
HAL Id: inria-00519449
https://hal.inria.fr/inria-00519449

Submitted on 20 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Practical Self-Shadowing Algorithm for Interactive
Hair Animation

Florence Bertails, Clément Ménier, Marie-Paule Cani

To cite this version:
Florence Bertails, Clément Ménier, Marie-Paule Cani. A Practical Self-Shadowing Algorithm for
Interactive Hair Animation. Graphics Interface, May 2005, Victoria, Canada. �inria-00519449�

https://hal.inria.fr/inria-00519449
https://hal.archives-ouvertes.fr

A Practical Self-Shadowing Algorithm for Interactive Hair Animation

Florence Bertails Clément Ménier Marie-Paule Cani

GRAVIR - IMAG/INRIA, Grenoble, France
{florence.bertails, clement.menier, marie-paule.cani}@imag.fr

Figure 1: A dynamic hair without self-shadowing (left) and shaded with our algorithm (right). The 3D light-oriented
map storing hair density and transmittance (middle). The whole simulation (including animation and our rendering)
is running interactively on a standard CPU.

Abstract
This paper presents a new fast and accurate self-

shadowing algorithm for animated hair. Our method is
based on a 3D light-oriented density map, a novel struc-
ture that combines an optimized volumetric representa-
tion of hair with a light-oriented partition of space. Using
this 3D map, accurate hair self-shadowing can be inter-
actively processed (several frames per second for a full
hairstyle) on a standard CPU. Beyond the fact that our
application is independent of any graphics hardware (and
thus portable), it can easily be parallelized for better per-
formance. Our method is especially adapted to render an-
imated hair since there is no geometry-based precompu-
tation and since the density map can be used to optimize
hair self-collisions. The approach has been validated on
a dance motion sequence, for various hairstyles.

Key words: Hair self-shadowing, interactive rendering,
hair simulation.

1 Introduction
Self-shadowing is of great relevance to the realistic ap-
pearance of hair as it contributes to the impression of
volume (see Figure 1). Considering the high number of
thin, translucent fibers composing a human hair, this phe-
nomenon is difficult to reproduce both accurately and ef-
ficiently.

Our work was especially motivated by the need for a
simple, fast and accurate technique to render animated

sequences involving dynamic hair. Recently, much effort
has been made to achieve interactive frame rates in the
simulation of dynamic hair [3, 22, 1]. But most of the
time, these good performances only include the cost for
animation while realistic hair rendering is done offline.

Approaches targeting interactive self-shadowing are
very recent and mostly rely on advanced GPU’s capabili-
ties [17,12]. Though successful, these methods are highly
dependent on the hardware architecture, and remain diffi-
cult to implement. This paper investigates an alternative
solution based on the CPU which turns out to be simpler
to implement, more flexible, and which still yields inter-
active frame rates.

1.1 Previous Work
Realistic rendering of human hair requires the handling
of both local and global hair properties. Local hair prop-
erties describe the way individual hair fibers are illumi-
nated and then represented in the image space, whereas
global properties define how the hair fibers interact to-
gether. Global hair properties especially include hair self-
shadowing which plays a crucial role in volumetric hair
appearance and which is the main focus of this paper.

Local Illumination
To render an individual hair strand, Kajiya and Kay ear-
lier proposed a reflectance model [9] that has been widely
used subsequently. Their model is composed of a lamber-
tian diffuse component and an anisotropic specular com-

ponent. Many later approaches have subsequently pro-
posed further refinements to this model [13, 2, 7, 10]. Re-
cently, Marschner et al. [16] measured the scattering from
real individual hair fibers and proposed a physical-based
scattering model accounting for subtle scattering effects
(such as multiple specular highlights) observed in their
experiments. In our approach, we use Kajya-Kay’s re-
flectance model but our self-shadowing technique could
be combined with any other local illumination model.

Self-Shadowing
Two main techniques are generally used to cast self-
shadows into volumetric objects1: shadow maps and ray
casting through volumetric densities.

In basic depth-based shadow maps, the scene is ren-
dered from the light point of view, and the depth of ev-
ery visible surface is stored into a 2D shadow map. A
point is shadowed if the distance between the point and its
projection to the light’s camera is greater than the depth
stored in the shadow map. This algorithm is not adapted
to render semi-transparent objects such as hair because it
only stores a single depth per pixel. To handle the self-
shadowing of semi-transparent objects, Lokovic et al.
proposed an extension to the traditional shadow maps: the
deep shadow map [15]. For each pixel of the map, the
method stores a transmittance function (also called visi-
bility function) that gives the fraction of light penetrating
at every sampled depth along a ray casted from the pixel.

Kim and Neumann proposed a practical implemen-
tation of this approach, called the opacity shadow
maps [11], and applied it to hair rendering. In their
method, the hair volume is uniformly sliced along the
light rays and each hair volume comprised between two
consecutive slices is rendered from the light’s point of
view into the alpha buffer, leading to an opacity shadow
map. Final rendering is done by interpolating the differ-
ent opacity shadow maps. This method has been used
together with hair representations at different LODs for
the interactive animation of hair [23].

The opacity shadow maps technique was recently ex-
ploited by other authors [17,12] to get a fast rendering by
using recent GPU’s capabilities. Koster et al. achieved
real-time results by accelerating the implementation
of the opacity shadow maps and by making some
assumptions about the geometry of hair. Mertens et al.
used an adaptive clustering of hair fragments instead of
an uniform slicing, which enabled them to interactively
build a more accurate transmittance function.

Volume rendering is a common approach for visu-
alizing datasets that come on 3D grids [8]. To render

1Please refer to [24] for a complete survey on shadowing methods.

semi-transparent volumetric objects with shadows, a first
step usually consists of casting rays from the light source
into the volume, and storing the light attenuation function
(in voxels for instance). Then, actual rendering is done
by ray tracing from the viewpoint. Such methods can
accurately render both volumetric data such as clouds
or smoke [8] as well as data with fine geometry such
as hair [9]. Ray-tracing-based approaches often yield
good quality results, but they are usually very expensive
in terms of time and memory. More recently, splatting
approaches have been used in order to achieve interactive
shadowing and rendering of volumetric dataset [18, 25].
Billboard splatting has been successfully applied to the
rendering of clouds [6]. In the case of hair, this method
is still efficient but it does not seem to be really adapted
to render the fine geometry of hair [1].

Ray tracing-based methods can often be very pro-
hibitive in terms of rendering time, as they require the
calculation and the sorting of multiple intersections be-
tween the rays and the objects that need to be shadowed.
Conversely, the key benefit of the shadow map-based
approaches is the light-oriented sampling of geometry,
which makes the computation of accumulative transmit-
tance straightforward. Actually, our method is inspired
by both. Combining a volumetric representation of den-
sity with a light-oriented sampling allows us to define a
practical and interactive self-shadowing algorithm.

1.2 Overview
Our goal is to provide an easy, accurate and efficient way
of casting shadows inside hair. Our method has to be
flexible enough to handle and accelerate simulations that
involve animated hair.

Our main contribution is to propose a new algorithmic
structure called 3D light-oriented shadow map that is in-
spired by both traditional 3D density volumes and more
recent 2D shadow maps as it combines an optimized vol-
umetric representation of hair with a light-oriented parti-
tion of space. This voxel structure stores the light attenua-
tion through the hair volume, and it is used to compute the
final color attributed to each hair drawing primitive (hair
segment for instance).

The main advantages of our method are the following:

• Our application is portable, simple to implement and
can render a whole hairstyle composed of thousands
of hair strands interactively on a standard CPU. Fur-
thermore, it can easily be parallelized to increase
performance.

• The approach is especially adapted to animated hair
since the algorithmic structures that we used are ef-
ficiently updated at each time step. Moreover we

show that our data structures provide an inexpensive
way of processing hair self-collisions.

• Our technique does not make any assumption about
the geometry of hair, and thus can be applied to ren-
der any hairstyle. It has been validated on various
hairstyles, either static or animated with different
kinds of motion.

Section 2 describes our 3D light-oriented shadow map
structure. Section 3 explains how the self-shadowing pro-
cess can be efficiently done by using this new structure.
Section 4 deals with the two extensions of the method: on
the one hand, we show that our 3D map is very helpful to
process hair self-collisions efficiently; on the other hand
we provide a parallelized version of our algorithm that
improves the global performance of the simulation. The
last two sections discuss results before concluding.

2 3D Light-Oriented Shadow Map
Our 3D shadow map is a uniform cubic voxel grid that
associates to each voxel (or cell) a density value and a
transmittance value.

The different hair models that we want to render are
composed of a set of segments, but our algorithm could
also apply to other kinds of geometry such as polygonal
surfaces for example.

2.1 A Light-Oriented Local Frame
In our method, the light rays are assumed to be parallel
(ie. coming from an infinitely distant source), which is
a reasonable assumption for handling common lighting
conditions like sun light. This point will be discussed in
conclusion.

Instead of having a fixed-oriented structure like in pre-
vious approaches, our map is always aligned with the
light direction. More precisely, the map is placed in a
local frame R = (O,Xmap,Ymap,Zmap) where Xmap co-
incides with the normalized light vector L and O is the
origin of the map (see Figure 3).

As we shall see in Section 3.2, this configuration is
very helpful for computing the accumulated transparen-
cies efficiently. Note that for non-animated data requir-
ing “dynamic” lighting (ie. a moving light), this choice
would not be appropriate since the material geometry is
to be recomputed each time the light moves. But in our
case, the geometry of hair needs to be updated at each
time step, so the moving light case does not yield extra
cost for us.

2.2 Object Space to Map Space
To occupy a limited memory, our data structure exploits
the fact that during animation, the hair volume is always
located inside a bounding box of constant spatial dimen-
sion. Indeed hair always remains attached to a scalp, and

hair strands are assumed to be inextensible. Storing hair
elements can thus be done inside a bounded structure,
provided we build a mapping function from the 3D ob-
ject space to this 3D bounding space.

The spatial dimension of the map is thus fixed and
only depends on the maximal length lmaxof a hair strand.
If the dimension of the map is superior or equal to
2× lmax + hmax, where hmax is the maximal dimension of
the head, it is ensured that the grid will always represent a
bounding volume for the hair at any time step. Of course,
the best choice for the dimension of the map is the mini-
mal number satisfying the constraint above.

The size (or resolution) of the map (ie. the number of
cells it contains) depends on the desired accuracy of self-
shadowing. Some tests have been made in Section 5 to
compare results using different map resolutions.

In the remainder of the paper, NCELLS will denote the
number of cells in each direction Xmap, Ymap and Zmap
of the map frame R, and ds will represent the step of the
map, ie. the spatial dimension of a cell (see Figure 2).

Figure 2: One cell of the map containing a point P. The
λi parameters give the location of P inside the cell, and
will be useful for the filtering process (see Section 3.3).
By convention, each cell will store the quantity of light
received by its back side (yellow side).

To find the index of the cell corresponding to a point
P(x,y,z), the coordinates of P are first expressed in the
map frame R as (xmap,ymap,zmap), and the following
mapping function then applied:

Ψ : R
3 −→ [0 ..NCELLS]3

xmap
ymap
zmap

 7−→

b
xmap

ds c mod NCELLS

b
ymap

ds c mod NCELLS

b
zmap
ds c mod NCELLS

Figure 3 shows the mapping between the object space
and the map space.

Thanks to the mapping function Ψ, access to elements
of the map is done in constant time, which greatly con-
tributes to the efficiency of the method.

Object Space

Map Space

imin
imax

Hair
location
inside

O

L

i

k

j

Ymap

Xmap

Zmap

Figure 3: Correspondence between the object space and
the map space. Because of the modulo operator in the
mapping function Ψ, the first slice of the map (in light
order) does not necessarily have the lowest index. The
first slice and the last slice have consecutive indexes.

3 Self-Shadowing Algorithm

Our self-shadowing algorithm is composed of three main
steps: hair density filling (1), transmittance computa-
tion (2), and filtering (3). Initially, each cell of the map
has a null density (and we call it an empty cell).

The following figure summarizes the whole rendering
pipeline2.

ComputeSelfShadows()

− Fill density map (1)
− Compute transmittance (2)

Draw()

no

yes

no

Did the camera move?

Did the light OR
the geometry change ?

For each vertex :

− Compute local illumination
− Filter transmittance (3)
− Compute final color of the vertex
− Send the vertex to the GPU

reset density

draw next frame

yes

init map

Figure 4: The rendering pipeline.

2In our case, each hair strand is drawn as an OpenGL line strip

3.1 Filling Hair Density into the Map
The first step of the algorithm consists of filling the map
with hair density. This is simply done by traversing the
geometry of hair and doing the following operations:

• Each hair strand si is sampled using a Catmull-Rom
spline into nSmooth points Pi

k;

• For each point Pi
k, the density of the cell Ψ(Pi

k) is
incremented.

Of course the resulting density value obtained for one
cell only makes sense relative to values of the other cells.
Indeed, each isolated density value is arbitrary, and es-
pecially depends on the number of sample points used
for each strand. Assuming that hair sampling is uniform,
which is a reasonable assumption, the relative density
multiplied by a scaling factor f approximates the light
fall off through the corresponding cell. This quantity is
commonly called the extinction parameter [15].

In practice, our hair sampling is the same as the one
that is used at the final drawing stage, in order to ensure
that each drawn vertex belongs to a non-empty cell.

3.2 Computing Transmittance
The fraction of light that penetrates to a point P of space
can be written as [15]:

τ(p) = exp(−
∫ l

0
κ(l′)dl′) (1)

where l is the length of the path from the light to the point,
and κ is the extinction function along the path.

The function τ is called the transmittance function. A
sampled evaluation of τ can be done by accumulating
transparencies of sampled regions along the light direc-
tion.

In our case, we need to evaluate the transmittance func-
tion at each cell of the map. To do this, we compute the
transparency of each cell (i, j,k) as:

t(i, j,k) = exp(−κi, j,kds) (2)

where the extinction coefficient κi, j,k is computed using
the density value of the cell (i, j,k), as explained before
in Section 3.1: κi, j,k = f ×di, j,k where di, j,k is the density
of cell (i, j,k) and f is a scaling factor.

The transparencies are then composited together to get
the final transmittance of each cell (i, j,k):

Trans(i, j,k) =
i

∏
i′=imin

exp(−di′, j,k f ds) (3)

where imin is the index of the map slice that is the closest
to the light (see Figure 3).

As we mentioned in the previous section, the nov-
elty of our approach in comparison with previous algo-
rithms using voxel grids is that cells are sorted along
the light direction: accumulating transparencies then be-
comes straightforward:

• A transmittance parameter prevTrans is first initial-
ized to 1 which is the proper value for a transparent
and fully illuminated cell;

• The column (j,k) is traversed, starting from slice
imin (the closest slice to the light) until slice imax (the
furthest slice):

– If cell (i, j,k) is non-empty, its transmittance
is set to prevTrans × exp(−di, j,k f ds) (using
Equation 3) and the parameter prevTrans is
updated to this value.

– Otherwise cell (i, j,k) is given the transmit-
tance prevTrans.

Note that some empty cells might also be in shadow,
since filling densities into the map does not necessary
yield a connective set of non-empty cells. Even if only
vertices belonging to non-empty cells will be drawn, giv-
ing a proper transmittance value to empty cells is impor-
tant because such cells could be involved in the filtering
process, if a non-empty cell has empty neighbors (see
next section). The algorithm described above guaran-
tees that every cell of the map has a proper transmittance
value.

3.3 Filtering and Composing Colors

Figure 5: The effect of filtering the transmittance val-
ues. Self-shadows without filtering (left): regular patterns
aligned with the map are visible. Self-shadows with fil-
tering (right): artefacts have vanished, hair looks coher-
ent.

Before drawing hair primitives, it is necessary to filter
transmittance values, otherwise regular patterns aligned
with the density map will be quite visible, as shown by
Figure 5.

For each point P that has to be sent to the GPU for final
drawing:

• We compute the relative position of P (λi,λ j,λk)
with respect to its corresponding cell Ψ(P) (see Fig-
ure 2).

• We compute filtered transmittance at point P by ap-
plying a trilinear interpolation as:

Trans f (P) = ∑
i′∈{i−1,..., i}

j′∈{ j−1,..., j}

k′∈{k−1,...,k}

Ai′A j′Ak′Trans(i′, j′,k′)

where Ai′ =

{

λi if i′ = i
(1−λi) otherwise

(similar for A j′ and Ak′)

• Finally, the color ΦP of vertex P is obtained by the
following equation:

ΦP = ΦAmbient+Trans f (P)× (ΦDi f f use +ΦSpecular(P))

4 Extensions
4.1 Handling Hair Self-Collisions
Because of the high number of hair strands composing a
human hairstyle, hair self-collisions represent a difficult
and computationally expensive issue in hair animation. In
practice, it often takes more than 80% of the simulation
time [21].

An acceptable approximation of hair self-interaction
consists of considering that internal collisions mainly re-
sult into the hair volume [14]. Starting from this assump-
tion, hair density information is very useful: if the density
is local over a fixed threshold (corresponding to maxi-
mum quantity of hair that can be contained in a cell), the
hair strands should undergo constraints that spread them
out.

Hair is animated using an approach closed to hair guid-
ance methods [5, 4]. In our case, hair is composed of ap-
proximately a hundred wisps where each hair wisp is sim-
ulated through three guide hair strands. Each guide hair
strand is animated using a fast rigid links simulation [19].
Final rendered hair strands are simply interpolated from
the guide hair strands within each wisp.

Using the density map at each time step, hair self-
collisions are processed by applying repulsive forces
from the center of each cell having a too high den-
sity. Although this method is extremely simple, it
yields convincing results. Furthermore, this is a
very cheap way to handle hair self-collisions (it only
takes 2.5% of the whole processing time). Please
visit our website and watch our videos at http://www-
evasion.imag.fr/Publications/2005/BMC05a/.

4.2 Parallelization of the Algorithm

− Density
− Transmittance

for half−map

− Filter transmittance

− Display
− Local illumination

Simulation Self−Shadows Rendering

hair
Gather

half−hairstyle

half−hairstyle
Simulate

− Transmittance
for half−map

− DensitySimulate

Figure 6: A parallel version of our algorithm.

One advantage of having a CPU-based algorithm is that
parallelization can be considered in order to increase its
efficiency. As a matter of fact, the described method is
very well suited for such a technique. We present here
the parallel implementation of the simulation and self-
shadowing algorithms.

• Simulation: thanks to the use of the density-map
for handling self-collisions, each hair wisp can be
simulated independently. This allows for a straight-
forward parallelization where each processor com-
putes a part of the hair, gathering at the end their
partial results.

• Self-Shadowing: here again a straight-forward par-
allelization can be applied thanks to the fact that the
map is light-oriented. As described in Section 3.2,
the calculations for each column (j,k) can be done
independently.

We have tested this implementation on a standard PC
cluster and were able, using 3 CPUs, to easily double the
frame rate in comparison with the single processor results
given in the next section.

When trying to use more CPUs, the network gathering
and sending of the vertices to the GPU became the main
bottleneck. Sending vertex arrays directly to the GPU
should reduce this bottleneck.

5 Results and Discussion
Our algorithm has been applied both to static and dy-
namic hairstyles. In each case we compare it with ex-
isting methods in terms of quality and performance.

5.1 Rendering Static Hair
Figures 1 and 7 show that our self-shadowing algo-
rithm produces good visual results for merely synthetic
hairstyles as well as for hairstyles captured from real hair
geometry. We can see in Figure 7 that self-shadows make
volumetric wisps stand out, whereas no self-shadows flat-
ten the hair.

Figure 7: Applying our self-shadowing algorithm to a
hairstyle captured from photographs by the method of
Paris et. al [20]. The hairstyle is composed of 87,500
hair strands (1,123 K segments) and it took 2 seconds to
render it.

Figure 8 shows results obtained on curly hair when
using different map resolutions. We can notice that for
fine resolutions (128×128 or 256×256), curly wisps are
properly shadowed and their shape is thus clearly visible,
which is not the case for the coarsest resolutions. In prac-
tice, we found that a 128× 128 resolution was sufficient
to account for small shape details of hair.

Figure 8: Evaluation of the quality of self-shadowing,
using different map resolutions. From left to right: 32×
32 with ds = 0.5; 64×64 with ds = 0.2, 128×128 with
ds = 0.1 and 256×256 with ds = 0.05.

Map reset Trans Filter Total
+ density + draw rendering

Smooth 0.038 0.015 0.037 0.09
Curly 0.062 0.015 0.053 0.13

Table 1: Detailed performance of the rendering pro-
cess (computing density, transmittance, filtering and fi-
nal drawing) of a smooth hairstyle composed of 100K
segments and a curly hairstyle composed of 200K seg-
ments. The results are expressed in seconds per frame;
they have been obtained using an Intel P4 CPU at 3GHz.

In comparison with [17] our self-shadowing algorithm
runs at a higher frame rate (11 FPS instead of 6 FPS for
100K hair segments).

5.2 Rendering Dynamic Hair
Figure 9 shows two snapshots from our hair animations.
Our self-shadowing algorithm captures the fine disconti-
nuities observed in real hair during motion, as illustrated
in Figure 10.

Figure 9: A smooth brown hairstyle (100 K segments)
and a curly red hairstyle (200 K segments) animated with
different dance motions and interactively rendered with
our algorithm.

Anim Hair self- Rendering Total
collisions simu

Smooth 0.067 0.003 0.09 0.16
Curly 0.254 0.003 0.13 0.557

Table 2: Detailed performance of the simulation (anima-
tion, rendering and hair self-collisions) of two hairstyles
composed of 134 animated wisps: a smooth hair style
(100K rendered segments) and a curly hair style (200 K
rendered segments). The results are expressed in seconds
per frame; they have been obtained using an Intel P4
CPU at 3GHz.

Table 2 gives the detailed performance of the whole
simulation, including animation, hair self-collisions and
rendering for both smooth and curly hairstyles. Note that
the animation time is not the same for the two hairstyles,
because it includes the update and the smoothing of the
interpolated hair strands.

A hair composed of 3350 hair strands and 100K seg-
ments is thus completely simulated at an interactive frame
rate of 6 FPS. For aesthetic results, we have implemented
hair-body collisions using a standard method based on
spheres approximation. Handling such collisions makes
the performance fall down to 3.5 FPS for the smooth
hairstyle, and 1.5 FPS for the curly hairstyle, but no op-
timization has been developed yet for that specific prob-
lem, considering it was beyond the scope of this paper.

In our approach, the hair volume is properly generated
using a repulsive force field based on local densities, as
explained in 4.1. However, this method does not account

for hair anisotropy nor wisps interpenetration. This could
be done by adding more information to the map, such as
hair orientation.

Figure 10: A real shadowed hair (left) and our
model (right) with similar lighting conditions.

6 Conclusion and Future Work
We have presented a new hair self-shadowing algorithm
based on a 3D-light oriented density map. Our approach
can interactively render various hairstyles composed of
thousands of hair strands, and yields convincing results.
Our algorithm can easily be parallelized to improve the
performance. Furthermore, we have shown that our den-
sity map is very helpful in accelerating the simulation
process, as it can be used to handle self-collisions in an
inexpensive way with good visual results. We are plan-
ning to use the hair density information again to optimize
hair-body collisions.

For simplicity purposes, our approach makes the as-
sumption of an infinitely distant source, which could be
a limitation for rendering scenes illuminated by punctual
sources. Yet, it seems that we could easily handle the case
of punctual sources by only changing our mapping func-
tion Ψ. Instead of considering an uniform square space
partition, the new mapping function Ψ′ should account
for an angular space partition starting from the source
point, and then sampled normally to the light rays.

Our method could also handle several light sources by
simply adding as many light-oriented maps as sources.
The final transmittance of a point P would have to be
interpolated between the transmittance values obtained
from the different sources.

To get a better precision in our computations for a low
cost, an interesting idea would be to follow the same ap-
proach as Mertens et. al [17] who build an adaptive slic-
ing along a light ray and thus get a better approximation
of the visibility function than approaches using a uniform
slicing.

Acknowledgements
This work was supported by L’Oréal Recherche.
Thanks to Thanh Giang for proofreading the paper.

References
[1] Y. Bando, B-Y. Chen, and T. Nishita. Animating

hair with loosely connected particles. Computer
Graphics Forum, 22(3):411–418, 2003. Proceed-
ings of Eurographics’03.

[2] D. Banks. Illumination in diverse codimensions.
In Proceedings of ACM SIGGRAPH’94, Computer
Graphics Proceedings, Annual Conference Series,
pages 327–334, 1994.

[3] F. Bertails, T-Y. Kim, M-P. Cani, and U. Neumann.
Adaptive wisp tree - a multiresolution control struc-
ture for simulating dynamic clustering in hair mo-
tion. In ACM SIGGRAPH Symposium on Computer
Animation, pages 207–213, July 2003.

[4] J. Chang, J. Jin, and Y. Yu. A practical model for
hair mutual interactions. In ACM SIGGRAPH Sym-
posium on Computer Animation, pages 73–80, July
2002.

[5] A. Daldegan, N. M. Thalmann, T. Kurihara, and
D. Thalmann. An integrated system for modeling,
animating and rendering hair. Computer Graphics
Forum, 12(3):211–221, 1993.

[6] Y. Dobashi, K. Kaneda, H. Yamashita, T. Okita, and
T. Nishita. A simple, efficient method for realistic
animation of clouds. In SIGGRAPH ’00: Proceed-
ings of the 27th annual conference on Computer
graphics and interactive techniques, pages 19–28.
ACM Press/Addison-Wesley Publishing Co., 2000.

[7] D. Goldman. Fake fur rendering. In Proceedings of
ACM SIGGRAPH’97, pages 127–134, 1997.

[8] J. Kajiya and B. Von Herzen. Ray tracing volume
densities. In Proceedings of the 11th annual con-
ference on Computer graphics and interactive tech-
niques, pages 165–174. ACM Press, 1984.

[9] J. Kajiya and T. Kay. Rendering fur with three di-
mensional textures. In Proceedings of ACM SIG-
GRAPH’89, Computer Graphics Proceedings, An-
nual Conference Series, pages 271–280, 1989.

[10] T-Y. Kim. Modeling, Rendering and Animating Hu-
man Hair. PhD thesis, University of Southern Cali-
fornia, 2002.

[11] T-Y. Kim and U. Neumann. Opacity shadow maps.
In Rendering Techniques 2001, Springer, pages
177–182, July 2001.

[12] M. Koster and H-P. Seidel. Real-time rendering of
human hair using programmable graphics hardware.
In Computer Graphics International (CGI), pages
248–256, June 2004.

[13] A. M. LeBlanc, R. Turner, and D. Thalmann.
Rendering hair using pixel blending and shadow
buffers. The Journal of Visualization and Computer
Animation, 2(3):92–97, – 1991.

[14] D-W. Lee and H-S. Ko. Natural hairstyle model-
ing and animation. Graphical Models, 63(2):67–85,
March 2001.

[15] T. Lokovic and E. Veach. Deep shadow maps. In
Proceedings of the 27th annual conference on Com-
puter graphics and interactive techniques, pages
385–392. ACM Press/Addison-Wesley Publishing
Co., 2000.

[16] S. Marschner, H. Jensen, M. Cammarano, S. Wor-
ley, and P. Hanrahan. Light scattering from hu-
man hair fibers. ACM Transactions on Graph-
ics (Proceedings of the SIGGRAPH conference),
22(3):281–290, July 2003.

[17] T. Mertens, J. Kautz, P. Bekaert, and F. Van Reeth.
A self-shadow algorithm for dynamic hair using
density clustering. In Proceedings of Eurographics
Symposium on Rendering, 2004.

[18] M. Nulkar and K. Mueller. Splatting with shadows.
Volume Graphics, pages 35–50, 2001.

[19] C. Van Overveld. An iterative approach to dynamic
simulation of 3-D rigid-body motions for real-time
interactive computer animation. The Visual Com-
puter, 7:29–38, 1991.

[20] S. Paris, H. Briceño, and F. Sillion. Capture of hair
geometry from multiple images. ACM Transactions
on Graphics (Proceedings of the SIGGRAPH con-
ference), 2004.

[21] E. Plante, M-P. Cani, and P. Poulin. Capturing the
complexity of hair motion. Graphical Models (Aca-
demic press), 64(1):40–58, January 2002.

[22] K. Ward and M. Lin. Adaptive grouping and subdi-
vision for simulating hair dynamics. In Proceedings
of Pacific Graphics’03, September 2003.

[23] K. Ward, M. Lin, J. Lee, S. Fisher, and D. Macri.
Modeling hair using level-of-detail representations.
In International Conference on Computer Anima-
tion and Social Agents (CASA), May 2003.

[24] A. Woo, P. Poulin, and A. Fournier. A survey of
shadow algorithms. IEEE Computer Graphics and
Applications, 10(6):13–32, 1990.

[25] C. Zhang and R. Crawfis. Shadows and soft
shadows with participating media using splatting.
IEEE Transactions on Visualization and Computer
Graphics, 9(2):139–149, 2003.

