat

Figure 1. Witness reconstruction algorithm

The witness linear program lp is constructed from the primal problem (line 1).
We write M for the constraint matrix of lp and l and u for the bound conditions.
The linear program lp is then solved using an inexact floating-point LP solver
(line 2). If the status of the LP solver is not feasible we conclude (without formal
guarantee) that the primal problem is probably satisfiable (line 3). Though it
never happens in our experiments, in general, the LP solver might also crash or
report an error. In such cases, we would return that the status of the problem
is unknown (line 4). The interesting case is when the LP solver succeeds and
finds an optimum solution vector r (line 6). In line 7 we make sure that the
vector r respects the bound conditions of lp. In line 8, we make the assumption
that a witness can be reconstructed by keeping the zero entries of the proposed
witness r. We simplify the constraint matrix M accordingly and nullify all the
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Figure 2. Unsatisfiable conjunctions extracted from SMT problems

columns of M corresponding to a zero entry of r (line 8). In practise the obtained
matrix M ′ is very sparse (compared to M). From now on, the computations are
done using exact rational arithmetic on matrix M ′. In line 9, we apply Gaussian
elimination to matrix M ′ to obtain a triangular matrix (also called echelon
matrix) U . To get solutions, we fix the unknowns using the values of r and
iteratively solve the remaining equations of U to get a vector w. By construction,
the vector w verifies the constraint matrix M ′ and therefore M . If the bound
conditions still hold (conditions that are checked for line 11) we return that the
primal problem is unsatisfiable and that vector w is a proof witness. If the bound
conditions are violated, we conclude (without formal guarantee) that the primal
problem is probably unsatisfiable.

6 Experiments

We have an Ocaml prototype Fps1, based on the Simplex solver of Glpk 4.40 [10],
implementing the witness reconstruction approach described above. The exper-
iments have been carried out on a 3.40 Ghz Intel Xeon with 4 GB of RAM
running a 64bit Linux kernel. We have benchmarked our approach against Z3
2.5, MathSAT 4.3 and Yices 2.0 using the benchmark suite of already used in [11].
These are unsatisfiable conjunctions extracted from SMT verification problems
provided by Leonardo de Moura (Figure 2) and random dense benchmarks (Fig-

1 Source code available at http://www.irisa.fr/celtique/fbesson/bbfps.tgz

http://www.irisa.fr/celtique/fbesson/bbfps.tgz


ure 3). For all the unsatisfiable benchmarks the reconstruction succeeds at gen-
erating a witness from the result of the floating-point Simplex solver.

For the first benchmark suite our prototype is slower than Yices (but less
than 3 times slower) but faster than Z3 (about 3 times faster) and faster than
MathSAT 4.3 (about 5 times faster). As always, benchmarks are to be taken
with a pinch of salt. Here, Yices is here about 12 times faster than MathSat
whereas Yices was only about 1.6 times faster during the SMT COMP 2009.
Hence, it is hard to draw strong conclusions about the relative efficiency. In an
attempt to understand whether there is a chance for our approach to be more
competitive, we have profiled the different phases : parsing, simplex and witness
reconstruction. It appears that the Simplex phase takes, on the average, less than
0.015 seconds per benchmark i.e, a cumulative time of about 85 seconds. This
is encouraging as this is a phase that cannot be optimised without optimising
Glpk – the very thing we want to avoid. Moreover, witness reconstruction is not
the bottleneck (cumulative time of 22 seconds). Interestingly, Yices outputs a
status (here unsat) before the end of our parsing phase. There is therefore hope
that a fine-tuned version of our algorithm could be more competitive.

As already observed by Monniaux [11], SMT provers are not efficient for
solving dense random benchmarks. Figure 3 shows the (sorted) cumulative time
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spent to solve the benchmarks. Time is plotted using a logarithmic scale and
Fps outperforms Yices, Z3 and MathSat. For Fps, there is a clear inflexion



point around 100 benchmarks. This delimits the satisfiable benchmarks from the
unsatisfiable ones and corresponds to the overhead of the witness reconstruction.

7 Related work

Dutertre and de Moura [6] have detailed how to design an efficient Simplex
algorithm compatible with the requirements of SMT solvers. We have shown how
to relax certain of those requirements by exploiting linear duality and encoding
the witness linear program. One limitation is that a model is not generated when
the primal problem is satisfiable – we only have the knowledge that the dual is
unsatisfiable. This can be mitigated by solving the primal problem. Notice that
this penalty is only paid once and only for satisfiable problems which are on the
average faster to solve.

Faure et al., couple exact and inexact LP solvers in the SMT solver Barcel-
ogic [7]. The coupling requires the inexact LP solver to generate conflict clauses.
Our approach is less demanding on the solver as the conflict clause is a by-
product of turning the primal problem into a dual witness search problem. As
inexact LP solvers do not handle strict inequalities, Faure et al., relax them
into non-strict inequalities by subtracting a small ǫ. Another advantage of our
witness linear program is that it has no strict inequalities whatever the form
of the primal problem. Like in this paper, when the inexact solver reports an
unsatisfiable problem, the alleged conflict clause is post-processed in order to
get a provably correct answer. Their post-processing which amounts to running
a LP solver in exact rational arithmetic is complete – if the inexact LP solver
return a genuine conflict – but much more costly than our optimistic witness
reconstruction algorithm.

Dhiflaoui et al., [5] exploit the basis computed by an inexact floating-point
Simplex solver to compute the exact results of linear programs. The basis is veri-
fied using exact methods. If it is not optimal, it is repaired using a Simplex solver
running in exact rational arithmetic. Repairing the basis using exact arithmetic
can be costly and is not practical for certain LP. When the basis is wrong a
more scalable approach consists in rerunning the Simplex solver with extended
(floating-point) precision [9,1]. Using this approach, Koch [9] obtains the ex-
act results of the NETLIB-LP benchmarks. Monniaux [11] adapts the approach
of [5] for deciding LRA. The basis reconstruction has a complexity cubic in the
size of the initial problem. In our case, because we make optimistic assumption
that the conflict clause is correct our post-processing is cubic in the size of the
conflict clause. For SMT problems, the conflict clauses are usually small and the
gain is therefore substantial. Monniaux reports than the basis is sound in 77%
of the benchmarks. When it is not, additional pivots are needed; this can be
very costly. For the same benchmark suite, our witness reconstruction algorithm
always succeeds. Investigation is still needed to fully understand why this is the
case. What is for sure is that solving the witness linear program has the theoret-
ical advantage of dealing with strict inequalities without loss of precision. More
speculatively, it might possess better numeric properties.



8 Conclusion

Exploiting duality results of linear programming, we have proposed a notion
of witness linear program which has the advantage of simplifying the interface
between an SMT-solver and an off-the-shelf (exact or inexact) LP solver which
can lack support for strict inequalities, conflict clauses and backtracking. For
inexact LP solver, we have also proposed a witness reconstruction algorithm
which despite being theoretically incomplete is very fast and effective in prac-
tise. More work is needed to fully assess the potential of using an inexact LP
solver for deciding LRA. As future work, we aim at implementing the algorithm
described here in an SMT solver. This would enable more thorough comparisons
with state-of-the-art SMT solvers. We anticipate that our optimistic witness
reconstruction will sometimes fail – hopefully on very rare occasions. To get a
decision procedure, a simple method consists in coupling our witness reconstruc-
tion with Monniaux’s algorithm [11]. We also intend to investigate how to exploit
further properties of linear programming in order to better resist numeric inac-
curacies: the existence of integer witnesses and the fact that interior points e.g.,
the Chebyshev centre should be more immune to floating-point approximations.
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A Notations

Qm,n is the set of rational-valued matrices with m rows and n columns. Given
A ∈ Qm,n, Ai is the ith row of A and Ai,j is the element at row i and column
j. At ∈ Qm,n is the matrix transpose of A. Given A ∈ Qn,k and B ∈ Qk,m,
A ·B ∈ Qn,m is the matrix product of A by B. Given A ∈ Qm,n and B ∈ Qm,n,
A + B is the component-wise addition of matrices. A vector is a matrix with 1
column and we write Qm for Qm,1 the set of vectors with m elements. We write
0n the vector filled with zeros. When it is clear from the context, we drop the
index and simply write 0. Likewise 1 is a vector filled with ones (and should not
be confused with the identity matrix I). To streamline notations, we write A/B

for the block matrix

(

A
B

)

.

B Proofs

Corollary 1 (Soundness of wit). Let A and B be matrices and a and b be
vectors.

∀(y, z),wit(A, a,B, b,0,0, (y, z,0)) ⇒ ∀x,¬(A · x < a ∧ B · x ≤ b)

Proof. Ad Absurdum suppose that we have vectors y and z such that

wit(A, a,B, b,0,0, (y, z,0))

and a vector x such that A · x < a and B · x ≤ b. By Lemma 1 and Definition 1,
we deduce that:

(a) at · y + bt · z ≥ 0
(b) ¬(y = 0) ⇒ at · y + bt · z > 0

To conclude the proof, we do a case analysis over item (iii) of Definition 1.
If at · y + bt · z + ct · t < 0, this contradicts (a). Otherwise, we have ¬(y =
0) ∧ at · y + bt · z + ct · t ≤ 0 and this contradicts (b). ⊓⊔

Corollary 2 (Completeness of wit). Let A and B be matrices and a and b
be vectors.

∀x,¬(A · x < a ∧ B · x ≤ b) ⇒ ∃(y, z),wit(A, a,B, b,0,0, (y, z,0))

Proof. Suppose that A ·x < a∧B ·x ≤ b is unsatisfiable. Formally, ¬(∃x, A ·x <
a ∧ B · x ≤ b. Given P defined as

P (y, z) = y ≥ 0 ∧ z ≥ 0 ⇒

{

At · y + Bt · z = 0 ⇒ at · y + bt · z ≥ 0
At · y + Bt · z = 0 ∧ ¬(y = 0) ⇒ at · y + bt · z > 0

by Lemma 1, we have ¬(∀(y, z), P (y, z)) i.e., ∃(y, z),¬P (y, z). By propositional
reasoning, ¬(P (y, z)) is equivalent to

y ≥ 0∧z ≥ 0∧At·y+Bt·z = 0∧((¬at·y+bt·z ≥ 0)∨(¬(y = 0)∧¬(at·y+bt·z > 0)))



which (by arithmetic reasoning) is equivalent to Definition 1. As a result, a pair
(y, z) such that ¬P (y, z) is a witness and verifies wit(A, a,B, b,0,0, (x, y,0)).

⊓⊔

Remark 1. Let C be a matrix and c be a vector, the following holds:

C · x = c iff (C/ − C) · x ≤ (c/ − c)

Theorem 1. Let A, B and C be matrices and a, b and c be vectors.

∃(y, z, t),wit(A, a,B, b, C, c, (y, z, t)) iff ∀x,¬(A · x < a ∧ B · x ≤ b ∧ C · x = c)

Proof. We first prove that for all vectors y and z the following holds:

∃t,wit(A, a,B, b, C, c, (y, z, t))
if and only if

∃(u, v),wit(A, a, (B/C/ − C), (b/c/ − c),0,0, (y, (z/u/v),0))

The proof relies on the following distributivity laws

X · (w − w′) = X · w + (−X) · w′ (1)

(X/Y )t · (w/w′) = Xt · w + Y t · w′ (2)

⇒ Suppose that (y, z, t) is a witness for some t. The vector t can be uniquely
decomposed into u and v such that u ≥ 0, v ≥ 0 and t = u−v. Equation (1)
and equation (2) allow to prove

wit(A, a, (B/C/ − C), (b/c/ − c),0,0, (y, (z/u/v),0))

This concludes the ⇒ part.
⇐ Suppose that (y, (z/u/v),0) is a witness for some u and v. Again, the two

previous equations allow to conclude that wit(A, a,B, b, C, c, (y, z, u − v)).

Theorem 1 follows from Corollary 1, Corollary 2 and Remark 1. ⊓⊔

Lemma 1 (Soundness of wlp). If wlp(A, a,B, b, C, c) has optimum y/z/t/u/v
then wit(A, a,B, b, C, c, (y, z, t)) holds.

Proof. Because this is an optimal, the vector y/z/t/u/v is a feasible solution of
the constraint matrix and the bound conditions of wlp. As a result, the conditions
(i) and (ii) of wit are trivially fulfilled. From equation b© we have

u = −(at · y + bt · z + ct · t) (3)

Consider the exclusive cases y = 0 and ¬y = 0.

y = 0 From equations c© and (3) and bound condition h© we obtain

at · y + bt · z + ct · t − 1t · y ≤ −1

However, 1t · y = 0 and therefore at · y + bt · z + ct · t ≤ −1 < 0. This fulfills
condition (iii) of wit and conclude the proof.



¬y = 0 From equation (3) and bound condition g© we obtain

at · y + bt · z + ct · t ≤ 0

As we have ¬y = 0 this fulfills condition (iii) of wit and conclude the proof.
⊓⊔

Lemma 2 (Completeness of wlp). If wit(A, a,B, b, C, c, (y, z, t)) then there
exists α > 0, u and v such that wlp(A, a,B, b, C, c) has optimum α ·(y/z/t/u/v).

Proof. Suppose that wit(A, a,B, b, C, c, (y, z, t)) and define τ , u and v by:

τ = at · y + bt · z + ct · t (4)

α = −(τ − 1t · y)−1 (5)

u = −τ (6)

v = −(τ − 1t · y) (7)

We first prove that α is strictly positive i.e., τ − 1t · y < 0. From condition
(iii) we obtain that at · y + bt · z + ct · t ≤ 0. Moreover, because y ≥ 0 we have
1t · y ≥ 0. As a result, we have τ − 1t · y ≤ 0. Ad Aburdum suppose τ − 1t · y is
null. Consider the exclusive cases y = 0 and ¬y = 0.

y = 0 We have 1t · y = 0. The proof is by case analysis over condition (iii) of
wit . Either at · y + bt · z + ct · t < 0 and this is contradictory or ¬y = 0 and
this is also contradictory.

¬y = 0 In this case, 1t · y is strictly positive and this is contradictory.

As the objective function of wlp is the constant null function, it remains to
prove that the solution α · (y/z/t/u/v) is feasible. First remark that scaling a
witness by a strictly positive constant preserves the witness property. As a result,
we have wit(A, a,B, b, C, c, (α·y, α·z, α·t)). This establishes the equation a© and
bound conditions d© , e© , f© . Equations b© and c© are direct consequences
of equations (6) and (7). The bound condition g© (0 ≤ α · u ≤ +∞) holds
because u and α are strictly positive. It remains to prove bound condition h© .
We have

v = −(τ − 1t · y) (8)

α · v = −(τ − 1t · y)−1 ×−(τ − 1t · y) (9)

α · v = 1 (10)

As a result the bound condition h© is satisfied. This concludes the proof. ⊓⊔
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