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Nonlinear Hybrid System Identification with Kernel Models

Fabien Lauer, Gérard Bloch and René Vidal

Abstract— This paper focuses on the identification of nonlin-
ear hybrid systems involving unknown nonlinear dynamics. The
proposed method extends the framework of [1] by introducing
nonparametric models based on kernel functions in order to
estimate arbitrary nonlinearities without prior knowledge. In
comparison to the previous work of [2], which also dealt
with unknown nonlinearities, the new algorithm assumes the
form of an unconstrained nonlinear continuous optimization
problem, which can be efficiently solved for moderate numbers
of parameters in the model, as is typically the case for linear
hybrid systems. However, to maintain the efficiency of the
method on large data sets with nonlinear kernel models, a
preprocessing step is required in order to fix the model size and
limit the number of optimization variables. A support vector
selection procedure, based on a maximum entropy criterion, is
proposed to perform this step. The efficiency of the resulting
algorithm is demonstrated on large-scale experiments involving
the identification of nonlinear switched dynamical systems.

I. INTRODUCTION
Hybrid systems are a rich class of dynamical models that

can be used to describe the behavior of complex systems.
In many applications, explicit models of a system are not
readily available, hence the parameters of the model need
to be identified from input/output data. In this paper we use
tools from machine learning, such as kernel functions, to pro-
pose an algorithm for the identification of nonlinear hybrid
systems involving arbitrary and unknown nonlinearities.

More specifically, we consider a class of discrete-time
ARX hybrid systems of the form

yi = fλi(xi) + ei, (1)

where xi = [yi−1 . . . yi−na , ui−nk
. . . ui−nk−nc+1]T is

the continuous state (or regression vector) of dimension p
containing the lagged nc inputs ui−k and na outputs yi−k,
λi ∈ {1, . . . , n} is the discrete state (or mode) determining
which one of the n subsystems {fj}nj=1 is active at time step
i, and ei is an additive noise term.

This class of hybrid models can be classified with re-
spect to the nature of the submodels {fj} and that of
the evolution of the discrete state λi. According to the
nomenclature defined in [2], Switched ARX (SARX) and
Switched Nonlinear ARX (SNARX) models assume that the
system switches arbitrarily. On the other hand, PieceWise
ARX (PWARX) models consider a dependency between the
discrete state and the regression vector. Specifically, they are
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defined by piecewise affine maps of the type f(x) = fj(x),
if x ∈ Sj , j = 1, . . . , n, where {fj} are affine functions
and {Sj} are polyhedral domains defining a partition of
the regression space. Similarly, PWNARX models can be
defined by piecewise smooth maps, where {fj} are smooth
nonlinear functions instead of affine functions. Piecewise
models with arbitrary domains {Sj} are considered in [2] and
referred to as Nonlinearly PWARX or PWNARX (NPWARX
or NPWNARX) models.

This paper concentrates on the problem of finding a
nonlinear hybrid model f = {fj}nj=1 of the form (1) from
input–output data {(xi, yi)}Ni=1. We assume that the number
of models n and their regressors are known and focus on
the identification of SNARX models. However, the proposed
estimators are able to deal with all the piecewise forms
described above without any modification. These estimators
provide SNARX models, which can be used to estimate the
discrete state. With the labels of the points thus obtained,
determining the partition of the regression space simply
amounts to a pattern recognition (or supervised classification)
problem, for which efficient algorithms are available [3].
Related work. The hybrid system identification problem in-
trinsically implies to simultaneously classify the samples into
their respective modes and estimate the model parameters for
each mode. As such, it assumes a straightforward discrete
optimization formulation, which is highly non-convex and
scales exponentially with the number of data.

Many of the recent approaches proposed to solve this
problem typically implement a local optimization method
and are thus rather sensitive to their initialization. The
clustering-based approaches, either using k-means [4] or
Expectation Maximization (EM) [5], the Bayesian approach
[6], [7] and the Support Vector Regression (SVR) approach
[8], [9] fall into this category. On the other hand, the mixed
integer programming (MIP) approach [10] and the bounded-
error approach [11] are based on combinatorial optimization
and become prohibitively time consuming for moderate-
size data sets. Beside these methods, the algebraic approach
[12], [13], [14], [15] circumvents the aforementioned com-
putational issues by proposing a closed form solution to
an approximation of the identification problem for SARX
systems. However, this approach can be sensitive to noise.
Another approach based on continuous optimization has been
recently proposed in [1]. In addition to being robust to noise
and outliers, this approach also significantly alleviates the
complexity bottleneck of other methods.

To the best of our knowledge, the first approach to deal
with nonlinear hybrid system identification without prior
knowledge of the nonlinearities was proposed in [2] as



an extension to the SVR-based method [8]. However, this
approach optimizes over a number of variables that grows
with the number of data points, and is thus limited to small
data sets. In comparison to the method of [2], the algorithm
proposed here builds on the work of [1] and is able to deal
with large data sets.
Paper contribution. In this paper, we extend the continuous
optimization framework originally proposed in [1] for linear
hybrid system identification to nonlinear hybrid systems. By
continuous optimization we refer to the optimization of a
continuous cost function over a continuous domain, which
excludes for instance integer programs. In particular, two
formulations of the algorithm are considered. The first one is
based on a non-differentiable cost function involving min op-
erations. The second one, inspired by the algebraic approach
[12], offers a differentiable approximation using products
of error terms. Nonlinear models based on kernel functions
are introduced in these algorithms to be able to estimate
unknown nonlinearities. As the efficiency of the method of
[1] heavily relies on the number of optimization variables,
we propose fixed-size kernel submodels. As a consequence,
the resulting unconstrained optimization program, though
non-convex, can be solved by standard global optimization
algorithms even for large data sets.
Paper organization. Section §II presents the proposed con-
tinuous optimization framework for hybrid system identifica-
tion with the two estimators based on the minimum of errors
(§II-A) and product of errors (§II-B) terms, respectively.
Kernel methods for nonlinear hybrid system identification
are introduced in §III. The paper ends with numerical exper-
iments in §IV and conclusions in §V.
Notations. For the sake of clarity, the notation minimize

θ
J

is used to refer to an optimization problem minimizing a cost
function J over some variable θ, whereas min

j=1,...,n
Lj refers

to the function returning the minimum of some finite set of
values {L1, . . . , Ln}.

II. HYBRID SYSTEM IDENTIFICATION
FRAMEWORK

This section reviews the hybrid system identification
framework proposed in [1]. Specifically, the minimum-of-
errors estimator and the product-of-errors estimator are dis-
cussed in §II-A and in §II-B, respectively.

A. Minimum-of-Errors Estimator

The Minimum-of-Errors (ME) estimator assumes that
sample xi must be assigned to the submodel that best
estimates the target output yi with respect to a given loss
function l, i.e.,

λ̂i = arg min
j=1,...,n

l(yi − fj(xi)), i = 1, . . . , N. (2)

The error minimization framework estimates the model f as
the one that minimizes, on a given data set, the error

J =
1

N

N∑
i=1

l(yi − f(xi)). (3)

Explicitly including (2) in this framework leads to the
Minimum-of-Errors (ME) estimator as obtained by solving

minimize
{fj}

JME , (4)

where JME =
1

N

N∑
i=1

(
min

j=1,...,n
l(yi − fj(xi))

)
. (5)

Note that the minimum of a finite set of continuous
functions of some variables is a continuous function of
these variables (discontinuities only occur in the derivatives).
Therefore, if the submodels {fj} are given by continuous
functions of their parameters and the loss function l(e) is
continuous in its argument, then the minimum over j of
the loss functions l(yi − fj(xi)) is a continuous function
of the parameters to be estimated. As a consequence, the
cost function in (5) is a continuous function of the variables
parametrizing the submodels {fj}. Thus (4) is an uncon-
strained continuous optimization problem involving only real
variables, namely the parameters of the submodels {fj}.
After solving for these parameters, the mode estimates are
simply recovered by using (2) (or λ̂i = arg minj=1,...,n |yi−
fj(xi)|, if the loss function l cannot yield the decision).

An equivalent estimator to the one presented above can
be derived in the maximum likelihood framework, as shown
in [1].

B. Product-of-Errors Estimator

For a smooth loss function l, the Product-of-Errors (PE)
estimator is obtained by solving the smooth optimization
program

minimize
{fj}

JPE , (6)

where JPE =
1

N

N∑
i=1

n∏
j=1

l(yi − fj(xi)). (7)

The cost function (7) of the PE estimator can be seen
as a smooth approximation to the ME cost function (5).
In particular, for noiseless data, they share the same global
minimum JME = JPE = 0. Note that for linear submodels
fj , solving the optimization problem of the PE estimator in
the noiseless case gives an exact solution to the identification
problem, as shown in [12].

III. ESTIMATION OF NONLINEAR HYBRID
MODELS

In this section, we extend the framework to the iden-
tification of hybrid systems involving unknown nonlinear
dynamics.

A. Kernel Models for Hybrid Systems

Following the Linear Programming Support Vector Re-
gression (LP-SVR) approach [16], nonlinear submodels are
expressed in the kernel expansion form

fj(x) =

N∑
k=1

αkjkj(xk,x) + bj , (8)



where αj = [α1j , . . . , αNj ]
T and bj are the parameters

of the submodel fj and kj(·, ·) is a kernel function satis-
fying Mercer’s condition. Typical kernel functions are the
linear (k(xk,x) = xTk x), Gaussian Radial Basis Function
(RBF) (k(xk,x) = exp(−‖xk − x‖22/2σ2) and polynomial
(k(xk,x) = (xTk x+ 1)d) kernels. A kernel function implic-
itly computes inner products, k(xk,x) = 〈Φ(xk),Φ(x)〉,
between points in a higher-dimensional feature space F
obtained by an hidden nonlinear mapping Φ : x 7→ Φ(x).
The higher the dimension of F , the higher the approximation
capacity of the model, up to the universal approximation
capacity obtained for an infinite feature space, as with
Gaussian RBF kernels. Different kernel functions kj can be
used in (8) for the different submodels fj . It is thus possible
to take prior knowledge into account such as the number of
modes governed by linear dynamics or information on the
type of a particular nonlinearity, if available. Note, however,
that this is not a requirement for the proposed method.

As in Support Vector Machines (SVMs) [17], we refer
to the vectors xk for which the associated {αkj}j=1,...,n

parameters are nonzero as the Support Vectors (SVs), since
these are the only data points kept in the final model. SVM
methods are typically known to yield sparse models in terms
of these SVs, which allows for faster computations of the
output.

1) Regularization: In order to avoid overfitting, the con-
trol of the complexity (or flexibility) of the model is a crucial
issue when estimating nonlinear kernel models. This control
can be achieved by minimizing a regularized cost as in

minimize
f

R(α) + CJ (f,D), (9)

where R(α) is a regularization term acting on the model
parameters α = [αT1 , . . . , α

T
n ]T and J (f,D) is the data

term measuring the error of the model f on the dataset D =
{(xi, yi)}i=1,...,N .

In the following, we consider regularization of the model
f through the regularization of the submodels fj and define
an overall regularizer as

R(α) =
1

n

n∑
j=1

R(αj), (10)

where R(αj) is the regularizer for the submodel fj .
In standard LP-SVR, the model complexity is measured

by the L1-norm of the parameter vector, i.e.,

R(αj) = ‖αj‖1, (11)

In practice, minimizing ‖αj‖1 amounts to penalizing non-
smooth functions and ensures sparsity as a certain number of
parameters αij will tend towards zero. Regularization over
the L2-norm of the parameter vectors, i.e.,

R(αj) = ‖αj‖22 = αTj αj , (12)

is also possible, but may result in less sparse models.

2) Nonlinear ME estimator: By using submodels in ker-
nel form (8) in the ME estimator (5), the algorithm for
nonlinear hybrid system identification becomes

minimize
{αj},{bj}

1

n

n∑
j=1

R(αj) + (13)

C

N

N∑
i=1

min
j=1,...,n

l

(
yi −

N∑
k=1

αkjkj(xk,xi)− bj

)
.

3) Nonlinear PE estimator: Similarly, one can define the
nonlinear PE estimator as the solution to

minimize
{αj},{bj}

1

n

n∑
j=1

R(αj) + (14)

C

N

N∑
i=1

n∏
j=1

l

(
yi −

N∑
k=1

αkjkj(xk,xi)− bj

)
.

B. Fixed-Size Kernel Models for Large-Scale Problems

For submodels in kernel form (8), the optimization pro-
grams (13) and (14) involve a large number of variables
associated to the number of potential SVs. Since the kernel
submodels consider all the data points xk, k = 1, . . . , N , as
potential SVs, the number of variables αkj is n×N . Thus
solving this problem for large N with a global optimizer
may become prohibitively time consuming. Here the key
to reducing the number of parameters αkj is to select the
support vectors xk before starting the optimization.

1) Selection of Support Vectors (SVs): The fixed-size
Least Squares SVM (LS-SVM) [18] is a particular imple-
mentation of SVMs, in which the SVs are selected before
minimizing a regularized least squares criterion. This method
is based on the maximization of an entropy criterion to
ensure a sufficient coverage of the feature space by the SVs.
Then the selected SVs are used to build an approximation
of the nonlinear mapping Φ hidden in the kernel function,
which is in turn used to recast the problem into a linear
form in the approximated feature space. However, in our
experiments, this method was rather sensitive to the numbers
of selected SVs. Therefore, we will apply a similar but more
straightforward method for Gaussian RBF kernels, where we
do not build an approximation of the nonlinear mapping, but
instead use the SVs as RBF centers directly. This leads to
reduced submodels

fj(x) =

Mj∑
k=1

αikjjkj(xikj
,x) + bj , (15)

where Mj is the number of SVs xikj
and {ikj}k=1,...,Mj

is
the list of indexes of the SVs retained for the jth submodel.
Note that the parameter vector of submodel fj is now given
by αj = [αi1jj , . . . , αiMjj

j ]
T and is of dimension Mj .

As in fixed-size LS-SVM, the selection algorithm max-
imizes the quadratic Rényi entropy HR, which quantifies
the diversity, uncertainty or randomness of a system. We
approximate HR by

HR ≈ − log
1

M2
j

1TK
Mj

j 1, (16)



where

K
Mj

j =

kj(x1,xi1j ) . . . kj(x1,xiMjj
)

...
. . .

kj(xN ,xi1j ) kj(xN ,xiMjj
)

 ,
is the kernel matrix for the jth mode. Following [18], the
procedure to select the SVs for a particular mode j is as
follows.

1) Randomly select Mj SVs from the training samples
xi, i = 1, . . . , N .

2) Randomly select one of the Mj SVs, x?, and one of
the remaining training samples, x†.

3) Replace x? by x† in the set of SVs.
4) If the criterion (16) increases, retain x† as a SV,

otherwise replace x† by x? in the set of SVs.
5) Repeat from 2 until the increase of the criterion is too

small or a maximum number of iterations is reached.
Note that in this procedure, a data point xi originally

generated by a particular mode can be considered as a SV
for another mode. The main idea here is to capture only
the general distribution of the data in feature space in order
to ensure sufficient support for the model. However, for
piecewise models, where a particular submodel is only active
in a given region of input space, this procedure may be
suboptimal as it also selects SVs outside of this region. In
this case, how to obtain sparser representations should be
investigated.

2) Complete estimation procedure: A fixed-size nonlinear
hybrid model is estimated as follows.

1) Select n sets of SVs of indexes {ikj}k=1,...,Mj , with
sizes M1, . . . , Mn, by applying the procedure of
Sect. III-B.1 to maximize the criterion (16).

2) Train the hybrid model by solving (9), e.g., for the PE
estimator with L2-regularization,

minimize
{αj},{bj}

1

n

n∑
j=1

αTj αj

Mj
+
C

N

N∑
i=1

n∏
j=1

l(yi − fj(xi)),

(17)
where fj(xi) is computed by (15).

The final optimization program (17) involves only∑n
j=1(Mj + 1) variables instead of n(N+1) as in (14).
In this procedure, the numbers of SVs {Mj}j=1,...,n are

the hyperparameters that must be fixed a priori and may
influence the quality of the model. In standard SVR or neural
network problems, such hyperparameters may be tuned on
the basis of an estimate of the generalization error, which
is either obtained from out-of-sample validation data or by
a cross-validation procedure. However, in our case, these
estimates of the generalization error cannot be obtained,
since we do not know the discrete state λ, and hence we
do not know the submodel fj with which the output should
be computed. Therefore, instead of tuning the numbers Mj ,
we consider the following heuristic for Gaussian RBF kernels
of width parameter σj :

Mj =

⌊
1

σj
max

k=1,...,p

(
max

i=1,...,N
xik − min

i=1,...,N
xik

)⌋
, (18)

where b·c denotes the integer part of its argument and xik is
the kth component of xi. This heuristic is not optimal in the
sense of minimizing the generalization error, but it ensures
sufficient support for the model over the whole input space.
Moreover, notice that we only need suboptimal numbers Mj

that lead to rough mode estimates rather than a perfect fit
of the data. Then, it is always possible to re-estimate the
submodels separately on the basis of this data classification.
If this re-estimation is performed by standard SVR, then the
number of SVs is automatically determined. This will be
illustrated in the experiments of Sect. IV-A.

IV. NUMERICAL EXPERIMENTS

This section starts by presenting an illustrative example
involving the estimation of a function switching between
two unknown nonlinear functions (Sect. IV-A). Large-scale
experiments demonstrating the identification of a nonlinear
switched system are described in Sect. IV-B.

As proposed in [1], all optimization programs are solved
with the Multilevel Coordinate Search algorithm1 [19].
Though the MCS algorithm can deal with unbounded vari-
ables, box constraints are used to limit the search space and
restrain the variables to the interval [−100, 100] (which is
not very restrictive).

The quality of the models is evaluated on an independent
test set by the Mean Squared Error, MSE = 1/Nt

∑Nt

i=1(yi−
fλi

(xi))
2, where Nt is the number of test samples.

A. Illustrative Example

Consider the function arbitrarily switching between two
nonlinear behaviors as

y(x) =

{
x2, if λ = 1

sin(3x) + 2, if λ = 2.
(19)

A training set of N = 2000 points is generated by this func-
tion with additive zero-mean Gaussian noise with standard
deviation σe = 0.3. Then the training data are normalized
(zero mean and unit variance). They are shown in Figure 1 as
black dots. The procedure proposed in section III-B.2 with
the PE estimator is used to estimate two submodels, f1 and
f2, which use RBF kernels with σ1 = 0.8 and σ2 = 0.2,
respectively. The SVs are first selected, with the numbers
M1 = 4 and M2 = 17 set as in (18). Then, the optimization
problem in (17) is solved with a loss function l(e) = e2

and C = 100. Finally, the resulting submodels (top plot) are
used to cluster the data and standard SVR [20] is applied to
re-estimate the submodels separately (bottom plot). Table I
shows that the heuristic in (18) leads to almost optimal Mj

in the sense of minimizing the test MSE.

1The software is freely available as Matlab code at
http://www.mat.univie.ac.at/∼neum/software/mcs/.



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2

3

4

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2

3

4

Fig. 1. Estimation of a switched nonlinear function from 2000 noisy
samples (black dots). The red and blue curves show the estimated submodels
using the PE framework (top) followed by a separate SVR re-estimation after
data classification (bottom).

TABLE I
TEST MSE (×10−3) (TOP) AND CLASSIFICATION ERROR RATE

(BOTTOM) OF THE REFINED HYBRID MODEL FOR DIFFERENT NUMBERS

OF SVS M1 AND M2 . THE NUMBERS FOR THE PROPOSED HEURISTIC

(MARKED WITH ASTERISKS) ARE ALMOST OPTIMAL.

M2 16 17∗ 18 19
M1

3 42.34 44.56 40.33 36.56
15.33% 15.33% 15.13% 14.73%

4∗ 10.96 10.72∗ 10.67 10.83
9.20% 8.73%∗ 9.13% 9.13%

5 17.51 40.11 17.04 39.34
11.07% 15.00% 11.20% 15.00%

B. Switched Nonlinear Dynamical System

Consider the dynamical system arbitrarily switching be-
tween two modes as

yi =


0.9yi−1 + 0.2yi−2, if λi = 1

(0.8− 0.5 exp(−y2i−1))yi−1 −
(0.3 + 0.9 exp(−y2i−1))yi−2 + if λi = 2,

0.4 sin(2πyi−1) + 0.4 sin(2πyi−2),
(20)

Training sets of various sizes N are generated by this
system for the initial condition y0 = y−1 = 0.1 and
additive zero-mean Gaussian noise with σe = 0.1, leading
to trajectories with σy ≈ 0.8. The test set of 2000 points
is built from noiseless data starting at the initial condition

y0 = 0.4, y−1 = −0.3. To be able to evaluate the quality
of the results, reference models are computed with full
knowledge of the discrete state by two separate trainings
of standard SVR (one for each mode).

For the hybrid models estimated by the PE estimator, the
submodel f1 uses a linear kernel with an arbitrary number
of SVs M1 = 5 (this is a fictive number, as the two linear
parameters can be recovered from linear combinations of
the SVs), while f2 uses a Gaussian RBF kernel (σ = 0.3)
with M2 set as in (18). Both the SVR re-estimation and
the reference models use the same kernel hyperparameters
and the same regularization trade-off C = 100 as the PE
estimator. Standard SVR, based on the ε-insensitive loss
function l(e) = max(0, |e| − ε), is applied for re-estimation
and the reference models with ε set to 0.1. Note that
in the re-estimation procedure, all these hyperparameters
could be tuned by cross-validation on the basis of the data
classification previously obtained.

Table II shows the number of SVs for f2, the test MSE, the
classification error rate computed from the mode estimates
(2) and the computing time of the hybrid model obtained
by the PE estimator and the re-estimated SVR models. In
this Table, all numbers of the form A ± B correspond to
averages (A) and standard deviations (B) over 100 trials.
The Table also shows the values for the reference models
and the corresponding classification error yields an estimate
of the number of undecidable data. Note that the number
of SVs of the SVR models is not fixed in advance as for
the PE models, but depends on the data and the value of
ε used in the ε-insensitive loss function (the smaller ε, the
larger the number of SVs). Also, the proposed method is
not bound to SVR and any other nonlinear estimator can be
used to re-estmimate the nonlinear mode, while linear system
identification methods can be applied to the linear mode.

A number of remarks can be stated from these results.
First, the PE estimator can accurately estimate the mode,
leading to a classification error of 13 % on average if we
discard the undecidable points. Moreover, this classification
provides the ground for the re-estimation procedure, which
yields submodels with better test errors than standard SVR
using knowledge of the discrete state. This can be explained
by the fact that the data is classified w.r.t. the minimum
submodel error. Thus, some data points of one mode cor-
rupted by a large amount of noise may be assigned to the
other mode, for which the noise level converts into a small
value. Finally, the computing time of the PE estimator is also
quite reasonable: the model can for instance be estimated
from thousands of data in seconds and from 50 000 data in
less than 3 minutes. Note that we cannot observe a linear
dependency between the computing time and the number of
data N as in [1] for linear submodels, since the number
of SVs M2, on which depends the computing time of the
PE estimator, also changes with N (due to (18)). However,
the difference between the PE and SVR computing times
decreases with N . This shows that for large N , though
relying on non-convex global optimization, the PE estimator
can be faster than a convex optimization based method using



TABLE II
IDENTIFICATION OF A HYBRID SYSTEM WITH UNKNOWN NONLINEARITIES BY THE PE ESTIMATOR WITH AND WITHOUT SVR RE-ESTIMATION. THE

REFERENCE MODEL IS OBTAINED WITH KNOWLEDGE OF THE MODE. THE COMPUTING TIME OF PE+SVR ONLY ACCOUNTS FOR THE SVR STEP.

N Method M2 Test MSE (×10−3) Classif. err. (%) Time (sec.)
2 000 PE 18± 2 210.43± 48.69 25.55± 2.83 2.9± 1.2

PE + SVR 242± 26 49.99± 23.26 19.00± 3.00 0.6± 0.0
Reference 373± 16 102.15± 34.38 12.51± 0.96 0.6± 0.0

10 000 PE 22± 2 199.03± 57.41 25.24± 2.41 17.8± 6.9
PE + SVR 1034± 110 41.18± 16.35 18.54± 2.31 11.0± 0.5
Reference 1677± 32 105.55± 40.37 12.65± 0.44 8.8± 0.3

20 000 PE 24± 3 208.25± 52.03 24.97± 1.85 42.7± 18.2
PE + SVR 1924± 175 37.83± 11.64 17.97± 1.86 41.9± 2.4
Reference 3272± 45 104.24± 32.98 12.67± 0.38 29.7± 0.7

50 000 PE 27± 2 210.05± 58.02 24.85± 2.06 154.1± 38.9
PE + SVR 4689± 416 39.44± 11.48 17.97± 1.79 254.7± 17.7
Reference 8060± 83 103.24± 34.85 12.71± 0.29 172.8± 2.6

100 000 PE 29± 3 211.40± 50.63 24.85± 1.65 464.2± 121.1
PE + SVR 9238± 860 40.76± 9.70 17.99± 1.59 1133.8± 81.0
Reference 16024± 120 109.96± 41.30 12.75± 0.46 809.2± 13.1

specifically tailored and compiled code (LibSVM [20]).

V. CONCLUSION

A method for nonlinear hybrid system identification has
been proposed, in which kernel functions have been in-
troduced to estimate arbitrary and unknown nonlinearities.
Large-scale experiments show that the resulting algorithm
can accurately identify nonlinear hybrid systems from tens
of thousands of noisy data in a reasonable time. Future
work will focus on studying tuning procedures for the
hyperparameters of the method, including the regularization
constant C and the kernel parameter. Additionally, though
the proposed method for the selection of support vectors in
kernel submodels led to satisfactory results, better selection
strategies will be investigated. In particular, we may expect
some improvement by taking the target outputs yi into
account when selecting the support vectors. Future work
will also consider piecewise systems, for which it may be
preferable to select the SVs of a submodel only in the region
where it is active.
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