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Abstract

In the context of large space MDPs with lin-
ear value function approximation, we intro-
duce a new approximate version of λ-Policy
Iteration (Bertsekas & Ioffe, 1996), a method
that generalizes Value Iteration and Policy
Iteration with a parameter λ ∈ (0, 1). Our
approach, called Least-Squares λ Policy Iter-
ation, generalizes LSPI (Lagoudakis & Parr,
2003) which makes efficient use of train-
ing samples compared to classical temporal-
differences methods. The motivation of our
work is to exploit the λ parameter within the
least-squares context, and without having to
generate new samples at each iteration or to
know a model of the MDP. We provide a per-
formance bound that shows the soundness of
the algorithm. We show empirically on a sim-
ple chain problem and on the Tetris game
that this λ parameter acts as a bias-variance
trade-off that may improve the convergence
and the performance of the policy obtained.

1. Introduction

We consider the question of solving Markov Decision
Processes (MDPs) approximately, in the case where
the value function is estimated by a linear architecture
and using sampling, typically when the state space is
too large for an exact solution.

TD(λ) with linear approximation (Sutton & Barto,
1998) is a fundamental algorithm of the reinforce-
ment learning community. It estimates the value
function by using temporal differences based on a
sample trajectory and the λ parameter controls the
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length of the backups made to update the value
function. Least-squares (LS) methods such as
LSTD(0) (Bradtke & Barto, 1996), LSTD(λ) (Boyan,
2002) and LSPE(λ) (Nedić & Bertsekas, 2003;
Yu & Bertsekas, 2009) are alternative approaches for
estimating the value function. They build explicitly
a low-dimensional linear system that characterizes
the solution TD(λ) would converge to, but they use
simulation data more efficiently, and they usually
don’t need a decreasing stepsize parameter which is
often hard to tune. Moreover, they converge faster in
practice, though each iteration has a complexity of p2

instead of p, where p is the dimension of the linear
architecture. It was shown empirically (see Boyan
(2002); Yu & Bertsekas (2009); Lagoudakis et al.
(2002)) that LS methods are more stable and can
succeed much better than TD(λ).

LSTD(λ) and LSPE(λ) focus on the problem of eval-
uating a policy. We are interested in this article in
learning a policy. The λ-Policy Iteration algorithm
(λPI), proposed by Bertsekas & Ioffe (1996), iterates
over policies and uses a λ paramater that introduces a
bias-variance trade-off similar to the one of TD(λ)
when sampling is used to evaluate the current policy.
λPI generalizes the classical Dynamic Programming
(DP) algorithms Value Iteration and Policy Iteration
to learn a policy: λ represents the size of the step made
toward the value function of the policy (λ = 0 corre-
sponds to Value Iteration and λ = 1 corresponds to
Policy Iteration). One the one hand, when λ is close
to 1, the variance of the value function estimation may
deteriorate the eventual performance of the obtained
policy. On the other hand, reducing λ introduces some
kind of optimism, since we do not try to compute
completely the value of the current policy before we
switch to a new policy, and such a bias can degrade
the convergence speed. Thus, this parameter λ creates
a bias-variance trade-off similar to that of TD(λ), and
in practice, an intermediate value between 0 and 1 can
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TD(λ) (Sutton & Barto, 1998) ×
LSTD(0) (Bradtke & Barto, 1996) ×
LSTD(λ) (Boyan, 2002) × ×
LSPE(λ) (Yu & Bertsekas, 2009) × ×
λPI (Bertsekas & Ioffe, 1996) × × ×
LSPI (Lagoudakis & Parr, 2003) × ×
LSλPI × × × ×

Figure 1. Main characteristics of related works: a trade-off
parameter λ, the LS context, the optimistic evaluation of
the value function and the off-policy evaluation.

give the best results (Bertsekas & Ioffe, 1996).

When they use a λ trade-off parameter, the ap-
proaches mentioned above make an on-policy estima-
tion of the value function, that is, they need samples
generated by the policy under evaluation. The off-
policy evaluation can be used in a policy iteration
context without having to generate new samples when
the policy changes. This idea is developed in LSPI
(Lagoudakis & Parr, 2003). The difference with our
approach is the fact that LSPI does not make an op-
timistic evaluation of the policy using a λ parameter.

In this article, we introduce Least-Squares λ Policy
Iteration (LSλPI for short), a generalization of LSPI
that adds the λ parameter of λPI. LSλPI is to our
knowledge the first algorithm that includes all interest-
ing characteristics discussed above: the bias-variance
trade-off, the LS framework, the optimistic evalua-
tion of the value function and the off-policy evalua-
tion. Figure 1 lists the related works and summarizes
their characteristics to show the main contributions of
LSλPI. Overall, LSλPI can be seen as an optimistic
generalization of LSPI with a λ parameter, an off-
policy, LS implementation of λPI, or as an off-policy,
optimistic policy iteration variant of LSPE(λ).

The paper is organized as follows. Section 2 presents
the notations and the λPI algorithm in the exact case.
In section 3, we consider the approximate case and
detail LSλPI. Section 4 finally gives some experimental
results showing the interest of this parameter λ.

2. Exact case: λPI

We introduce here the notations we will use and
present an overview of λPI in the exact case. The
reader can refer to Bertsekas & Ioffe (1996) for a more
detailed description of the λPI method.

We define an MDP as a tuple (S,A, P,R), where S is
the state space, A is the action space, P is the tran-
sition function (P (s, a, s′) is the probability of getting
to state s′ after taking action a from state s) and
R is the reward function: R(s, a, s′) ∈ R is the re-
ward received in state s′ after taking action a from
state s. We will use the simplified notation R(s, a)
to denote the expected reward of a state-action pair:
R(s, a) =

∑
s′∈S P (s, a, s′)R(s, a, s′).

A policy is a mapping from S to A. The value func-
tion of a policy π is the function Qπ : S × A → R

that associates to each state-action pair (s, a) the ex-
pected value of the discounted, cumulative reward one
can get from state s, taking action a and following pol-

icy π then: Qπ(s, a) = Eπ

[∑
t≥0 γ

trt

∣∣∣ s0 = s, a0 = a
]

where Eπ denotes the expected value with respect
to the policy π, rt is the reward received at time t

and γ ∈ (0, 1) is a discount factor1. For any vec-
tor Q, let Bπ be the Bellman operator defined by
BπQ = R + γPπQ where R is the reward vector and
Pπ is the |S||A| × |S||A| transition matrix induced by
the choice of an action and the policy π then. It is well
known (see for instance Puterman, 1994) that this op-
erator is a contraction mapping of modulus γ and that
its only fixed point is Qπ. Thus, the value function
Qπ is the solution of the Bellman equation Q = BπQ.
Let us also denote by Q∗ the optimal value function,
that is, Q∗(s, a) = maxπ Q

π(s, a). If the optimal value
function is known, it is straightforward to deduce an
optimal policy by taking a greedy policy with respect
to Q∗: π∗(s) ∈ argmaxa Q

∗(s, a).

We now present λPI, a method introduced by
Bertsekas & Ioffe (1996) that generalizes the standard
DP algorithms Value Iteration (VI) and Policy Itera-
tion (PI). A parameter λ ∈ (0, 1) specifies whether the
algorithm is closer to PI (λ = 1) or VI (λ = 0). At
each iteration, λPI (see Algorithm 1) computes a value
function Qk+1 from the greedy policy (πk+1) with re-
spect to the previous value function Qk. The value
function update corresponds to a λ-geometric average
of the terms (Bπk+1

)iQk. The bigger λ, the more the

1In this paper, we only consider value functions defined
over the state-action space because we are interested in
learning a policy without a model of the MDP; however,
our description of λPI remains valid for value functions
defined over the state space.
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Figure 2. Visualizing λPI on the greedy partition

sketch: Following Bertsekas & Tsitsiklis (1996, page 226),
one can decompose the value space as a collection of poly-
hedra, such that each polyhedron corresponds to a region
where the greedy policy remains the same. PI generates a
one-step move toward Qπk+1 whereas VI makes small steps
toward Qπk+1 . λPI is intermediate between PI and VI: it
makes a λ-adjustable step toward Qπk+1 .

value function gets close to Qπk+1 . An intuitive view of
the value function updates made by VI, PI and λPI is
given in the greedy partition represented on Figure 2.

Algorithm 1 λ-Policy Iteration

loop
πk+1 ← greedy(Qk)

Qk+1 ← (1− λ)
∑

i≥1

λi−1(Bπk+1
)iQk

end loop

Bertsekas & Ioffe (1996) introduced an operator de-
noted Mk that gives an alternative formulation of the
algorithm. At each iteration k, this operator is defined
as follows:

MkQ = (1− λ)Bπk+1
Qk + λBπk+1

Q. (1)

Intuitively, Mk can be seen as a damped application
of Bπk+1

. They showed that Mk is a contraction map-
ping of modulus γλ and that its only fixed point is
the value Qk+1 computed by λPI. Then, to calculate
Qk+1 in practice, one can make successive applications
of this Mk operator until the fixed point is obtained.

Bertsekas & Ioffe (1996) also showed that the value
function update can be seen as an incremental update
Qk+1 ← Qk +∆k, where

∆k(s0, a0) = Eπk+1

[
∞∑

n=0

(λγ)nδk(sn, an, sn+1)

]
(2)

with δk(s, a, s
′) = R(s, a, s′) + γQ(s′, πk+1(s

′)) −
Q(s, a). Equation (2) gives some insight on the vari-

ance reduction property of small values of λ. In-
deed, one can see that the policy evaluation phase
may be easier when λ < 1 because the horizon of the
sum estimated is reduced. However, λPI is known to
converge with an asymptotic speed that depends on
λ (Bertsekas & Ioffe, 1996): small values of λ deteri-
orate the asymptotic convergence speed because they
introduce a bias in the evaluation (the algorithm does
not estimate the true value function of the policy any-
more). This drawback is less important when using ap-
proximation and simulation since the asymptotic con-
vergence speed is not a crucial factor.

3. Approximate case: LSλPI

We have presented λPI in the exact case. However,
λPI was designed for a context of approximation and
sampling. The algorithm we introduce now, called
LSλPI, is an approximate version of λPI which reduces
to LSPI (Lagoudakis & Parr, 2003) when λ = 1.

LSλPI is an iterative, sampling-based algorithm that
computes at each iteration an estimation of the value
function of the current policy, and then uses this ap-
proximation to improve the policy. As it uses value
functions defined over the state-action space, knowing
a model of the MDP is not required. As LSPI, LSλPI
is an off-policy algorithm: the policy under evaluation
may be different from the one used to generate sam-
ples. Thus, a unique sample set can be reused for all
iterations even if the policy changes.

Approximation architecture

LSλPI relies on a usual linear representation of the
value function. At each iteration k, we consider a pol-
icy πk and an approximate value function Q̂k that es-
timates the Qk that the exact version of λPI would
compute. The new policy πk+1 is the greedy policy

with respect to Q̂k, then we approximate Qk+1 by a
linear combination of basis functions:

Q̂k+1(s, a) =

p∑

i=1

φi(s, a)wi.

The φi terms are p arbitrary basis functions and the wi

are the parameters of this architecture. As in general
p≪ |S||A| when the state space is large, such a value
function requires much less resources than an exact
(tabular) representation. If we denote by φ(s, a) the
column vector of size p whose elements are the basis
functions applied to (s, a), and Φ the |S||A| × p ma-
trix composed of the transpose of all these vectors, we
can write Q̂k+1 = Φwk+1, where wk+1 is the parame-
ter vector representing the approximate value function
Q̂k+1.
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To compute wk+1, LSλPI can use two standard meth-
ods. Those methods are described for instance in
Lagoudakis & Parr (2003) and we generalize them
to LSλPI. They both try to compute an approxi-
mate value function Q̂k+1 which approaches the vector

Qk+1. In other words, they look for a Q̂k+1 such that

MkQ̂k+1 ≃ Q̂k+1. When λ = 1, we have Mk = Bπk+1

and the resulting algorithm, which approximates the
Bellman equation’s solution, matches LSPI.

3.1. Fixed-point method (FP)

As the fixed-point equation Q̂k+1 = MkQ̂k+1 has no

solution in general since MkQ̂k+1 is not necessarily in
the space induced by the basis functions, the fixed-
point method (FP) applies an orthogonal projection
to it. This means that we seek an approximate value
function Q̂k+1 that verifies

Q̂k+1 = Φ(ΦTDµΦ)
−1ΦTDµMkQ̂k+1. (3)

Dµ represents the diagonal matrix of size |S||A| whose
terms are the projection weights, denoted by µ(s, a).
µ is a probability distribution over S×A. By develop-
ping Equation (3), it can be verified that wk+1 is the
solution of the linear system Aw = b of size p×p with

A = ΦTDµ(Φ− λγPπk+1
Φ) and

b = ΦTDµ(R+ (1− λ)γPπk+1
Φwk).

When the number of states is large, A and b cannot
be computed directly even if a model of the MDP is
available. We can estimate them by using a set of
L samples of the form (s, a, r′, s′) where (s, a) ∼ µ,
s′ ∼ P (s, a, ·) and r′ = R(s, a, s′). It can be seen that

A = E
[
φ(s, a)(φ(s, a)− λγφ(s′, πk+1(s

′)))T
]

and b = E
[
φ(s, a)(r′ + (1− λ)γφ(s′, πk+1(s

′))T)wk

]
.

Let us denote by Ã and b̃ the sampling-based estima-
tions of A and b. For each sample (s, a, r′, s′) consid-

ered, we can update Ã and b̃ as follows

Ã ← Ã+
1

L
φ(s, a) (φ(s, a)− λγφ(s′, πk+1(s

′)))
T
,

b̃ ← b̃+
1

L
φ(s, a)

(
r′ + (1− λ)γφ(s′, πk+1(s

′))Twk

)
.

To simplify these update rules, as we intend to solve
the linear system Ãw = b̃, we can remove the 1

L
factor

in the Ã and b̃ updates without changing the solution.
Once we have estimated A and b from a sample source,
we solve the linear p× p system Ãw = b̃ to obtain the
new parameter vector wk+1. As in Lagoudakis & Parr

(2003), it is possible to update Ã−1 incrementally by
using the Sherman-Morisson formula (starting with an
initial estimate βI for a small β), instead of solving the
system after each sample:

Ã−1 ← Ã−1 +
Ã−1uvTÃ−1

1 + vTÃ−1u
(4)

where u = φ(s, a) and v = φ(s, a)−λγφ(s′, πk+1(s
′)).

The weight vector wk+1 is then computed as Ã−1b̃,
which reduces the complexity to p2 instead of p3.

3.2. Bellman residual minimization (BR)

To calculate the approximate value function Q̂k+1, an
alternative to FP is the Bellman residual minimization
method (BR). Let us consider the (generalized) Bell-
man equation Qk+1 = MkQk+1 and the corresponding
residual defined by Qk+1 −MkQk+1. We seek a value

function Q̂k+1 that minimizes the quadratic, weighted

norm of this residual ‖Q̂k+1−MkQ̂k+1‖µ,2 where ‖·‖µ,2
denotes the quadratic norm weighted by the distribu-

tion µ: ‖Q‖µ,2 =
√∑

s,a µ(s, a)Q(s, a)2. It can be ver-

ified that the norm to minimize equals

‖(Φ− λγPπk+1
Φ)wk+1 −R− (1− λ)γPπk+1

Φwk‖µ,2.

Therefore, by a standard least-squares analysis, the
parameter vector wk+1 that minimizes the Bellman
residual is the solution of the p×p linear system Aw =
b with

A = (Φ− λγPπk+1
Φ)TDµ(Φ− λγPπk+1

Φ) and

b = (Φ− λγPπk+1
Φ)TDµ(R+ (1− λ)γPπk+1

Φwk).

As in the case of FP, A and b can be estimated from
a set of samples whose distribution corresponds to µ.
However, BR requires for each sample to generate two
possible next independant states instead of only one.
This requirement is known for λ = 1 (Sutton & Barto,
1998) and also applies for λ > 0. Let us denote by
(s, a, r′, s′, s′′) a sample, where s′ and s′′ are the results
of two independent realizations of the action a from
the state s, and r′ = R(s, a, s′) (the reward of s′′ is
not needed). Again, if (s, a) is drawn from µ, s′ and
s′′ from P (s, a, ·), and r′ = R(s, a, ·), we have

A = E
[
(φ(s, a)− λγφ(s′′, πk+1(s

′′)))

(φ(s, a)− λγφ(s′, πk+1(s
′)))T

]

and b = E
[
(φ(s, a)− λγφ(s′′, πk+1(s

′′)))

(r′ + (1− λ)γφ(s′, πk+1(s
′))Twk)

]
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As in FP, it is straightforward from these equations
to build estimations Ã and b̃ from the samples, by
using similar incremental update rules. We can solve
the p × p linear system Ãw = b̃ to get the new value
function after each sample, or incrementally update
Ã−1 using the Sherman-Morisson formula: this update
is identical to that of FP (Equation 4) except that in
this case u = φ(s, a)− λγφ(s′′, πk+1(s

′′)).

3.3. Discussion

For both methods, if a model of the MDP
is available, we can integrate it in the update
rule: the samples are then reduced to state-action
pairs (s, a) and we replace the successor terms
φ(s′, πk+1(s

′)) and r′ by their respective expected val-
ues

∑
s′∈S P (s, a, s′)φ(s′, πk+1(s

′)) and R(s, a). Note
that for BR, when there is a model of the MDP, the
double sampling issue discussed above disappears.

FP and BR find different solutions in general, though
when λ = 0, they are equivalent (this can be seen in
the formulas above) and they reduce to Fitted Value
Iteration (Szepesvári & Munos, 2005). When λ = 1,
according to the literature (Lagoudakis & Parr, 2003),
FP seems to give better results. One can find examples
where BR does not compute the right solution while
FP does (Sutton et al., 2009). However, Schoknecht
(2002) showed that FP can suffer from numerical in-

stability (the matrix Ã for FP is not always invertible).

LSλPI iterates over policies. State-of-the-art LS pol-
icy evaluation approaches such as LSTD(λ) (Boyan,
2002) and LSPE(λ) (Yu & Bertsekas, 2009) could also
be used in a policy iteration context to address control
problems. The major difference is that LSλPI is an op-
timistic algorithm: our algorithm switches to the next
policy before the current policy is completely evalu-
ated. In LSTD(λ), the value is evaluated completely
and λ controls the depth of the backups made from the
sampled trajectories. LSPE(λ) is an approximation of
λPI, applied to the evaluation of a fixed policy. It
makes multiple λ-steps towards the value of the policy
using an LS method until the policy is evaluated com-
pletely. LSλPI makes only one λ-step and changes the
policy then. Another difference between LSPE(λ) and
LSλPI is the fact that they estimate different terms
to make the approximate λ step: LSPE(λ) uses one
or several trajectories generated with the current pol-
icy and relies on the equation Qk+1 = Qk + ∆k (see
Equation (2)) whereas LSλPI considers the equation
Qk+1 = MkQk+1 and can use off-policy samples.

3.4. Performance bound

Bertsekas & Tsitsiklis (1996) provided a performance
bound for the policy sequence generated by approxi-
mate policy/value iteration algorithms (the cases λ =
0 and λ = 1). It turns out that a similar bound ap-
plies to a large class of approximate optimistic policy
iteration algorithm, of which LSλPI is a specific case.
For all these algorithms, if the approximation error is
bounded at each iteration, then the asymptotic dis-
tance to the optimal policy is bounded:

Theorem 1 (Performance bound for opt. PI)
Let (λn)n≥1 be a sequence of positive weights such that∑

n≥1 λn = 1. Let Q0 be an arbitrary initialization.

We consider an iterative algorithm that generates the

sequence (πk, Qk)k≥1 with

πk+1 ← greedy(Qk),

Qk+1 ←
∑

n≥1

λn(Bπk+1
)nQk + ǫk+1.

ǫk+1 is the approximation error made when estimating

the next value function. Let ǫ be a uniform majoration

of that error, i.e. for all k, ‖ǫk‖∞ ≤ ǫ. Then

lim sup
k→∞

‖Q∗ −Qπk‖∞ ≤
2γ

(1− γ)2
ǫ.

The proof, which is omitted for lack of space, can be
found in (Thiery & Scherrer, 2010). Approximate ver-
sions of λPI such as LSλPI correspond to the case
where λn = (1 − λ)λn−1 for all n, but the result re-
mains valid for any choice of coefficients λn that sum
to 1. Thus, the bound also applies to Modified Policy
Iteration (Puterman, 1994), which consists in applying
m times the Bellman operator with m fixed (i.e. we
take λm = 1 and λn = 0 for all n 6= m).

4. Experiments

We now present an experimental validation of LSλPI
on two problems addressed by Lagoudakis et al. (2002;
2003) for LSPI: a simple chain MDP where the exact
optimal value function is known, and the more chal-
lenging Tetris problem.

4.1. Chain problem

We consider the exact same chain problem as
in Lagoudakis & Parr (2003), that is, a chain of 20
states with two possibles actions: left (L) or right (R).
Each action goes in the wanted direction with proba-
bility 0.9, and in the wrong direction with probability
0.1. When the agent gets to the left or right end of
the chain, a reward of 1 is obtained. In all other cases,
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Figure 3. Chain problem. Evolution of ‖Q̂k − Q∗‖∞, distance between the current approximate value function and the
optimal value function, for several values of λ, γ = 0.95 and with the Gaussian basis function set. Average curves of 10
runs, each run using a different set of episodes of 200 samples.

the reward is 0. The optimal value can be computed
exactly. In our experiments, we compare at each itera-
tion the current valueQk+1 to the optimal one, and the
(exact) value of the current policy to the optimal value.
We do not use the knowledge of the model (transitions
and rewards) of the MDP and we represent the state
space with the set of polynomial or Gaussian basis
functions proposed by Lagoudakis & Parr (2003).

4.1.1. Influence of λ

We naturally observe that the value function conver-
gence is harder when the number of samples is low, or
when γ is high (i.e. the horizon is bigger). When this
is the case, λ has an influence. Figure 3 represents
the distance between the approximate value function
and the optimal value function for several values of
λ, γ = 0.95, averaged over 10 executions with differ-
ent samples. The left graph corresponds to FP and
the right graph to BR. As expected, we observe that
for λ < 1, the approximation is better because the
sampling variance is reduced, and more iterations are
needed to obtain this better approximation. For λ = 1,
after only a few iterations, the value function stops
improving and oscillates between values that are rel-
atively far from the optimal ones, compared to lower
values of λ. Thus, intermediate values of λ seem to
offer the best trade-off between approximation capa-
bility and convergence speed. We actually observe,
especially for BR, that it might be interesting to use
a decreasing value of λ: indeed, in the first iterations,
values of λ close to 1 come faster near the optimal
value function, and then, smaller values of λ lead to
better asymptotic convergence. One can notice that
these curves are similar to the ones of Kearns & Singh
(2000), which provide a formal analysis of the bias-
variance trade-off of TD(λ).

On most of the experiments we ran, FP and BR give

0
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Policy oscillations

Figure 5. Chain problem. Evolution of ‖Qπk −Q∗‖∞, dis-
tance between the value of the current policy and the op-
timal value, for the FP experiment of Figure 3.

similar performance, with a slight advantage for FP.
We observe on this typical experiment that for FP,
there is a bigger range of λ values that make the value
function converge to a good approximation. This con-
firms the discussion of section 3.3: in practice, FP
seems to give better results than BR even though in
theory, numeric stability problems can occur.

Another observation is that when the value function
does not converge, the policy oscillates with a fre-
quency that increases with λ. This happens when
there is a cycle in the sequence of policies. It can
be seen on Figure 5, which draws ‖Qπk − Q∗‖∞ for
the FP experiment of Figure 3. For small values of λ,
the policy oscillates slowly because LSλPI makes small
steps. When λ increases, the oscillations are faster as
the steps are bigger (recall the intuitive view of Fig-
ure 2). For big values of λ, the policy does not con-
verge anymore and oscillates with a higher frequency.
For λ = 0.7, we observed that the policy converged:
this is all the more interesting that in such a conver-
gent case, the performance guarantee of Theorem 1
can slightly be refined (Thiery & Scherrer, 2010).
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Figure 4. Chain problem. Result of FP applied with γ = 0.9 for several values of λ and the polynomial basis function set.
Left: evolution of ‖Q̂k −Q∗‖∞. Right: evolution of ‖Qπk −Q∗‖∞. Average curves of 10 runs, each run using a different
set of episodes of 200 samples. We observe that when the policy is the same for different values of λ, the value seems to
converge to a limit that does not depend on λ. We verified this property, which does not apply to BR.

4.1.2. Convergence of FP

Figure 4 plots an experiment with FP where conver-
gence is easier than in the previous example as we set
γ = 0.9 (other parameters are unchanged). The right
graph shows the quality of the policy: it seems to con-
verge except when λ = 1. The left graph represents
the distance between the current approximate value
and the optimal value. After about 40 iterations, the
policy becomes the same for all converging values of
λ. Then, it seems that the value function converges to
the same vector for all these values of λ.

We can verify that for FP, if the policy and the value
fonction both converge, then the limit of the value
function does not depend on λ (this is in general not
the case for BR). If we denote by Π the projection
Φ(ΦTDµΦ)

−1ΦTDµ, by using the definition of Mk

(Equation (1)) and the facts that Q̂k+1 = Q̂k and

πk+1 = πk, we have Q̂k+1 = ΠMkQ̂k+1 = Π((1 −

λ)Bπk+1
Q̂k+1 + λBπk+1

Q̂k+1) = ΠBπk+1
Q̂k+1.

4.2. Tetris

Tetris is a popular video game that consists in moving
and rotating different shapes to fill as many rows as
possible in a 10 × 20 grid. We reproduced the exper-
imental settings of Lagoudakis et al. (2002). Though
our initial policy is the same as theirs (personal com-
munication), the scores cannot be compared easily.
The initial policy scores about 250 rows per game
on our implementation, whereas they report an initial
mean score of 600 rows. This may be due to Tetris-
specific implementation differences (see the review of
Thiery & Scherrer, 2009).

We first ran LSλPI on a set of 10000 samples, as
Lagoudakis et al. (2002) did for λ = 1. We observed
that diminishing λ did not improve the performance

(it just made the convergence slower). We think that
the sample set was too large to make λ useful. We
then tried a smaller set of training data (1000 samples
instead of 10000) in order to make the convergence
more difficult. Figure 6 represents the performance
of the learned policies for various values of λ. When
λ = 1, the algorithm diverges: this is because there
is a small number of samples. The score switches be-
tween 0 and about 600 for FP, and falls to 0 for BR.
Better scores are achieved for other values of λ. As
in the chain walk experiment, λ has more influence on
the performances in BR. After convergence, the best
performance is reached by BR with λ = 0.9 and the
corresponding policy scores about 800 rows per game.

Conclusion

We introduced LSλPI, an implementation of
λPI (Bertsekas & Ioffe, 1996) within the LS context.
Our algorithm generalizes LSPI (Lagoudakis & Parr,
2003) by adding the optimistic evaluation of λPI.
LSλPI is to our knowledge the first method that has
the following four characteristics: it uses a λ param-
eter to make a bias-variance trade-off in the value
estimation phase, makes an optimistic evaluation of
the policy, fits within the LS framework to makes an
efficient use of training data, and iterates over policies
in an off-policy way while most LS works make
on-policy evaluation. It shares the virtues of LSPI: a
model of the MDP is not needed (though it can be
integrated when available), and as the value function
is estimated off-policy, generating new trajectories or
samples with each policy is not required.

We provide the analytical claim that optimistic pol-
icy iteration algorithms such as LSλPI are sound al-
gorithms and we ran experiments that emphasize the
influence of λ in two control problems: a simple chain
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Figure 6. Average score of 100 Tetris games for several values of λ at each iteration of LSλPI. Due to the low number of
training samples (1000), the algorithm diverges when λ = 1.0 for both methods. When convergence is obtained, the best
performance is reached by BR with λ = 0.9.

walk problem and the Tetris game. Our empirical re-
sults show that intermediate values of λ can give the
best results in practice when the number of samples
is low. This may be of particular interest in online,
off-policy learning applications.

References

Bertsekas, D. and Ioffe, S. Temporal differences-based
policy iteration and applications in neuro-dynamic
programming. Technical report, MIT, 1996.

Bertsekas, D.P. and Tsitsiklis, J.N. Neurodynamic

Programming. Athena Scientific, 1996.

Boyan, J. A. Technical update: Least-squares tempo-
ral difference learning. Machine Learning, 49:233–
246, 2002.

Bradtke, S. J. and Barto, A.G. Linear least-squares al-
gorithms for temporal difference learning. Machine

Learning, 22:33–57, 1996.

Kearns, M. and Singh, S. Bias-variance error bounds
for temporal difference updates. In In Proceedings

of the 13th Annual Conference on Computational

Learning Theory, pp. 142–147, 2000.

Lagoudakis, M. G. and Parr, R. Least-squares policy
iteration. Journal of Machine Learning Research, 4:
1107–1149, 2003.

Lagoudakis, Michail G., Parr, Ronald, and Littman,
Michael L. Least-squares methods in reinforcement
learning for control. In In SETN’02: Proceedings of

the Second Hellenic Conference on AI, pp. 249–260.
Springer-Verlag, 2002.
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