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FINITE VOLUME METHOD FOR GENERAL MULTIFLUID FLOWS GOVERNED
BY THE INTERFACE STOKES PROBLEM

STELLA KRELL∗

Abstract. We study the approximation of solutions to the steady Stokes problem with a discontinuous viscosity
coefficient (interface Stokes problem) in the 2D “Discrete Duality Finite Volume” (DDFV) framework. In order to
take into account the discontinuities of the viscosity and to prevent consistency defect in the scheme, we propose
to modify the definition of the numerical fluxes on the edges of the mesh where the discontinuity occurs. We first
show how to design our modified scheme, called m-DDFV, and we analyze its well-posedness and its convergence
properties. Finally, we provide numerical results which confirm that the m-DDFV scheme significantly improves the
convergence rate of the usual DDFV method for Stokes problems.

Key words. Interface Stokes problem, discontinuous coefficients, DDFV methods.

1. Introduction.

1.1. Interface Stokes model. In this paper, we are concerned with the finite volume ap-
proximation of solutions to the steady interface Stokes problem with homogeneous Dirichlet
boundary conditions: Find a velocity u : Ω → R2 and a pressure p : Ω → R such that:

div (−φ(u, p)) = f , div(u) = 0, in Ω, u = 0, on ∂Ω,

∫
Ω

p(x)dx = 0. (1.1)

where Ω is a polygonal connected open bounded subset of R2, the total stress tensor is denoted
by φ(u, p) = 2η(x)Du − pId, with Du = 1

2 (∇u + t∇u), f is a function in (L2(Ω))2 and
the viscosity η ∈ L∞(Ω) satisfies:

0 < Cη ≤ η(x) ≤ Cη, for a.e. x ∈ Ω, (1.2)

where Cη and Cη are two positive constants. For simplicity we will only consider here the
case of homogeneous Dirichlet boundary conditions, we emphasize the fact that our frame-
work naturally allows to take into account non-homogeneous Dirichlet boundary conditions.

REMARK 1.1. Here we note the stress tensor by φ instead of the usual notation σ since,
in the finite volume framework, σ traditionally denotes an edge of the mesh.

The existence and uniqueness of a solution (u, p) ∈ (H1
0 (Ω))2 × L2(Ω) of (1.1) is

classical using the Lax-Milgram Theorem and the Nec̆as Lemma (see for instance [6, 16, 27,
25]).

In particular, this study allows to take into account a viscosity constant per sub-domains
Ω1, Ω2 such that Ω1 ∩ Ω2 = ∅ and Ω = Ω1 ∪ Ω2. On the interface Γ = ∂Ω1 ∩ ∂Ω2 between
the sub-domains, we have the following condition

[u]|Γ = 0 and [φ(u, p)n⃗]|Γ = 0, on Γ,

where n⃗ is an unit normal vector to Γ oriented from Ω1 to Ω2 and [a]|Γ = (a|Ω1
− a|Ω2

)|Γ
denotes the jump of a across Γ. Since the viscosity is discontinuous across the interface
Γ, the pressure may have jumps. More precisely, we have [p]|Γ = [2ηDun⃗ · n⃗]|Γ on Γ see
[20]. Thus, our scheme must consider the possible jumps of the pressure and of the velocity
gradient. The corresponding regularity of the solution is then (for more details see [24])

u ∈ {v ∈ (H1
0 (Ω))2, v|Ωi

∈ (H2(Ωi))2 for i = 1, 2}, for the velocity,

p ∈ {q ∈ L2(Ω), q|Ωi
∈ H1(Ωi), for i = 1, 2}, for the pressure.

(1.3)
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2 S. KRELL

In many numerical simulations, two phase flows are modeled by a single set of conser-
vation laws for the whole computational domain. Such an approach leads to Navier-Stokes
equations with discontinuous density and viscosity coefficients. Thus the Stokes equations
with discontinuous viscosity (1.1) can be considered as a reasonable first step for the study of
highly viscous two phase flows.

1.2. The DDFV method. Different methods of gradient reconstruction for cell-centered
finite volume methods have been proposed since the last ten years to handle anisotropic het-
erogeneous scalar diffusion problem on distorted meshes. In all cases, the crucial feature
is that the summation-by-parts procedure permits to reconstruct a whole two dimensional
discrete gradient, starting from two point finite differences. Many of them have been com-
pared in the benchmark of the FVCA5 conference [18], for scalar diffusion problems, see
also [8, 10, 11, 14, 19] for more details.

We consider here the class of schemes called “Discrete Duality Finite Volume” (DDFV
for short). The DDFV method has been first introduced and studied in [10, 19] to approximate
the solution of the Laplace equation on a large class of 2D meshes including non-conformal
and distorted meshes, without “orthogonality” assumptions required by classical finite vol-
ume methods. Basically, it consists in defining a full discrete gradient from finite differences
in two independent directions. This discrete gradient (see Definition 2.1) is located around
the edges of the mesh and his dual operator, the discrete divergence (see Definition 2.2) on
the centers and the vertices of the mesh.

All the notation used in this introduction are defined in Section 2.

1.2.1. The DDFV method for the Stokes problem. Finite volume approximation of
Stokes problems is a current research topic, we refer to [9, 12, 15, 2, 3] for the description
and the analysis of the main available schemes up to now. All these works deal with a constant
viscosity on the whole domain. We propose here a staggered method: the discrete unknowns
(the components of the velocity and the pressure) are located on different nodes. The most
celebrated staggered scheme is the MAC scheme [17, 23] on cartesian grids. Actually, for
a cartesian grid and constant viscosity, the scheme we propose here is equivalent (except
possibly on the boundary) to two uncoupled MAC schemes written on two different staggered
meshes.

The first reason why the DDFV method is considered here, is the large class of 2D general
meshes we can use. The second one is: since the viscous part of the momentum conservation
law is not a Laplace operator, we have to address the problem of the reconstruction of the full
velocity gradient and its symmetric part on the whole domain. The DDFV strategy for the
Stokes problem is the following: the approximate velocity uT is defined on the centers and
the vertices of the mesh, and the approximate pressure pD on the edges of the mesh, that is
where the discrete velocity gradient exists. Remark that the edges are naturally associated to
a family of quadrangles called diamond cells (see Fig. 2.2(a)).

In a previous work [21], we propose the following construction of the scheme in the case
of smooth viscosity. We integrate the momentum conservation law of the problem (1.1) on
the interior center cells M and the interior vertex cells M∗. The mass conservation equation
is directly approached on the diamond cells. The velocity is imposed to be equal to zero on
the boundary of the domain, which is denoted by uT ∈ E0 (see (2.3)). Finally, the integral of
the pressure is imposed to be equal to zero. Unfortunately, the corresponding scheme is only
proved to be well-posed for particular classes of mesh see [9]. Indeed, the well-posedness
result relies on a discrete inf-sup condition, which is still an open problem for general meshes.
To overcome this difficulty, we propose in [21] to add in the mass conservation equation
a stabilization term −λh2

D∆DpD, corresponding to a finite volume approximation of the
Laplace operator (see Definition 2.9), inspired by the well-known Brezzi-Pitkäranta method
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in the finite element framework [7]. The stabilized DDFV scheme can then be written as
follows:

Find uT ∈ E0 and pD ∈ RD such that,
divM(−2ηDDDuT + pDId) = fM, divM∗

(−2ηDDDuT + pDId) = fM∗
,

divD(uT ) − λh2
D∆DpD = 0,

∑
D∈D

mDpD = 0,
(1.4)

where λ > 0 is given and is a stabilisation parameter. This stabilized DDFV scheme is then
proved to be well-posed for general 2D meshes. Furthermore, we showed the convergence
of such schemes and error estimates in the case where the viscosity and the exact solution
are assumed to be smooth enough (see [21]). We proved the first order convergence of the
scheme (1.4) in the L2(Ω)-norm for the velocity gradient, as well as for the velocity and for
the pressure. These results have been extended to the 3D case in [22]. In the case where η
presents discontinuities, our numerical results in [21] show that the scheme is still convergent
but the error analysis is no more valid and, actually, we numerically observe a loss of accuracy
of the method in that case.

1.2.2. Consideration on the discontinuities of the viscosity. Even for scalar diffusion
problems, it is known that such discontinuities in the coefficients imply a consistency defect
in the numerical fluxes of usual finite volume schemes. It is needed to modify the scheme in
order to take into account the jumps of the coefficients of the problem and then to recover the
optimal first order convergence rate. As in the scalar case [5], we need to introduce a modified
gradient operator (see Definition 2.5) and finally define a modified approximate viscous stress
tensor Dη,N

D uT (see Definition 2.7) on each diamond cell. We derive a modified DDFV
scheme, referred to as m-DDFV, that consists in replacing ηDDDuT (resp. −λh2

D∆DpD) by
Dη,N

D uT , (resp. −λh2
D∆D(pD, DDuT )) as follows:

Find uT ∈ E0 and pD ∈ RD such that,
divM(−2Dη,N

D uT + pDId) = fM, divM∗
(−2Dη,N

D uT + pDId) = fM∗
,

divD(uT ) − λh2
D∆D(pD, DDuT ) = 0,

∑
D∈D

mDpD = 0.
(1.5)

Note that this m-DDFV scheme has the same number of unknowns as the standard DDFV
scheme (1.4). The aim of this work is first to explain the derivation of this new scheme. Then
we show an existence and uniqueness result which relies on a discrete Korn inequality on the
modified discrete operators (see Theorem 4.2) which is not just an extension of the one proved
in [21]. We finally provide a first order error estimate of the scheme (1.5) in the L2(Ω)-norm
for the velocity gradient and for the pressure. Furthermore, we numerically observe the real
benefit of this construction. We want to emphasize that, despite quite intricate notations and
construction, the implementation of m-DDFV schemes is in fact easy. It is essentially the
same as that for the DDFV scheme (see Section 2.4.5) and the computational costs of the two
methods are almost the same.

1.3. Outline. This paper is organized as follows. In Section 2, we recall the DDFV
framework for the finite volume approximation of Stokes problems on unstructured 2D grids
and we introduce the modified discrete operators (see Section 2.4). Then, we describe the
m-DDFV stabilized scheme in Section 3. In Section 4, we present the main results of discrete
functional analysis necessary for the theoretical study of the finite volume method. These
results include properties of discrete operators proved in [21] but also properties of the mod-
ified discrete operators, including an appropriate discrete Korn inequality (see Theorem 4.2).
We prove the stability and well-posedness of the scheme in Section 5. Then, in Section 6,
we prove error estimates (see Theorem 6.1). Finally theoretical error estimates are illustrated
with numerical results, in Section 7.
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2. The DDFV framework.

2.1. The meshes and notation.
The meshes. We recall here the main notation and definitions taken from [1]. A DDFV

mesh T is constituted by a primal mesh M ∪ ∂M and a dual mesh M∗ ∪ ∂M∗. An example
for square locally refined primal mesh is given in Fig. 2.1.

K

xK
Primal node xK

Primal cells K

Dual cell K∗

Boundary vertices xK∗

Interior vertices xK∗

xσ the middle of σ

xK xσ

xK∗

K∗

FIG. 2.1. The mesh T . (Left) The primal mesh M∪ ∂M. (Right) The dual mesh M∗ ∪ ∂M∗.

The interior primal mesh M is a set of disjoint open polygonal control volumes K ⊂ Ω
such that ∪K = Ω. We denote by ∂M the set of edges of the control volumes in M included
in ∂Ω, which we consider as degenerate control volumes. To each control volume and de-
generate control volume K ∈ M ∪ ∂M, we associate a point xK ∈ K. For each degenerate
control volume K ∈ ∂M, we choose the point xK to be the midpoint of the control volume K.
This family of points is denoted by X = {xK, K ∈ M ∪ ∂M}.

For all control volumes K and L, we assume that ∂K ∩ ∂L is either empty or a common
vertex or an edge of the primal mesh denoted by σ = K|L. We note by E the set of such edges.
We also note σ∗ the segment [xK, xL] and E∗ the set of such segments. To each edge σ ∈ E ,
we associate a point xσ such that xσ belongs to the interior of σ. We introduce, for each edge
σ ∈ E , two different angles: αK the angle between −−−→xKxσ and σ, αL the angle between −−−→xLxσ

and σ, (see Fig. 2.2(a)).
Let X∗ denote the set of the vertices of the primal control volumes in M that we split

into X∗ = X∗
int ∪ X∗

ext where X∗
int ∩ ∂Ω = ∅ and X∗

ext ⊂ ∂Ω. With any point xK∗ ∈ X∗
int

(resp. xK∗ ∈ X∗
ext), we associate the polygon K∗ ∈ M∗ (resp. K∗ ∈ ∂M∗) whose sides are

{[xK, xσ] such that xK ∈ X,xK∗ ∈ K ∩ σ, K ∈ M, σ ∈ E} (resp. {[xK∗ , xσ] such that σ ∈
∂M and xK∗ ∈ σ} ∪ {[xK, xσ] such that xK ∈ X,xK∗ ∈ K ∩ σ, K ∈ M, σ ∈ E}) sorted
with respect to the clockwise order of the corresponding control volumes. This defines the
set M∗ ∪ ∂M∗ of dual control volumes.

CRITERION 2.1. For each σ ∈ E , we usually choose for xσ the middle point of the edge
σ. In that case, dual cells are called barycentric dual cells. For each σ ∈ E , we can define
the two angles αK and αL as shown in Fig. 2.2(a). We specify a criterion ϵ0 > 0 such that if
the angles are too close |αK −αL| < ϵ0, then xσ is finally chosen to be the intersection of the
primal edge σ and the segment σ∗.

We modify some dual cells in order to have either the same angles like for the direct dual
mesh (see [1, 5, 10, 21]) or the angles distant from ϵ0. This technical assumption plays a
role in Definition 2.5 of the modified discrete gradient, in the discrete Korn inequality (see
Theorem 4.2) and in the consistency errors analysis (see Lemma 6.4 and Corollary 6.1). The
reason is that those three results rely on the estimate given in Lemma 2.2, which can be seen
to blow up as soon as the angles αK and αL are too close but distinct.
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Given the primal and dual control volumes, we define the diamond cells Dσ,σ∗ being the
quadrangles whose diagonals are a primal edge σ = K|L = [xK∗ , xL∗ ] and a corresponding
segment σ∗ = [xK, xL], (see Fig. 2.2(a)). Note that the diamond cells are not necessarily
convex. If σ ∈ E ∩ ∂Ω, the quadrangle Dσ,σ∗ degenerates into a triangle. The set of the
diamond cells is denoted by D and we have Ω = ∪

D∈D
D.

αL

xK∗

xK

xL∗
xL

σL = [xD, xL]

αK
xD

σ∗ = [xK, xL] D

σK∗ = [xK∗ , xD]

σK = [xK, xD]

σL∗ = [xD, xL∗ ]

(a) Notation in the diamond cell.

xK∗

xK

xL

n⃗σ∗K∗

D

n⃗σK

τ⃗σKK∗ τ⃗σLK∗

xL∗

τ⃗K,L

τ⃗K∗,L∗

n⃗σKK∗

n⃗σLK∗

(b) Direct orthonormal basis on the dia-
mond cell.

FIG. 2.2. Diamond cells.

Notation. We recall here the main notation taken from [21]. For any primal control
volume K ∈ M ∪ ∂M, we note mK its Lebesgue measure, dK its diameter, EK the set of its
edges (if K ∈ M), or the one-element set {K} if K ∈ ∂M, DK = {Dσ,σ∗ ∈ D, σ ∈ EK},
BK := B(xK, ρK) ∩ ∂Ω ⊂ K the open ball of radius ρK > 0 for K ∈ ∂M, mBK its measure,
the value ρK is chosen such that the inclusion is verified. We will also use corresponding dual
notation for any dual cells K∗ ∈ M∗ ∪ ∂M∗: mK∗ , EK∗ , DK∗ , dK∗ , BK∗ , mBK∗ , ρK∗ .

For a diamond cell D = Dσ,σ∗ whose vertices are (xK, xK∗ , xL, xL∗), we note xD = xσ

the center of the diamond cell D, hD its diameter, mσ the length of the primal edge σ, mσ∗

the length of σ∗ and mD its measure.We introduce for each diamond cell in Fig. 2.2(b) the
two direct orthonormal basis (τ⃗ K∗,L∗ , n⃗σK) and (n⃗σ∗K∗ , τ⃗ K,L), where n⃗σK the unit vector
normal to σ oriented from xK to xL, n⃗σ∗K∗ the unit vector normal to σ∗ oriented from xK∗

to xL∗ , τ⃗ K,L the unit vector parallel to σ∗ oriented from xK to xL and τ⃗ K∗,L∗ the unit vector
parallel to σ oriented from xK∗ to xL∗ . We also note for each diamond cell s its sides (for

xK∗

xK

xL∗
xL

xD

D

s = [xK, xK∗ ]
s = [xK∗ , xL]

(a) A diamond and its sides.

xK∗

xK

xL∗
xL

QL,L∗

QK,L∗

QL,K∗QK,K∗

(b) Quarter diamond cells.

FIG. 2.3. Diamond cells.

example s = [xK, xK∗ ] see Fig. 2.3(a)), ED = {s, s ⊂ ∂D and s ̸⊂ ∂Ω} the set of interior
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sides of D, ms the length of a diamond side s, n⃗sD the unit vector normal to s = D|D′ oriented
from D to D′ and S = {s ∈ ED, ∀ D ∈ D} the set of interior sides of all diamond cells in D.

Since we use here the barycentric dual cells, we introduce other notation in comparison
to the notation in [21]. For a diamond cell D, we note σK (resp. σL) the segment [xK, xD]
(resp. [xD, xL]), σK∗ (resp. σL∗) the segment [xK∗ , xD] (resp. [xD, xL∗ ]), mς the length of
ς and xς the middle point of the segment ς for each ς ∈ {σK, σL, σK∗ , σL∗}. We introduce
in Fig. 2.2(b) the two other direct orthonormal basis (n⃗σKK∗ , τ⃗ σKK∗) and (n⃗σLK∗ , τ⃗ σLK∗),
where n⃗σKK∗ the unit vector normal to σK oriented from xK∗ to xL∗ , n⃗σLK∗ the unit vector
normal to σL oriented from xK∗ to xL∗ , τ⃗ σKK∗ the unit vector parallel to σK oriented from
xK to xD and τ⃗ σLK∗ the unit vector parallel to σL oriented from xD to xL. Remark that we
have mσ∗ n⃗σ∗K∗ = mσK n⃗σKK∗ + mσL n⃗σLK∗ , for any D ∈ D.

We distinguish the interior diamond cells and the boundary diamond cells: Dext = {D ∈
D, D ∩ ∂Ω ̸= ∅}, Dint = D\Dext. For all D ∈ Dext, we define the length between xK∗

(resp. xL∗ ) and xL by dK∗,L (resp. dL∗,L). Thus, for all D ∈ Dext, we have mσK∗ = dK∗,L

and mσL∗ = dL∗,L.
To each diamond cell D ∈ D, we associate quarter diamond cells as follows Qp,d =

D ∩ p ∩ d, such that p ∩ D ̸= ∅ and d ∩ D ̸= ∅, for p ∈ {K, L} and d ∈ {K∗, L∗}, as shown
in Fig. 2.3(b). If D ∈ Dint, we have D̄ = QK,K∗ ∪ QK,L∗ ∪ QL,K∗ ∪ QL,L∗ and if D ∈ Dext,
we have D̄ = QK,K∗ ∪ QK,L∗ . The set of the quarter diamonds in the domain is denoted by
Q = ∪

D∈D
QD. For Q ∈ Q, we note by mQ its measure and hQ its diameter. We also define the

set EQ = {σK, σL, σK∗ , σL∗}, for all Q ∈ Q. Remark that mQ is, for instance for Q = QK,K∗ ,
equal to 1

2 sin(αK)mσKmσK∗ .
ASSUMPTION 2.1. An important assumption for our analysis is that each DDFV mesh T

is conforming with respect to the discontinuities of the viscosity.We assume that the viscosity
η is Lipschitz continuous on each quarter diamond cell: there exists Cη > 0 such that:

|η(x) − η(x′)| ≤ Cη|x − x′|, ∀x, x′ ∈ Q̄, for all Q ∈ Q. (2.1)

We note ηQ = 1
mQ

∫
Q

η(s)ds, for all Q ∈ Q. We always have Cη ≤ ηQ ≤ Cη , for all Q ∈ Q.
This assumption imposes to know where the discontinuity occurs before building the

mesh of the domain. Of course, in real non-stationary situations this is not possible and it
would be interesting to extend our analysis to the case of immersed interfaces. However, one
can see that the present work can be adapted to the case of the linear elasticity equations for
which this assumption seems much more realistic.

We denote by Mm,n(R) the set of real m × n matrices (we note Mn(R) when m =
n). In the sequel, ∥ · ∥2 stands for the natural L2(Ω)-norm when we consider scalar valued
and vector valued functions and for the Frobenius norm when we consider matrix valued
functions:

|||ξ|||22 =
∫

Ω

|||ξ(x)|||2Fdx, with |||ξ|||2F = (ξ : ξ) , ∀ξ ∈ L2(Ω,M2(R)),

where (ξ : ξ̃) =
∑

1≤i,j≤2

ξi,j ξ̃i,j = Tr(tξξ̃), ∀ξ, ξ̃ ∈ M2(R).

REMARK 2.1. The matrix norm |||·|||F satisfies
∣∣∣∣∣∣∣∣∣A+tA

2

∣∣∣∣∣∣∣∣∣
F
≤ |||A|||F , for all A ∈ M2(R).

Mesh regularity measurement. Let size(T ) be the maximum of the diameters of the
diamond cells in D. To measure how flat the diamond cells can be, we note αT the unique real
in ]0, π

2 ] such that sin(αT ) := min
D∈D

(| sin(αK)|, | sin(αL)|). We introduce a positive number

reg(T ) that quantifies the regularity of a given mesh and is useful to perform the convergence
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analysis of finite volume schemes:

reg(T ):=max

0

@

1

sin(αT )
, max
D∈D

max
Q∈QD

hD

min
σ∈∂Q

mσ

, max
K∈M

max
D∈DK

dK

hD
, max
K∗∈M∗∪∂M∗

max
D∈DK∗

dK∗

hD

1

A . (2.2)

The number reg(T ) should be uniformly bounded when size(T ) → 0 for the convergence
to hold. For instance, there exists a constant C depending on reg(T ) such that

hD√
mD

≤ hD√
mQ

≤ C, ∀Q ∈ QD, hD ≤ C min(mσ, mσ∗), ∀Dσ,σ∗ ∈ D.

2.2. Unknowns and discrete projections. The DDFV method associates to any primal
cell K ∈ M ∪ ∂M an unknown value uK ∈ R2 for the velocity, to any dual cell K∗ ∈
M∗ ∪ ∂M∗ an unknown value uK∗ ∈ R2 for the velocity and to any diamond cell D ∈ D an
unknown value pD ∈ R for the pressure. These unknowns are collected in the families :

uT =
(
(uK)K∈(M∪∂M) , (uK∗)K∗∈(M∗∪∂M∗)

)
∈

(
R2

)T
, pD =

(
(pD)D∈D

)
∈ RD.

We specify a discrete subset of
(
R2

)T needed to take into account the Dirichlet boundary
conditions:

E0 = {vT ∈
(
R2

)T
s. t. vK = 0, ∀K ∈ ∂M and vK∗ = 0, ∀K∗ ∈ ∂M∗}. (2.3)

We define an interior mean-value projection for any integrable vector function v on Ω:

P̃
M

mv =
((

1
mK

∫
K

v(x)dx

)
K∈M

)
, P̃

M∗

m v =
((

1
mK∗

∫
K∗

v(x)dx

)
K∗∈M∗

)
. (2.4)

We also note the mean-value projection for any integrable vector function v on Ω̄ as follows

PT
mv =

(̃
P

M

mv,

(
1

mBK

∫
BK

v(x)dx

)
K∈∂M

, P̃
M∗

m v,

(
1

mBK∗

∫
BK∗

v(x)dx

)
K∗∈∂M∗

)
.

(2.5)
In particular, the mean-value projection PT

mv is well defined for any vector field v lying in
(H1(Ω))2.

2.3. Discrete operators. We recall the discrete operators introduced in [21].
DEFINITION 2.1 (Discrete gradient). We define a consistent approximation of the gradi-

ent operator ∇D : uT ∈
(
R2

)T 7→ (∇DuT )D∈D ∈ (M2(R))D, as follows:

∇DuT =
1

sin(αD)

[
uL − uK

mσ∗
⊗ n⃗σK +

uL∗ − uK∗

mσ

⊗ n⃗σ∗K∗

]
.

where ⊗ represents the tensor product.
DEFINITION 2.2 (Discrete divergence). We define a consistent approximation of the

divergence operator applied to discrete tensor fields denoted by divT : (M2(R))D 7→
(
R2

)T

such that divT ξD =
(
divMξD,div∂MξD,divM∗

ξD,div∂M∗
ξD

)
, for ξD ∈ (M2(R))D,

with divMξD=
(
divKξD

)
K∈M

, div∂MξD=0, divM∗
ξD=

(
divK∗

ξD
)
K∗∈M∗ , div∂M∗

ξD=
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divK∗

ξD
)
K∗∈∂M∗ and:

divKξD =
1

mK

∑
σ∈∂K

mσξDn⃗σK, ∀K ∈ M,

divK∗
ξD =

1
mK∗

∑
σ∗∈∂K∗

mσ∗ξDn⃗σ∗K∗ , ∀K∗ ∈ M∗,

divK∗
ξD =

1
mK∗

( ∑
Dσ,σ∗∈DK∗

mσ∗ξDn⃗σ∗K∗ +
∑

Dσ,σ∗∈DK∗∩Dext

dK∗,LξDn⃗σK

)
, ∀K∗ ∈ ∂M∗.

Using the barycentric dual mesh, we also can write the discrete divergence like in [9]

divK∗
ξD =

1
mK∗

∑
σ∗∈∂K∗

(
mσKξDn⃗σKK∗ + mσLξDn⃗σLK∗

)
, ∀K∗ ∈ M∗.

Thanks to the discrete gradient we can define a discrete strain rate tensor and a discrete
divergence of a vector field in

(
R2

)T
.

DEFINITION 2.3 (Discrete strain rate tensor). We define a discrete strain rate tensor of
a vector field in

(
R2

)T
, DD : uT ∈

(
R2

)T 7→ (DDuT )D∈D ∈ (M2(R))D, with DDuT =
∇DuT +

t(∇DuT )
2 , for all D ∈ D.

DEFINITION 2.4. We define a discrete divergence of a vector field in
(
R2

)T
, divD :

uT ∈
(
R2

)T 7→ (divDuT )D∈D ∈ RD, with divDuT = Tr(∇DuT ), for all D ∈ D.

2.4. Local modification of the discrete strain rate tensor. The point we are concerned
with in this paper is that the DDFV scheme (1.4) suffers from a loss of consistency in the case
where η presents discontinuities. More precisely, we present a way to recover the consistency
of the fluxes even when η jumps across the primal and dual edges of the mesh.

We observe that, at the continuous level, the normal component of the stress tensor
φ(u, p) = 2ηDu − pId is continuous in a weak sense across all primal and dual edges of
the mesh. For instance, we have∫

σK∗

φ|QK,K∗ (u, p)n⃗σKds =
∫

σK∗

φ|QL,K∗ (u, p)n⃗σKds. (2.6)

We need to ensure an equivalent continuity property at the discrete level. We express a dis-
crete stress tensor φQ as follows φQ = 2ηQDN

QuT − pQId on quarter diamond cells, (see
Definition 2.8) thanks to additional unknowns pQD = (pQ)Q∈QD and a modified strain rate
tensor DN

Q (see Definition 2.6). The additional unknowns will be algebraically eliminated on
each diamond cell (see Section 2.4.3). Thus the number of unknowns of the m-DDFV scheme
is the same as for the DDFV scheme.

2.4.1. Scalar diffusion problems. We first recall the principle of the method proposed
in [5] for scalar diffusion problems. The discrete gradient ∇DuT can be understood as the
gradient of the unique affine function ΠDuT on D whose value at the middle of each side of
the diamond D is the mean value between the two unknowns associated to the extremities
of this segment (this construction is summed up in Fig. 2.4). The modified discrete gradient
∇N

QuT is chosen to be constant on all the quarter diamond cells Q ∈ Q. It is the gradient of
a function Π̃DuT which is affine on each Q ∈ QD, which coincides with ΠDuT in the middle
of each side of D and which is continuous at each point xσK , xσL , xσK∗ , xσL∗ . The modified
discrete gradient can be expressed as ∇DuT +BQδD where δD = t(δK, δL, δK∗ , δL∗) ∈ R4 is
a set of four unknowns that are Π̃DuT (y) − ΠDuT (y) for each y ∈ {xσK , xσL , xσK∗ , xσL∗}
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xσL

xK

xL∗

xL

uL+uK∗

2

uL+uL∗

2

xK∗

uK+uL∗

2

uK+uK∗

2

xK

xL∗

xL

FIG. 2.4. The affine functions ΠDuT and eΠDuT on D.

and (BQ)Q∈QD is a family of matrices in M2,4(R) which can be explicitly computed and
depend on the geometry of D. Remark that the modified discrete gradient depends on the
artificial unknowns δD, which can be determined. This construction, valid for an interior
diamond, can be extended to the case where D ∈ Dext with δD = (δK) ∈ R. If we note
nD = 4 if D ∈ Dint and nD = 1 if D ∈ Dext, then that δD is a vector in RnD .

2.4.2. Modified operators in the vector-valued case. We propose here to adapt the
above framework to the vector case. We will now work with δD = t(δK, δL, δK∗ , δL∗) lying
in MnD,2 instead of a vector in RnD and the family of matrix BQ is the same.

DEFINITION 2.5 (Discrete gradient on quarter diamonds). A discrete gradient of a vector
field of

(
R2

)T
, ∇N

Q :
(
R2

)T → (∇N
QuT )Q∈Q ∈ (M2(R))Q, is a set of tensors defined by

∇N
QuT = ∇DuT + tδDtBQ, for any D ∈ D and for any Q ∈ QD, with δD ∈ (MnD,2(R))D

the artificial set of unknowns and (BQ)Q∈QD
the set of matrices in M2,nD (R) defined as

follows:
• ∀D ∈ Dint, we take δD = t(δK, δL, δK∗ , δL∗) ∈ MnD,2(R) and four matrices BQ:

BQK,K∗=

 

mσK n⃗σKK∗

mQK,K∗
, 0,

mσK∗ n⃗σK

mQK,K∗
, 0

!

, BQK,L∗=

 

−
mσK n⃗σKK∗

mQK,L∗
, 0, 0,

mσL∗ n⃗σK

mQK,L∗

!

,

BQL,L∗=

 

0,−
mσL n⃗σLK∗

mQL,L∗
, 0,−

mσL∗ n⃗σK

mQL,L∗

!

, BQL,K∗=

 

0,
mσL n⃗σLK∗

mQL,K∗
,−

mσK∗ n⃗σK

mQL,K∗
, 0

!

.

• ∀D ∈ Dext, there is only two non-degenerate quarter diamonds in QD, we take
δD =

(
δK

)
∈ MnD,2(R) and the two corresponding matrices BQ are given by:

BQK,K∗ =

 

mσK n⃗σKK∗

mQK,K∗

!

, BQK,L∗ =

 

−
mσK n⃗σKK∗

mQK,L∗

!

.

Thanks to the modified discrete gradient, we can define a modified symmetric operator a
modified discrete strain rate tensor as follows.

DEFINITION 2.6 (Discrete strain rate tensor on quarter diamonds). A discrete strain rate
tensor of a vector field of

(
R2

)T
, DN

Q :
(
R2

)T → (DN
QuT )Q∈Q ∈ (M2(R))Q, is a set of

tensor defined by: DN
QuT = 1

2

(
∇N

QuT + t(∇N
QuT )

)
, for any Q ∈ Q. It can be also written

as DN
QuT = DDuT + 1

2

(
tδDtBQ + BQδD

)
, for any D ∈ D and for any Q ∈ QD.

Furthermore, we easily see from the formulas above that
∑

Q∈QD
mQBQ = 0 for any

diamond cell D. Hence the following straightforward result holds
LEMMA 2.1. For all D ∈ D, for any ξ ∈ M2(R), for any δ ∈ M2,nD (R), we have

ξ =
1

mD

∑
Q∈QD

mQ

(
ξ +

1
2
(BQδ + tδtBQ)

)
.
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Even if we do not yet determine the value of δD, this Lemma implies that the operators
DD and DN

Q , ∇D and ∇N
Q satisfy the following identities:

DDuT =
1

mD

∑
Q∈QD

mQDN
QuT , ∇DuT =

1
mD

∑
Q∈QD

mQ∇N
QuT , ∀ D ∈ D. (2.7)

Thanks to the modified discrete strain rate tensor, we can define a modified viscous stress
tensor and a complete discrete stress tensor as follows.

DEFINITION 2.7 (Discrete viscous stress tensor on quarter diamonds). A modified dis-
crete viscous stress tensor of a vector field of

(
R2

)T
, Dη,N

D : uT ∈
(
R2

)T →
(
Dη,N

D uT
)
D∈D

∈

(M2(R))D, is defined by Dη,N
D uT =

1
mD

∑
Q∈QD

mQηQDN
QuT , for any D ∈ D.

DEFINITION 2.8. We define a discrete stress tensor φQ, for all Q ∈ QD and for all
D ∈ D, by the formula: φQ(DDuT , δD, pQD ) = 2ηQDDuT +ηQ(BQδD + tδDtBQ)−pQId.

2.4.3. Determination of the additional unknowns. On each diamond cell D, we have
3nD additional unknowns (δD, pQD ) that can be eliminated by imposing the conservativity of
the numerical fluxes on all the diagonals of D. The discrete counterpart of the conservativity
condition (2.6) reads for any D ∈ Dint, D = QK,K∗ ∪ QK,L∗ ∪ QL,K∗ ∪ QL,L∗ :

φQK,K∗ (DDuT , δD, pQK,K∗ )n⃗σK = φQL,K∗ (DDuT , δD, pQL,K∗ )n⃗σK,

φQK,L∗ (DDuT , δD, pQK,L∗ )n⃗σK = φQL,L∗ (DDuT , δD, pQL,L∗ )n⃗σK,

φQK,K∗ (DDuT , δD, pQK,K∗ )n⃗σKK∗ = φQK,L∗ (DDuT , δD, pQK,L∗ )n⃗σKK∗ ,

φQL,K∗ (DDuT , δD, pQL,K∗ )n⃗σLK∗ = φQL,L∗ (DDuT , δD, pQL,L∗ )n⃗σLK∗ ,

(2.8)

and for any D ∈ Dext, D = QK,K∗ ∪ QK,L∗ :

φQK,K∗ (DDuT , δD, pQK,K∗ )n⃗σKK∗ = φQK,L∗ (DDuT , δD, pQK,L∗ )n⃗σKK∗ . (2.9)

It gives 2nD equations, thus the linear system is underdetermined. We will add other condi-
tions, remembering that we consider incompressible flows so the velocity satisfies divu = 0.
In the DDFV scheme, we add a stabilization term in order to prove its well-posedness. Thus,
at the discrete level we do not have divDuT equal to zero. Nevertheless, we want the follow-
ing equality to be verified Tr(∇N

QuT ) = divDuT , for any Q ∈ QD and for any D ∈ D. As a
result, we impose that

Tr(tδDtBQ) = 0, ∀Q ∈ QD. (2.10)

Since
∑

Q∈QD
mQBQ = 0, we have that these equations are linked and so we add that∑

Q∈QD

mQpQ = mDpD. (2.11)

Note that the existence of (δD, pQD ) is not a straightforward adaptation of the proof in [5],
since we use the discrete strain rate tensor and not the full discrete gradient. We need to
first study the overdetermined linear system: for FQ ∈ M2(R) given, can we find δD ∈
MnD,2(R) such that

t
δDtBQ + BQδD = FQ, ∀Q ∈ QD. (2.12)

PROPOSITION 2.1. If FQ = 0, for all Q ∈ QD, the solutions of (2.12) are generated by
δ0 ∈ MnD,2(R) :
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• δ0 = 0 when αK ̸= αL, (angles defined on Fig. 2.2(a)).

• δ0 =
t(

− n⃗σK

mσK

,
n⃗σK

mσL

,
n⃗σ∗K∗

mσK∗
,− n⃗σ∗K∗

mσL∗

)
when αK = αL.

PROPOSITION 2.2. Under the following assumptions
FQ is symmetric for all Q ∈ QD and

∑
Q∈QD

mQFQ = 0,

mQK,K∗
t τ⃗ K,LFQK,K∗ τ⃗ K,L + mQK,L∗

t τ⃗ K,LFQK,L∗ τ⃗ K,L = 0,
(2.13)

• When αK = αL, the system (2.12) admits a solution (non unique) if we have the
additional assumption:

mQK,K∗
t τ⃗ K∗,L∗FQK,K∗ τ⃗ K∗,L∗ + mQL,K∗

t τ⃗ K∗,L∗FQL,K∗ τ⃗ K∗,L∗ = 0. (2.14)

The solution is unique if we impose the orthogonality condition (δD : δ0) = 0.
• When αK ̸= αL, the system (2.12) admits an unique solution. Notice that we obvi-

ously have (δD : δ0) = 0, since, in that case, we let δ0 = 0.
PROPOSITION 2.3. For any D ∈ D, the conditions (2.8) or (2.9), with (2.10)-(2.11) and

(δD : δ0) = 0 are equivalent to∑
Q∈QD

mQφQ(DDuT , δD, pQ)BQ = 0, (2.15a)

Tr(tδDtBQ) = 0, ∀Q ∈ QD,
∑

Q∈QD

mQpQ = mDpD, (2.15b)

(δD : δ0) = 0, (2.15c)

where δ0 is defined in Proposition 2.1.
We are now able to prove the existence and uniqueness of a suitable choice for (δD, pQD) ∈
MnD,2(R) × RnD .

THEOREM 2.1. For any D ∈ D and for any (DDuT , pD) ∈ M2(R) × R, there exists a
unique pair (δD, pQD ) ∈ MnD,2(R) × RnD satisfying (2.15).
Proof. We only give the proof for D ∈ Dint (so that nD = 4), since the case of boundary
diamond cells can be treated in the same way. We can write the system (2.15) like a linear
rectangle system AX = b with A ∈ M14,12(R) and b ∈ R14, written as follows:

b =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

2(ηQK,K∗ − ηQL,K∗ )DDuT n⃗σK

2(ηQK,L∗ − ηQL,L∗ )DDuT n⃗σK

2(ηQK,K∗ − ηQK,L∗ )DDuT n⃗σKK∗

2(ηQL,K∗ − ηQL,L∗ )DDuT n⃗σKK∗

0
0
0
0

mDpD

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

∈ R14. (2.16)

We are interested in the kernel of A. We assume that DDuT and pD are zero, thus the second
member b is zero. Right-multiplying (2.15a) by δD and taking the trace, it gives∑

Q∈QD

mQ(φQ(DDuT , δD, pQ) : BQδD) = 0.

Using Definition 2.8 of φQ and the fact it is a symmetric matrix, we have∑
Q∈QD

mQ(2ηQDDuT + ηQ(BQδD + t
δDtBQ) − pQId : BQδD + t

δDtBQ) = 0.
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Furthermore we have (Id : BQδD + tδDtBQ) = Tr(BQδD) = 0, it implies that∑
Q∈QD

mQ(2ηQDDuT + ηQ(BQδD + t
δDtBQ) : BQδD) = 0. (2.17)

Thanks to DDuT = 0, we get∑
Q∈QD

mQηQ(tδDtBQ + BQδD : BQδD) = 0.

Remarking that the Frobenius scalar product of a symmetric and antisymmetric matrix is
equal to zero, we deduce

∑
Q∈QD

mQηQ|||tδDtBQ + BQδD|||2F = 0. Therefore, it implies

t
δDtBQ + BQδD = 0, ∀ Q ∈ QD. (2.18)

Using the fact that (δD : δ0) = 0, Proposition 2.1 implies that δD = 0. Furthermore the
condition (2.8) reduces to

(pQK,K∗ − pQL,K∗ )n⃗σK = 0, (pQK,L∗ − pQL,L∗ )n⃗σK = 0,

(pQK,K∗ − pQK,L∗ )n⃗σKK∗ = 0, (pQL,K∗ − pQL,L∗ )n⃗σLK∗ = 0.

We obtain that pQK,K∗ = pQL,K∗ = pQK,L∗ = pQL,L∗ and thanks to (2.11), we get pQD = 0.
It remains to study the kernel of the adjoint of the matrix A. We need to differentiate two
cases.

•Case αK ̸= αL. We observe that the kernel of the adjoint KertA = SpanX1 where:

X1 = t(0, · · · , 0,mQK,K∗ ,mQK,L∗ , mQL,K∗ , mQL,L∗ , 0, 0) ∈ R14.

We immediately get that (X1, b) = 0, where b is given by (2.16). So that we have b ∈(
KertA

)⊥
= ImA and we deduce the existence of (δD, pQD ).

•Case αK = αL. We determine the kernel of the adjoint KertA = Span(X1, X2) where
X1 is given above and

X2 =
t
(−t n⃗σKK∗ , t n⃗σKK∗ , t n⃗σK,−t n⃗σK, 0, · · · , 0) ∈ R14.

We have to prove once again that b ∈ ImA =
(
KertA

)⊥
. We still have (X1, b) = 0. We just

have to prove that (X2, b) = 0, thus we compute

(X2, b) =− 2(ηQK,K∗− ηQL,K∗ )(DDuT n⃗σK, n⃗σKK∗) + 2(ηQK,L∗− ηQL,L∗ )(DDuT n⃗σK, n⃗σKK∗)

+ 2(ηQK,K∗− ηQK,L∗ )(DDuT n⃗σKK∗ , n⃗σK) − 2(ηQL,K∗− ηQL,L∗ )(DDuT n⃗σKK∗ , n⃗σK).

Using the fact that DDuT is symmetric, ie (DDuT n⃗σK, n⃗σKK∗) = (DDuT n⃗σKK∗ , n⃗σK), we
deduce (X2, b) = 0. Therefore b ∈ ImA, we deduce the existence of (δD, pQD ). ¤

From now on, the artificial unknowns (δD, pQD ) are determined, they linearly depend on
(DDuT , pD). Thus the modified discrete gradient ∇N

Q and the modified discrete strain rate
tensor DN

Q are completely determined for all Q ∈ QD and D ∈ D:

∇N
QuT = ∇DuT + t

δD(DDuT , pD)tBQ,

DN
QuT = DDuT + BQδD(DDuT , pD) + t

δD(DDuT , pD)tBQ,

Tr(∇N
QuT ) = divD(uT ).

(2.19)
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FIG. 2.5. The viscosity on D when D ∩ Γ ̸= ∅.

2.4.4. Example of the artificial unknowns. Let us illustrate the value of the artificial
unknowns (δD, pQD ) in the case where η is constant per sub-domains, equal to η1 on Ω1 and
to η2 on Ω2. For D ∩ Γ ̸= ∅ (see Fig. 2.5), the solution (δD, pQD ) is equal to

δK = δL = 0, δK∗ = δL∗ = −
mQK,K∗ mQL,K∗ (η1 − η2)D

DuT n⃗σK · τ⃗ K,L

η2mQK,K∗ + η1mQL,K∗
τ⃗ K,L

pQK,K∗ = pD + 2(η1 − η2)D
DuT n⃗σK · n⃗σK

mQL,K∗

mQK,K∗ + mQL,K∗
, pQK,L∗ = pQK,K∗ ,

pQL,K∗ = pD + 2(η2 − η1)D
DuT n⃗σK · n⃗σK

mQK,K∗

mQK,K∗ + mQL,K∗
, pQL,L∗ = pQL,K∗ .

In that case, if we note the discrete strain rate tensor by DDuT =

„

α γ
γ β

«

, the modified

discrete viscous stress tensor is equal to Dη,N
D uT =

0

@

mσKη1+mσLη2
mσK+mσL

α
(mσK+mσL )η1η2
mσLη1+mσKη2

γ
(mσK+mσL )η1η2
mσLη1+mσKη2

γ
mσKη1+mσLη2

mσK+mσL
β

1

A

in the basis (n⃗σK, τ⃗ K∗,L∗). We notice that Dη,N
D uT is not proportional to DDuT . Diagonal

terms are multiplied with the arithmetical mean of the viscosities where the off-diagonal terms
are multiplied by the harmonic mean of the vicosities.

2.4.5. Implementation. We want to emphasize at this point that the implementation of
the m-DDFV scheme is easy. To solve the linear system (3.1) which reads A(uT , pD, δD, pQ) =
b, we first calculate, for each diamond cell D ∈ D, the pseudo-inverse the 12 × 14 matrix
involved in (2.15). Thus the twelve artificial unknowns (δD, pQD ) can be expressed as a lin-
ear function of uT and pD let say (δD, pQD) = fD(uT , pD), (see Section 2.4.4). This first
procedure has little cost and can be easily vectorized/parallelized, since it is a local (per dia-
mond) computation which has only to be done once at the beginning of the resolution. The
second step consists then to rewrite the m-DDFV scheme (3.1) in term on the unknowns uT

and pD thanks to the functions fD and the modified fluxes which reads Anew(uT , pD) = b.
The matrix Anew is then assembled diamond cell per diamond cell just like the scheme (1.4).

2.4.6. Properties of the artificial unknowns. First of all, we prove estimates between
BQδD and BQδD + tδDtBQ that can be seen as a local Korn inequality on a diamond for the
velocity artificial unknowns. Like in the proof of the existence of δD, the two cases αK = αL

and αK ̸= αL have to be investigated. The following Lemma is proved in Section 9.1.
LEMMA 2.2. For all D ∈ D, for all δD ∈ MnD,2(R) such that (δD : δ0) = 0, there

exists C1 > 0, depending only on reg(T ) and sin(ϵ0), such that∑
Q∈QD

mQ|||BQδD|||2F ≤ C1

∑
Q∈QD

mQ|||BQδD + t
δDtBQ|||2F ,

where δ0 is defined in Proposition 2.1.
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We bring out the form of artificial pressure unknowns pQD in the following result proved
in Section 9.2.

LEMMA 2.3. For any D ∈ D, any (DDuT , pD) ∈ M2(R) × R, there exists C2 > 0, de-
pending only on reg(T ) and Cη, and a linear function αs,D such that the solution (δD, pQD )
of (2.15) with (DDuT , pD), as the following form

pQ = pD + αs,D(DDuT ), where s = ∂D ∩ ∂Q,

with |αs,D(qD)|2 ≤ C2|||qD|||2F , for any qD ∈ M2(R).

2.5. Inner products and norms. We define the four following inner products

JvT ,uT KT =
1
2

( ∑
K∈M

mKuK · vK +
∑

K∗∈M∗∪∂M∗
mK∗uK∗· vK∗

)
, ∀uT ,vT∈

(
R2

)T
,

(pD, qD)D =
∑

D∈D

mDpDqD, ∀pD, qD ∈ RD,

(ξD : ϕD)D =
∑

D∈D

mD(ξD : ϕD), ∀ξD, ϕD ∈ (M2(R))D,

(ξQ : ϕQ)Q =
∑

Q∈Q

mQ(ξQ : ϕQ), ∀ξQ, ϕQ ∈ (M2(R))Q,

and the corresponding norms:

∥uT ∥2 = JuT ,uT K 1
2
T , ∀uT ∈

(
R2

)T
,

∥pD∥2 = (pD, pD)
1
2
D, ∀pD ∈ RD, |||ξD|||2 = (ξD : ξD)

1
2
D, ∀ξD ∈ (M2(R))D,

∥qQ∥2 = (qQ, qQ)
1
2
Q, ∀qQ ∈ RQ, |||ξQ|||2 = (ξQ : ξQ)

1
2
Q, ∀ξQ ∈ (M2(R))Q.

2.6. Preparation of the stabilization procedure. We define a second order discrete
difference operator as follows.

DEFINITION 2.9. We define a second order discrete difference operator, denoted by
∆D : pD ∈ RD 7→ ∆DpD ∈ RD, as follows:

∆DpD =
1

mD

∑
s=D|D′∈ED

h2
D + h2

D′

h2
D

(pD′
− pD), ∀ D ∈ D.

It is a non consistent approximation of the Laplace operator. Related to this operator, we
define a mesh dependent semi-norm | · |h over RD by:

DEFINITION 2.10. We define a discrete semi-norm for any pD ∈ RD:

|pD|2h =
∑

s=D|D′∈S

(h2
D + h2

D′)(pD′
− pD)2.

The semi-norm |p|h is the discrete counterpart of size(T )|∇p|2. We have that (see [21,
Remark 3.6])

−(h2
D∆DpD, pD)D = |pD|2h, ∀ pD ∈ RD. (2.20)

Now we can define the new stabilization term, that considers the jumps of the pressure on
quarter diamond cells.

DEFINITION 2.11. We define a second order discrete difference operator, denoted by
∆D : pQ ∈ RQ 7→ ∆DpQ ∈ RD, as follows (see Fig. 2.6):

∆DpQ =
1

mD

∑
s=Q|Q′

=D|D′∈ED

h2
D + h2

D′

h2
D

(pQ′
− pQ), ∀ D ∈ D.
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xK∗

xK

xL∗
xL

xD

s = Q|Q′ = D|D′

xD′

Q′
Q

D′

D

FIG. 2.6. A diamond cell D and its neighbouring diamond cell D′.

It is also a non consistent approximation of the Laplace operator. Note that we do not need a
consistent approximation of the Laplace operator. In fact, a consistent approximation based
on a two-point flux formula would require the diamond mesh to verify an orthogonality con-
straint as, for instance, in the case of admissible meshes [13], which has no reason to hold
here. An other operator uses the function αs,D introduced in Lemma 2.3 as follows.

DEFINITION 2.12. We define a second order discrete difference operator, denoted by
∆D

α : qD ∈ (M2(R))D 7→ ∆D
α qD ∈ RD, as follows:

∆D
αqD =

1
mD

∑
s=D|D′∈ED

h2
D + h2

D′

h2
D

(αs,D′(qD′
) − αs,D(qD)), ∀D ∈ D,

where αs,D is the function defined in Lemma 2.3.
DEFINITION 2.13. We define a discrete semi-norm for any qD ∈ (M2(R))D:

|qD|2α,h :=
∑

s=D|D′∈S

(h2
D + h2

D′)(αs,D′(qD′
) − αs,D(qD))2,

where αs,D is the function defined in Lemma 2.3.
Thanks to the property |αs,D(qD)|2 ≤ C2|||qD|||2F and relation (2.2), the Cauchy-Schwarz
inequality implies that

|qD|2α,h ≤ C3|||qD|||22, ∀ qD ∈ (M2(R))D, (2.21)

with C3 = 8C2reg(T )2(1 + reg(T )2). Lemma 2.3, Definitions 2.9 and 2.12 imply that

∀D ∈ D, ∆DpQ = ∆D(pD) + ∆D
α(DDuT ). (2.22)

3. DDFV schemes for the Stokes equation. The principle to get the modified DDFV
scheme is the following: we integrate the momentum conservation law of the problem (1.1) on
the interior primal mesh M and the interior dual mesh M∗. The mass conservation equation
is directly approached on the diamond mesh using the discrete operator divD and the new
stabilization term. We impose on ∂M and on ∂M∗ the Dirichlet boundary conditions. Finally,
the integral of the pressure is imposed to be equal to zero. The differences with the scheme
(1.4) introduced in [21] are in the viscous stress tensor and the stabilization term, which takes
now into account the jumps of the viscosity and the pressure. We replace ηDDDuT (resp.
−λh2

D∆DpD) by Dη,N
D uT (resp. −λh2

D∆DpQ) as follows:
Find uT ∈ E0 and pD ∈ RD such that,
divM(−2Dη,N

D uT + pDId) = fM, divM∗
(−2Dη,N

D uT + pDId) = fM∗
,

divD(uT ) − λh2
D∆DpQ = 0,

∑
D∈D

mDpD = 0,
(3.1)
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where λ > 0 is given, fM = P̃
M

mf and fM∗ = P̃
M∗

m f (the projections are defined by (2.4)),
and for any D ∈ D, (δD, pQD) ∈ MnD,2(R) × RnD satisfying (2.15).

If we take the old stabilization term −λh2
D∆DpD instead of −λh2

D∆DpQ, the scheme
is still well-posed but we did not succeed in proving first order error estimates, since we have
take into account the jumps of pressure. The numerical tests also bring out the difference
of these two stabilization term and show that the new form of the stabilization term actually
improves the results.

4. Results on discrete operators. In this section, we present several results on the dis-
crete operators. In Section 4.1, we focus on the modified and standard discrete strain rate
tensor. The main result is the discrete Korn inequality for the modified one (see Theorem
4.2). Its proof consists in using the discrete Korn inequality proved in [21] for the standard
discrete strain rate tensor and Lemma 2.2 that can be seen as a local Korn inequality for the
velocity unknowns. Then in Section 4.2, we rewrite the discrete Stokes formula and finally
we sum up results of [21].

4.1. Discrete strain rate tensor.

4.1.1. Estimations of the discrete strain rate tensor. We recall results proved in [21],
and extend them on the quarter diamond cells. The first one is a consequence of Remark 2.1.

PROPOSITION 4.1. For all uT ∈
(
R2

)T
, we get

|||DDuT |||2 ≤ |||∇DuT |||2 and |||DN
QuT |||2 ≤ |||∇N

QuT |||2.

The discrete strain rate tensor and the modified one can be compared as follows.
LEMMA 4.1. Assume that η satisfies (1.2). There exists a constant C4 > 0, depending

only on Cη and Cη, such that for all uT ∈
(
R2

)T
:

|||DDuT |||2 ≤ |||DN
QuT |||2 ≤ C4|||DDuT |||2.

Proof. First estimate. Let D ∈ D. The estimate is just a consequence of property of the

matrix BQ that is
∑

Q∈QD

mQBQ = 0. Then we have |||DN
QuT |||22 = |||DDuT |||22 +

1
4
|||BQδD +

t
δDtBQ|||22, which concludes the first estimate.

Second estimate. Let D ∈ D. The equality 2.17 gives∑
Q∈QD

mQηQ(2DDuT + BQδD + t
δDtBQ : BQδD + t

δDtBQ) = 0. (4.1)

Definition 2.6 of DN
QuT implies that∑

Q∈QD

mQηQ|||DN
QuT |||2F =

∑
Q∈QD

mQηQ(DN
QuT : DDuT ).

Thanks to the inequality (1.2), we get

Cη

∑
Q∈QD

mQ|||DN
QuT |||2F ≤ Cη

∑
Q∈QD

mQ(DN
QuT : DDuT ).

Applying Cauchy-Schwarz inequality, we obtain

C2
η

∑
Q∈QD

mQ|||DN
QuT |||2F ≤ C

2

ηmD|||DDuT |||2F . (4.2)

Noting C4 =
Cη

Cη

, we get the result.

¤
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4.1.2. Discrete Korn inequality. In this section, we recall the discrete Korn inequality
which is already known and prove a new one for the modified operators.

THEOREM 4.1 (Discrete Korn inequality on diamond cells, [21, Theorem 5.1]). For all
uT ∈ E0, we have

|||∇DuT |||2 ≤
√

2|||DDuT |||2.

THEOREM 4.2 (Discrete Korn inequality on quarter diamond cells). Assume that η sat-
isfies (1.2). There exists C5 > 0 depending only on Cη, Cη, reg(T ) and sin(ϵ0) such that:

|||∇N
QuT |||2 ≤ C5|||DN

QuT |||2, ∀uT ∈ E0.

Proof. The equality (4.1) implies that∑
Q∈QD

mQηQ|||BQδD + t
δDtBQ|||2F = −

∑
Q∈QD

mQηQ(2DDuT : BQδD + t
δDtBQ).

Cauchy-Schwarz inequality and (1.2) imply that

Cη

∑
Q∈QD

mQ|||BQδD + t
δDtBQ|||2F

≤ Cη

(
mD|||DDuT |||2F

) 1
2

( ∑
Q∈QD

mQ|||BQδD + t
δDtBQ|||2F

) 1
2

.

It follows that

∑
Q∈QD

mQ|||BQδD + t
δDtBQ|||2F ≤

C
2

η

C2
η

mD|||DDuT |||2F .

Thanks to Lemma 2.2, we deduce

∑
Q∈QD

mQ|||BQδD|||2F ≤ C1

C
2

η

C2
η

mD|||DDuT |||2F .

Furthermore, it gives

∑
Q∈QD

mQ|||∇N
QuT |||2F ≤ 2mD|||∇DuT |||2F + 2C1

C
2

η

C2
η

mD|||DDuT |||2F .

Using the discrete Korn inequality Theorem 4.1 and than Lemma 4.1, we conclude

|||∇N
QuT |||22 ≤ 4

(
1 + C1

C
2

η

C2
η

)
|||DDuT |||22 ≤ 4

(
1 + C1

C
2

η

C2
η

)
|||DN

QuT |||22.

¤
Using Lemma 4.1, these two discrete Korn inequalities allow us to compare the discrete

gradient and the modified one, as follows. It does not seem possible to show this result
directly, that is without using Korn inequalities.

LEMMA 4.2. Assume that η satisfies (1.2). There exists a constant C6 > 0, depending
only on Cη , Cη , reg(T ) and sin(ϵ0) such that for all uT ∈ E0:

|||∇DuT |||2 ≤ |||∇N
QuT |||2 ≤ C6|||∇DuT |||2.
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4.2. Discrete Stokes formula. The discrete gradient and discrete divergence for a vector-
valued function are known to satisfy a discrete Stokes formula, as follows.

THEOREM 4.3 (Discrete Stokes formula [21, Theorem 3.1]). We have

JdivT ξD,vT KT = −(ξD : ∇DvT )D, ∀ (ξD,vT ) ∈ (M2(R))D × E0.

Since we have introduced modified discrete operators on the quarter diamond cells, we want
to rewrite the discrete Stokes formula for the specific tensor Dη,N

D uT (see Definition 2.7).
THEOREM 4.4. We have, for all (uT ,vT ) ∈

(
R2

)T × E0

JdivT (Dη,N
D uT ),vT KT = −(ηQDN

QuT : ∇N
QvT )Q.

Proof. The first discrete Stokes formula 4.3 gives

JdivT (Dη,N
D uT ),vT KT = −(Dη,N

D uT : ∇DvT )D = −
∑

D∈D

∑
Q∈QD

mQηQ(DN
QuT : ∇DvT ).

Thanks to Theorem 2.1, there exists a unique (δ̂D, p̂QD ) ∈ MnD,2(R) × RnD satisfying
equations (2.15), with DDvT and pD. Using the symmetry of DDvT , we have

(Dη,N
D uT : ∇DvT )D =

∑
D∈D

∑
Q∈QD

mQηQ

(
DN

QuT : DN
QvT − 1

2

(t
δ̂DtBQ − BQδ̂D

))
.

(4.3)
Right-multiplying (2.15a) by δ̂D and applying the trace operator, we get∑

Q∈QD

mQ(2ηQDDuT + ηQ(BQδD + t
δDtBQ) − pQId︸ ︷︷ ︸

=φQ(DDuT ,δD,pQD )

: BQδ̂D +
t
δ̂DtBQ) = 0,

since φQ(DDuT , δD, pQ) is a symmetric matrix. Furthermore since we have (Id : BQδ̂D +
t
δ̂DtBQ) = Tr(BQδ̂D) = 0 by (2.15b), we obtain∑

Q∈QD

mQηQ(2DDuT + BQδD + t
δDtBQ︸ ︷︷ ︸

=2DN
QuT

:
t
δ̂DtBQ + BQδ̂D) = 0.

Substituting this equality in (4.3), we deduce that

(Dη,N
D uT : ∇DvT )D =

∑
D∈D

∑
Q∈QD

mQηQ(DN
QuT : DN

QvT ).

The symmetry of DN
QuT implies the result. ¤

4.3. Poincaré inequality. Properties of the mean-value projection operator. We re-
call results already known in the literature.

THEOREM 4.5 (Discrete Poincaré inequality [21, Theorem 5.2]). Let T be a mesh of Ω.
There exists a constant C7 > 0, depending only on the diameter of Ω and reg(T ), such that

∥uT ∥2 ≤ C7|||∇DuT |||2, ∀uT ∈ E0.

LEMMA 4.3 ([21, Lemma 5.5, Proposition 5.5]). Let T be a mesh of Ω. There exists
C8, C9 > 0 depending only on reg(T ), such that for any function v in (H1

0 (Ω))2, we have

|||∇DPT
mv|||2 ≤ C8|||∇v|||2 and

∑
D∈D

∫
D

pD (divD(PT
mv) − div(v)) dz ≤ C9|pD|h∥v∥H1 .
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LEMMA 4.4 ([21, Lemma 3.1]). Let T be a mesh of Ω. There exists C10 > 0 depending
only on reg(T ), such that for any pD ∈ RD, we have

|pD|h ≤ C10∥pD∥2.

LEMMA 4.5 ([1, Lemma 3.4]). There exists a number C11 > 0 such that for any bounded
set P ⊂ R2 with positive measure, any segment σ ⊂ R2 and any v ∈ H1(R2), we have

|vP − vσ|2 ≤ 1
mσmP

∫
σ

∫
P
|v(x) − v(y)|2dxdy ≤ C11

diam(P̂σ)3

mσmP

∫
cPσ

|∇v(z)|2dz,

where vP denotes the mean value of v on P , vσ the mean value of v on the segment σ, and
P̂σ is the convex hull of P ∪ σ.

5. Stability of the scheme. In this section, we prove the well-posedness and the uniform
stability of our finite volume scheme. The proof of the uniform stability result relies on an
appropriate choice of the stabilization term.

DEFINITION 5.1. We define the bilinear form associated to our DDFV scheme (3.1):

∀ (uT , pD), (euT , epD) ∈
`

R2´T × RD ,

B(uT , pD ; euT , epD) = JdivT (−2Dη,N
D uT + pDId), euT KT + (divD(uT ) − λh2

D∆D(pQ), epD)D ,

where λ > 0 and (δD, pQ) is the solution of (2.15) for DDuT and pD.
THEOREM 5.1 (Stability of the scheme). Assume that η satisfies (1.2) and λ <

4Cη

C3
.

Then there exists C12, C13 > 0, depending only on the diameter of Ω, λ, Cη , Cη, reg(T ) and
sin(ϵ0), such that for each pair (uT , pD) ∈ E0 × RD such that

∑
D∈D

mDpD = 0, there exists

(ũT , p̃D) ∈ E0 × RD with:

|||∇N
QũT |||2 + ∥p̃Q∥2 ≤ C12

(
|||∇N

QuT |||2 + ∥pQ∥2

)
, (5.1)

and

|||∇N
QuT |||22 + ∥pQ∥2

2 ≤ C13B(uT , pD; ũT , p̃D). (5.2)

with (δD, pQ) (resp. (δ̃D, p̃Q)) is the solution of (2.15) for DDuT and pD (resp. DDũT and
p̃D), thus we have mDpD =

∑
Q∈QD

mQpQ, for all D ∈ D.

The technical condition λ <
4Cη

C3
does not seem to be mandatory for the scheme to be

stable. In practice, we did not find positive values of λ leading to instabilities.
Proof. Let (uT , pD) ∈ E0 × RD such that

∑
D∈D

mDpD = 0. The proof of this Theorem is

obtained by building explicitly (ũT , p̃D) ∈ E0 × RD such that (5.1) and (5.2) hold.
Step 1. We apply to B the two discrete Stokes formula Theorem 4.3 and Theorem 4.4:

B(uT , pD;uT , pD) =(2ηQDN
QuT : ∇N

QuT )Q − (λh2
D∆D(pQ), pD)D.

The symmetry of DN
QuT and (2.22) imply that

B(uT , pD ;uT , pD) = (2ηQDN
QuT : DN

QuT )Q − (λh2
D∆D(pD) + λh2

D∆D
α (DDuT ), pD)D .
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Reorganizing the sum over all the sides s ∈ S of all the diamond cells, we have

−(h2
D∆D

α (DDuT ), pD)D =
∑

s=D|D′∈S

(h2
D + h2

D′)(αs,D′(DD′
uT ) − αs,D(DDuT ))(pD′

− pD).

Young inequality and (2.20) imply that

−λ(h2
D∆D(pD) + h2

D∆D
α (DDuT ), pD)D ≥ λ

2
|pD|2h − λ

2
|DDuT |2α,h.

Thanks to the inequality (1.2), we obtain

B(uT , pD;uT , pD) ≥2Cη|||DN
QuT |||22 +

λ

2
|pD|2h − λ

2
|DDuT |2α,h.

Thanks to (2.21) and Lemma 4.1, we have |DDuT |2α,h ≤ C3|||DN
QuT |||22. Finally we use the

discrete Korn inequality on quarter diamond cells (Theorem 4.2) in order to get

B(uT , pD;uT , pD) ≥ 1
C2

5

(
2Cη − C3

λ

2

)
|||∇N

QuT |||22 +
λ

2
|pD|2h. (5.3)

With λ <
4Cη

C3
, the constants in the above estimate are positive. Note that the above estimate

on the pressure is mesh dependent (the semi-norm |.|h is itself mesh dependent). That is why
we could not bound uniformly the L2(Ω)-norm of the pressure by the semi-norm |.|h.

Step 2. We use the Nec̆as Lemma (see [16, Corollary 2.4] or [4, Lemma III.1.17]): since
pQ =

∑
D∈D

∑
Q∈QD

pQ1Q ∈ L2(Ω) and its integral over Ω is zero, there exists a constant C > 0

depending only on Ω, and v ∈ (H1
0 (Ω))2 such that div(v) = −pQ and

∥v∥H1 ≤ C∥pQ∥2. (5.4)

Let us choose vT = PT
mv the mean-value projection PT

mv, defined by (2.5). In particular,
we have vT ∈ E0. Thanks to Lemma 4.1, Proposition 4.1 and Lemma 4.3, we deduce

|||DN
QvT |||2 ≤ C4C8C∥pQ∥2. (5.5)

Theorem 4.4 implies

B(uT , pD;vT , 0) = 2(ηQDN
QuT : ∇N

QvT )Q − (pD,divD(vT ))D.

Using the fact that (ηQDN
QuT : ∇N

QvT )Q = (ηQ∇N
QuT : DN

QvT )Q and the Cauchy-
Schwarz inequality, we deduce

B(uT ,pD;vT , 0) ≥ −Cη|||∇N
QuT |||2|||DN

QvT |||2 −
∑

D∈D

∑
Q∈QD

∫
Q

pQdiv(v(z))dz

−
∑

D∈D

∫
D

pD (divD(vT ) − div(v(z))) dz +
∑

D∈D

∑
Q∈QD

∫
Q

(pQ − pD)div(v(z))dz.

Since we have div(v) = −pQ and the inequality (5.5) gives

B(uT , pD;vT , 0) ≥ −CηC4C8C|||∇N
QuT |||2∥pQ∥2 + ∥pQ∥2

2

−
∑

D∈D

∫
D

pD (divD(vT ) − div(v(z))) dz −
∑

D∈D

∑
Q∈QD

∫
Q

(pD − pQ)div(v(z))dz.
(5.6)
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• Thanks to Lemma 4.3 and to estimate (5.4), we obtain∑
D∈D

∫
D

pD (divD(vT ) − div(v(z))) dz ≤ CC9|pD|h∥pQ∥2.

• Thanks to Lemma 2.3, we have pD − pQ = −αs,D(DDuT ), with s = ∂D ∩ ∂Q.
Cauchy-Schwarz implies

P

D∈D

P

Q∈QD

Z

Q
(pD − pQ)div(v(z))dz ≤ ∥div(v)∥2

 

P

D∈D

P

s∈ED

mD|αs,D(DDuT )|2
!

1
2

.

Thanks to div(v) = −pQ, Lemma 2.3 implies that

∑
D∈D

∑
Q∈QD

∫
Q

(pD − pQ)div(v(z))dz ≤
√

C2∥pQ∥2|||DDuT |||2

Lemma 4.1 and Proposition 4.1 give

∑
D∈D

∑
Q∈QD

∫
Q

(pD − pQ)div(v(z))dz ≤
√

C2∥pQ∥2|||∇N
QuT |||2.

We then deduce from (5.6) that

B(uT , pD;vT , 0) ≥ ∥pQ∥2
2 − CηC4C8C∥pQ∥2|||∇N

QuT |||2 − (
√

C2 + CC9)|pD|h∥pQ∥2.

Using Young’s inequality, we obtain the existence of three constants C̃1, C̃2, C̃3 > 0, depend-
ing only on Ω, Cη and reg(T ), such that

B(uT , pD;vT , 0) ≥ C̃1∥pQ∥2
2 − C̃2|||∇N

QuT |||22 − C̃3|pD|2h. (5.7)

Step 3. By bilinearity of B, (5.3) and (5.7) give for each positive number ξ > 0:

B(uT , pD;uT + ξvT , pD)

≥
(

1
C2

5

(
2Cη − C3

λ

2

)
− ξC̃2

)
|||∇N

QuT |||22 + ξC̃1∥pQ∥2
2 +

(
λ

2
− ξC̃3

)
|pD|2h.

Choosing a value of ξ > 0 small enough, this inequality yields an estimate of the form (5.2).
As the relation (5.1) is clearly satisfied by the pair ũT = uT + ξvT and p̃D = pD, (since
(5.5) and Theorem 4.2), this concludes the proof.

¤
A consequence of this stability inequality is the well-posedness of the scheme (3.1).
THEOREM 5.2. Assume that η satisfies (1.2). For any DDFV mesh T ,the finite volume

scheme (3.1) with 0 < λ <
4Cη

C3
admits a unique solution (uT , pD) ∈

(
R2

)T × RD.
Proof. Let us consider the homogeneous discrete problem given by setting fT , the right-hand
side of (3.1), to zero. Thanks to Theorem 5.1, there exists ũT ∈ E0, p̃D ∈ RD, such that

|||∇N
QuT |||22 + ∥pQ∥2

2 ≤ C13B(uT , pD; ũT , p̃D).

Definition 5.1 of B implies that B(uT , pD; ũT , p̃D) = 0. It follows that ∇N
QuT = 0 and

pQ = 0, with (δD, pQ) the solution of (2.15) with DDuT and pD. We deduce that pD = 0.
The former identity implies that the degrees of freedom of the velocity uT are constant, since
uT ∈ E0, we conclude that uT = 0. ¤
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6. Error estimates. In the following, we assume that the viscosity η satisfies (1.2) and
(2.1). In order to study the rates of convergence of our approximate solution, we need to
make some assumptions on the regularity of a solution (u, p). In the following, we assume
that (u, p) the solution of the problem (1.1) lies in (H2(Q))2 × H1(Q), that is:

(H2(Q))2 = {u ∈ (H1(Ω))2, u|Q ∈ (H2(Q))2, for all Q ∈ Q}, for the velocity,

H1(Q) = {p ∈ L2(Ω), p|Q ∈ H1(Q), for all Q ∈ Q} for the pressure,
(6.1)

with the corresponding norms

∥u∥2
(H2(Q))2 = ∥u∥2

H1(Ω) +
∑

Q∈Q

∥∇2u∥2
L2(Q), ∀ u ∈ (H2(Q))2,

∥p∥2
H1(Q) = ∥p∥2

L2(Ω) +
∑

Q∈Q

∥∇p∥2
L2(Q), ∀ p ∈ H1(Q).

6.1. Definitions. We define projections of functions defined on Ω over the primal and
dual meshes T . We call the center-value projection for any continuous function u on Ω:

PT
c u = ((u(xK))K∈(M∪∂M), (u(xK∗))K∗∈(M∗∪∂M∗)), ∀v ∈ (H2(Q))2. (6.2)

We also define a mean-value projection over the diamond mesh D and over the quarter dia-
mond mesh Q for any integrable functions q on Ω:

PD
mq =

((
1

mD

∫
D

q(x)dx

)
D∈D

)
, PQ

mq =
((

1
mQ

∫
Q

q(x)dx

)
Q∈Q

)
.

The following proposition is a consequence of Theorem 2.1.
PROPOSITION 6.1. Let (u, p) the solution of the Stokes problem (1.1). There exists

(δD
ex, p

QD
ex ) ∈ MnD,2(R) × RnD satisfying

∑
Q∈QD

mQφQ(DDPT
c u, δD

ex, p
Q
ex)BQ = 0, Tr(tδD

ex
tBQ) = 0, ∀Q ∈ QD,∑

Q∈QD

mQpQ
ex = mDPD

mp, (δD
ex : δ0) = 0.

Thanks to Proposition 6.1, in the following, we note

p̃Q
ex = PQ

mp − pQ
ex, ∀Q ∈ Q and we have

∑
Q∈QD

mQp̃Q
ex = 0. (6.3)

As usual for the error analysis of the finite volume methods, the consistency error which
has to be studied is the error on the numerical fluxes across each of the primal and dual edges
of the mesh. We first give the precise definition of these terms, then we state the various
estimates needed to prove the error estimates.

DEFINITION 6.1. For any Q ∈ Q, we define the consistency errors in Q by

Ru
Q(z) = η|Q(z)Du|Q(z) − ηQDN

QPT
c u, Rp

Q(z) = PQ
mp − p|Q(z), ∀ z ∈ D.

We introduce the following consistency errors on the numerical fluxes, for all s = Q|Q′ ∈ EQ:

Ri
s,Q = −Ri

s,Q′ =
1

ms

∫
s

Ri
Q(z)n⃗sQdz, for i = u, p.

We note the L2(Ω)-norm of the consistency error as follows:

∥Ri
s,Q∥2

2 =
∑

Q∈Q

∑
s∈EQ

mQ|Ri
s,Q|2, for i = u, p.



Finite volume method for general multifluid flows governed by the interface Stokes problem 23

Thanks to (6.3), we define for all s = Q|Q′ ∈ EQ:

Rs,Q = 2Ru
s,Q + Rp

s,Q − p̃Q
exn⃗sQ. (6.4)

6.2. Statement of the result and sketch of proof. The main result of the Section 6 is
the following.

THEOREM 6.1. Assume that η satisfies (1.2) and (2.1) and 0 < λ <
4Cη

C3
. We assume

that the solution (u, p) of the Stokes problem (1.1) belongs to (H2(Q))2 × H1(Q). Let
(uT , pD) ∈

(
R2

)T ×RD be the solution of the scheme (3.1). There exists a constant C14 > 0
depending only on reg(T ), λ, sin(ϵ0), Cη, Cη, Cη , ∥u∥(H2(Q))2 and ∥p∥H1(Q), such that:

∥u − uT ∥2 + |||Du − DN
QuT |||2 ≤ C14size(T ) and ∥p − pQ∥2 ≤ C14size(T ).

with (δD, pQ) the solution of (2.15) for DDuT and pD.
Step 1. Let eT = PT

c u − uT ∈ E0 denote the approximation error for the velocity field
and eD = PD

mp − pD ∈ RD the approximation error for the pressure field. Thanks to (3.1)
and (1.1), we have ∀K ∈ M

divK(−2Dη,N
D uT + pDId) = fK = − 1

mK

∫
K

div(2η(x)Du(x))dx +
1

mK

∫
K

∇p(x)dx.

Therefore, Definition 2.2 of divK and the continuous Stokes formula imply that

mKdivK(−2Dη,N
D eT + eDId) =

∑
Q⊂K

∑
s∈EQ
s⊂∂K

∫
s

2η(z)Du(z)n⃗sQdz

−
∑

D∈DK

mσ(2Dη,N
D PT

c u)n⃗σK +
∑

D∈DK

mσPD
mpn⃗σK −

∑
Q⊂K

∑
s∈EQ
s⊂∂K

∫
s

p(z)n⃗sQdz.

Using Definition 2.8 of φQ and Proposition 6.1, we deduce for any D ∈ DK,

mσ

mD

∑
Q∈QD

mQφQ(DDPT
c u, δD

ex, p
QD
ex )n⃗σK =mσK∗ φQK,K∗ n⃗σK + mσL∗ φQK,L∗ n⃗σK.

Thanks to Definition 6.1 of the consistency error and (6.3), we deduce

mKdivK(−2Dη,N
D eT + eDId) =

∑
Q⊂K

∑
s∈EQ
s⊂∂K

msRs,Q.

We do similar computations for K∗ ∈ M∗. Finally, the couple (eT , eD) ∈ E0 ×RD satisfies:{
divM(−2Dη,N

D eT + eDId) = RM, divM∗
(−2Dη,N

D eT + eDId) = RM∗ ,

divD(eT ) − λh2
D∆DeQ = RD,

∑
D∈D

mDeD = 0, (6.5)

where RM = (RK)K∈M, RM∗ = (RK∗)K∗∈M∗ and RD = (RD)D∈D with:

RK=
1

mK

P

Q⊂K

P

s∈EQ
s⊂∂K

msRs,Q, ∀ K ∈ M, RK∗=
1

mK∗

P

Q⊂K∗

P

s∈EQ
s⊂∂K∗

msRs,Q, ∀ K∗ ∈ M∗,

RD = divD(PT
c u) − λh2

D∆DpQ
ex, ∀ D ∈ D, eQ = pQ

ex − pQ, ∀ Q ∈ Q.
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Theorem 5.1 implies that there exists ẽT ∈ E0, ẽD ∈ RD such that :

|||∇N
QẽT |||2 + ∥ẽQ∥2 ≤ C12

(
|||∇N

QeT |||2 + ∥eQ∥2

)
, (6.6)

and

|||∇N
QeT |||22 + ∥eQ∥2

2 ≤ C13B(eT , eD; ẽT , ẽD). (6.7)

Thanks to Definition 5.1 of B and to (6.5), we have B(eT , eD; ẽT , ẽD) = I + T , with
I := JdivT (−2Dη,N

D eT + eDId), ẽT K and T := (divD(eT )− λh2
D∆DeQ, ẽD)D. Using the

fact that ẽK∗ = 0 for any K∗ ∈ ∂M∗ and the definition of I , we have

I =
∑

K∈M

∑
Q⊂K

∑
s∈EQ
s⊂∂K

ms(Rs,Q, ẽK) +
∑

K∗∈M∗∪∂M∗

∑
Q⊂K∗

∑
s∈EQ
s⊂∂K∗

ms(Rs,Q, ẽK∗).

Using the fact that RσK,QK,K∗=−RσK,QK,L∗ , we have

mσK

“

(RσK,QK,K∗ ,eeK∗) + (RσK,QK,L∗ ,eeL∗)
”

= − 2

sin(αK)

“

mQK,K∗RσK,QK,K∗ + mQK,L∗RσK,QK,L∗

”

· (∇D
eeT τ⃗ K∗,L∗).

Reorganizing the sum over all the diamond cells D ∈ D, we deduce

I ≤ 4
sin(αT )

∑
D∈D

∑
Q∈QD

∑
s∈EQ

mQ|Rs,Q||||∇DẽT |||F .

Thanks to the Cauchy-Schwarz inequality and to Lemma 4.2, we obtain

I ≤ 4
sin(αT )

∥Rs,Q∥2|||∇N
QẽT |||2.

We note T1 := −λ(h2
D∆DpQ

ex, ẽ
D)D. Reordering the summation over s ∈ S, we have

T1 =λ
∑

s=Q|Q′=D|D′∈S

(h2
D + h2

D′)(pQ′

ex − pQ
ex)(ẽ

D′
− ẽD).

The Cauchy-Schwarz inequality and Lemma 4.4 give

|T1| ≤ C102size(T )λ∥ẽD∥2

( ∑
s=Q|Q′=D|D′∈S

(pQ′

ex − pQ
ex)

2

) 1
2

.

For the term T , we have the following estimate:

|T | ≤ ∥ẽD∥2

2size(T )λC10

( ∑
s=Q|Q′=D|D′∈S

(pQ′

ex − pQ
ex)

2

) 1
2

+ ∥divDPT
c u∥2

 .

To sum up, using the fact that ∥ẽD∥2 ≤ ∥ẽQ∥2 and (6.6), (6.7) becomes

|||∇N
QeT |||22 + ∥eQ∥2

2

≤C̃1(|||∇N
QeT |||2 + ∥eQ∥2)(∥Rs,Q∥2 + ∥divDPT

c u∥2)

+ C̃2size(T )(|||∇N
QeT |||2 + ∥eQ∥2)

( ∑
s=Q|Q′=D|D′∈S

(pQ′

ex − pQ
ex)

2

) 1
2

,

(6.8)

where C̃1 = C13C12 max
(

4
sin(αT ) , 1

)
and C̃2 = 2C13C12λC10. It remains to estimate the

consistency errors.
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6.3. Consistency error for the pressure. LEMMA 6.1. There exists C15, C16 > 0,
depending only on reg(T ), such that for all p ∈ H1(Q) and for all D ∈ D∑

Q∈QD

mQ

∑
s∈EQ

|Rp
s,Q|2 ≤ C15h

2
D

∑
Q∈QD

∫
Q

|∇p(z)|2dz,

and

∥Rp
Q∥2

2 ≤ C16size(T )2∥p∥2
H1(Q).

Proof. Definition 6.1 gives

∑
Q∈QD

∑
s∈EQ

mQ|Rp
s,Q|2 ≤ h2

D

∑
Q∈QD

∑
s∈EQ

∣∣∣∣ 1
ms

∫
s

(PQ
mp − p(z))dz

∣∣∣∣2 .

Thanks to Lemma 4.5 and h3
Q

msmQ
≤ reg(T )3, we have∣∣∣∣ 1

ms

∫
s

(PQ
mp − p(z))dz

∣∣∣∣2 ≤
C11h

3
Q

msmQ

∫
Q

|∇p(z)|2dz ≤ C11reg(T )3
∫

Q

|∇p(z)|2dz, (6.9)

which concludes the first estimate. For the second estimate, we add and subtract 1
ms

∫
s
p(x)dx

on Rp
Q(z) to get∫

Q

(p(z) − PQ
mp)2 dz ≤ 2

∫
Q

∣∣∣∣ 1
ms

∫
s

(p(z) − p(x))dxdz

∣∣∣∣2+2mQ

∣∣∣∣ 1
ms

∫
s

(PQ
mp − p(z))dz

∣∣∣∣2 .

The Jensen inequality implies that∫
Q

(p(z) − PQ
mp)2 dz ≤4mQ

1
mQms

∫
Q

∫
s

(p(z) − p(x))2 dxdz.

Like in the estimate (6.9), we get the result with C16 = 4C11reg(T )3.
¤

6.4. Consistency error for the velocity.

6.4.1. Properties of the center-value projection operator. By using usual Taylor for-
mulas inside each quarter diamond Q (see [5], for instance), we can easily show the main
properties of the center-value projection for functions in (H2(Q))2.

LEMMA 6.2. There exists C17, C18 > 0, depending only on reg(T ), such that for any
function v in (H2(Q))2, we have

∥v − PT
c v∥2 ≤ C17size(T )∥v∥(H2(Q))2 and |||∇N

QPT
c v|||2 ≤ C18∥v∥(H2(Q))2 .

6.4.2. Definitions. DEFINITION 6.2. The consistency error Ru
Q can be split into two

different contributions Ru,η
Q and Ru,Du

Q . They originate, resp., from the errors due to the
approximation with respect to the space variable of the viscous stress tensor and to the ap-
proximation of the gradient: Ru

Q(z) = Ru,η
Q (z) + Ru,Du

Q , where

Ru,η
Q (z) = η|Q(z)Du|Q(z) − 1

mQ

∫
Q

η(x)Du(x)dx,

Ru,Du
Q =

1
mQ

∫
Q

η(x)(Du(x) − DN
QPT

c u)dx.
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We also introduce the quantity, for all s = Q|Q′ ∈ EQ:

Ru,η
s,Q = −Ru,η

s,Q′ =
1

ms

∫
s

Ru,η
Q (z)n⃗sQdz.

DEFINITION 6.3. We define the projection PQ
c u of u on the set of quarter diamond cells

as follows. For each quarter diamond cell Q ∈ Q, the restriction of PQ
c u to the triangle

Q is the unique affine function PQ
c u which coincides with u at the middle point of the semi-

edges s ∈ EQ and whose value at the middle point of the third side of Q is the mean-value
of the value u at the extremities of this side. Remark that this definition makes sense since
u|Q̄

∈ (H2(Q))2 ⊂ (C0(Q̄))2.

xK xD

xK∗

u(xσK∗ )

u(xσK )

xσK∗

xσK

1
2 (u(xK) + u(xK∗ ))

FIG. 6.1. The affine interpolation PQ
c on the quarter diamond cell Q = QK,K∗ .

For instance, in the case of the quarter diamond cell Q = QK,K∗ (Fig. 6.1), it reads

PQ
c u(xσK) = u(xσK), PQ

c u(xσK∗ ) = u(xσK∗ ), PQ
c u

(
xK + xK∗

2

)
=

u(xK) + u(xK∗)
2

.

The following proposition is the vector-valued version of [5, inequality (5.4)] and can be
proved exactly in the same way.

PROPOSITION 6.2. There exists a constant C19 > 0, depending only on reg(T ), such
that for any function v in (H2(Q))2, we have for all Q ∈ Q∫

Q

|||∇v(z) −∇PQ
c v|||2Fdz +

∫
Q

|||Dv(z) − DPQ
c v|||2Fdz ≤ C19h

2
D

∫
Q

|∇2v(z)|2dz.

6.4.3. Approximation of the viscous stress tensor. LEMMA 6.3. There exists a con-
stant C20 > 0, depending only on Cη, Cη and reg(T ), such that for any function u in
(H2(Q))2, we have for all D ∈ D

mQ|Ru,η
s,Q|2 ≤ C20h

2
D

∫
Q

(|||∇u|||2F + |∇2u|2)dz, ∀ Q ∈ QD, ∀ s ∈ EQ.

Proof. Applying the Jensen inequality, we have

|||Ru,η
Q (z)|||2F ≤ 1

mQ

∫
Q

|||η(z)Du(z) − η(x)Du(x)|||2Fdx.

We add and subtract η(z)Du(x), Cauchy-Schwarz inequality implies that

|||Ru,η
Q (z)|||2F ≤ 2

mQ

Z

Q
|η(z) − η(x)|2 |||Du(x)|||2Fdx +

2

mQ

Z

Q
|η(z)|2 |||Du(z) − Du(x)|||2Fdx.
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The assumption (1.2) and (2.1) give

|||Ru,η
Q (z)|||2F ≤

2C2
η

mQ
h2

D

∫
Q

|||Du(x)|||2Fdx +
2C

2

η

mQ

∫
Q

|||Du(z) − Du(x)|||2Fdx. (6.10)

Since we have Ru,η
s,Q = 1

ms

∫
s
Ru,η

Q (z)n⃗sQdz, Jensen inequality implies that

mQ|Ru,η
s,Q|2 ≤ h2

D2C2
η

∫
Q

|||Du(x)|||2Fdx +
2C

2

η

ms

∫
s

∫
Q

|||Du(z) − Du(x)|||2Fdxdz.

For the second integral, we apply Lemma 4.5 on a edge s and the quarter diamond cell Q,
since h3

Q
ms

≤ reg(T )h2
D:

1
ms

∫
s

∫
Q

|||Du(z) − Du(x)|||2Fdxdz ≤ C11reg(T )h2
D

∫
Q

|∇Du(y)|2dy.

Finally, we deduce the result with C20 = max(2C2
η , 2C

2

ηC11reg(T )). ¤
6.4.4. Approximation of the gradient. DEFINITION 6.4. We define RD ∈ M2,4(R),

for any D ∈ D, as follows

RD =

0

B

B

B

B

@

mσK

`

2(Ru,η
σK,QK,L∗ − Ru,η

σK,QK,K∗ ) + Rp
σK,QK,L∗ − Rp

σK,QK,K∗

´

mσL

`

2(Ru,η
σL,QL,L∗ − Ru,η

σL,QL,K∗ ) + Rp
σL,QL,L∗ − Rp

σL,QL,K∗

´

mσK∗
`

2(Ru,η
σK∗ ,QL,K∗ − Ru,η

σK∗ ,QK,K∗ ) + Rp
σK∗ ,QL,K∗ − Rp

σK∗ ,QK,K∗

´

mσL∗
`

2(Ru,η
σL∗ ,QL,L∗ − Ru,η

σL∗ ,QK,L∗ ) + Rp
σL∗ ,QL,L∗ − Rp

σL∗ ,QK,L∗

´

1

C

C

C

C

A

.

We also introduce the following norm for all D ∈ D

|||A|||2QD
=

∑
Q∈QD

|||A|||2L2(Q), ∀A|Q ∈ L2(Q,M2(R)), for all Q ∈ QD.

PROPOSITION 6.3. There exists a constant C21 > 0, depending only on Cη , Cη, Cη and
reg(T ), such that for all D ∈ D, such that for any δD in M4,2(R), we have

|Tr(
t
δDRD)|2 ≤ C21

 

P

Q∈QD

mQ|||BQδD|||2F

!

h2
D
P

Q∈QD

Z

Q
(|||∇u(z)|||2F+|∇2u(z)|2+|∇p(z)|2)dz.

Proof. We compute Tr(tδDRD), then Cauchy-Schwarz inequality implies that

|Tr(
t
δDRD)|2 ≤

 

P

Q∈QD

mQ|||BQδD|||2F

! 

P

Q∈QD

mQ
P

s∈EQ

(|Ru,η
s,Q|2+|Rp

s,Q|2)

!

.

Lemmas 6.3 and 6.1 conclude the result. ¤
The following proposition is proved in Section 9.3.
PROPOSITION 6.4. We assume that (u, p) is the solution of the problem (1.1). For

any D ∈ D , there exists a constant C22 > 0, depending only on Cη, Cη and reg(T ), and
a function ṽD which is an affine function on each Q of QD such that ṽD ∈ (H1(D))2 ∩
(H2(Q))2, for all Q ∈ QD, and

|||DṽD − DN
QPT

c ṽD|||QD ≤ C22(∥p̃QD
ex ∥2 + |||Du − DN

QPT
c u|||QD + hD),

and

−
∑

Q∈QD

∫
Q

divṽDp̃Q
exdz ≥ −C22|||Du − DN

QPT
c u|||2QD

+
1
2
∥p̃QD

ex ∥2
2 − C22size(T ).
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Remark that PT
c ṽD, defined by (6.2), is not well defined, since ṽD is discontinuous. Nev-

ertheless, this function is only used locally on each diamond, thus PT
c ṽD means in that case

(ṽD(xK), ṽD(xL), ṽD(xK∗), ṽD(xL∗)), for a diamond D. We prove a consistency estimate
for the modified strain rate tensor DN

Q that we have introduced. This is the main difference
between the present study and our previous work since the definition of the modified discrete
strain rate tensor depends on the jumps of η in each diamond cell. Hence, the consistency
estimate for this operator cannot be obtained as in the usual way, that is, only by applying
well-chosen Taylor formulae, we have to use here the fact that the pair (u, p) is a piecewise-
smooth solution of the problem (1.1) and the estimate of Lemma 2.2. Note also that we can
not prove separately the estimates on the velocity and on the pressure of the following lemma.

LEMMA 6.4. We assume that (u, p) is the solution of the problem (1.1). There exists
a constant C23 > 0, depending only on Cη , Cη, Cη , reg(T ) and sin(ϵ0), such that for all
D ∈ D, we have

|||Du − DN
QPT

c u|||2QD
+ ∥p̃QD

ex ∥2
2 ≤ C23h

2
D

∑
Q∈QD

∫
Q

(|||∇u|||2F + |∇2u|2 + |∇p(z)|2)dz.

Proof. Let us give the proof in the case where the diamond cell D is an interior diamond cell.
The case D ∈ Dext can be treated in a same way.

Step 1. Since (u, p) solves (1.1), we have the conservativity of the fluxes through s =
Q|Q′ as follows∫

s

(2η|Q(z)Du|Q(z) − p|Q(z)Id)n⃗sQdz =
∫

s

(2η|Q′(z)Du|Q′(z) − p|Q′(z)Id)n⃗sQdz.

We recall that the discrete strain rate tensor satisfies Proposition 6.1, we can deduce that(
1

ms

∫
s

(2η|Q(z)Du|Q(z) − p|Q(z)Id)dz − (2ηQDN
QPT

c u − pQ
exId)

)
n⃗sQ

−
(

1
ms

∫
s

(2η|Q′(z)Du|Q′(z) − p|Q′(z)Id)dz − (2ηQ′DN
Q′PT

c u − pQ′

ex Id)
)

n⃗sQ = 0.

Using Definition 6.1 and the last equality, we have

2
mQ

∫
Q

η(z) (Du(z) − DN
QPT

c u) n⃗sQdz − 2
mQ′

∫
Q′

η(z) (Du(z) − DN
Q′PT

c u) n⃗sQdz

− 1
mQ

∫
Q

(p(z) − pQ
ex) n⃗sQdz +

1
mQ′

∫
Q′

(
p(z) − pQ′

ex

)
n⃗sQdz

= 2Ru,η
s,Q′ + 2Ru,z

s,Q′ − 2Ru,η
s,Q − 2Ru,z

s,Q − Rp
s,Q + Rp

s,Q′ .

We sum over the quarter diamond cells Q ∈ QD

∑
Q∈QD

(∫
Q

2η(z) (Du(z) − DN
QPT

c u) dz

)
BQ−

∑
Q∈QD

(∫
Q

(p(z) − pQ
ex) dz

)
BQ =t

RD, (6.11)

with RD defined by Definition 6.4. We multiply (6.11) by any δD ∈ MnD,2(R) and take the
transpose, thanks to the symmetry of Du(z) and DN

QPT
c u, we obtain

∑
Q∈QD

∫
Q

t
δDtBQ2η(z) (Du(z) − DN

QPT
c u) dz −

∑
Q∈QD

mQ
t
δDtBQp̃Q

ex = t
δDRD
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Using the trace operator we deduce

P

Q∈QD

Z

Q
η(z)

“

BQδD +
t
δDtBQ : Du(z) − DN

QPT
c u
”

dz

−
P

Q∈QD

mQTr
“

t
δDtBQ

”

epQ
ex = Tr

“

t
δDRD

”

, ∀δD ∈ MnD,2(R).
(6.12)

Step 2. For u,v ∈ (H2(Q))2, and pQ, qQ ∈ RQ, we define a bilinear form BD as
follows

BD(u, pQ ,v, qQ) =
P

Q∈QD

2

Z

Q
η(z)(Du − DN

QPT
c u : Dv − DN

QPT
c v)dz

−
P

Q∈QD

Z

Q
Tr(Dv − DN

QPT
c v)pQdz +

P

Q∈QD

Z

Q
Tr(Du − DN

QPT
c u)qQdz.

We easily have that

BD(u, p̃QD
ex ,u, p̃QD

ex ) ≥ 2Cη|||Du − DN
QPT

c u|||2QD
. (6.13)

Thanks to Cauchy-Schwarz inequality, using the function ṽD obtained in Proposition 6.4, we
have

BD(u, p̃QD
ex , ṽD, 0) ≥− 2Cη|||Du − DN

QPT
c u|||QD |||DṽD − DN

QPT
c ṽD|||QD

−
∑

Q∈QD

∫
Q

divṽDp̃Q
exdz +

∑
Q∈QD

mQTr(DN
QPT

c ṽD)p̃Q
ex.

For the last term of the above estimate, since we have Tr(DN
QPT

c ṽD) = divD(PT
c ṽD) (see

(2.19)), for all Q ∈ QD, we have
∑

Q∈QD

mQTr(DN
QPT

c ṽD)p̃Q
ex = divD(PT

c ṽD)
∑

Q∈QD

mQp̃Q
ex,

thanks to (6.3), we deduce that
∑

Q∈QD

mQTr(DN
QPT

c ṽD)p̃Q
ex = 0. Finally, the estimate on ṽD

in Proposition 6.4 and Young inequality conclude that

BD(u, p̃QD
ex , ṽD, 0) ≥ −C|||Du − DN

QPT
c u|||2QD

+
1
4
∥p̃QD

ex ∥2
2 − Csize(T )2. (6.14)

By bilinearity of BD, the inequalities (6.13) and (6.14) give for each positive number ξ > 0:

BD(u, p̃QD
ex ;u+ ξṽD, p̃QD

ex )+ ξCsize(T )2 ≥
(
2Cη − ξC

)
|||Du−DN

QPT
c u|||2QD

+
ξ

2
∥p̃QD

ex ∥2
2.

Choosing a value of ξ > 0 small enough (depending only on Cη and Cη), the above inequality
yields the following estimates for ū = u + ξṽD ∈ (H2(Q))2

|||Dū − DN
QPT

c ū|||QD ≤ C
(
|||Du − DN

QPT
c u|||QD + ∥p̃QD

ex ∥2 + hD

)
, (6.15)

and

|||Du − DN
QPT

c u|||2QD
+ ∥p̃QD

ex ∥2
2 ≤ CBD(u, p̃QD

ex ; ū, p̃QD
ex ) + C3size(T )2. (6.16)

Step 3. We define now the consistency error for the projection PQ
c as follows

TQ̄,ū(z) = Dū(z) − DPQ
c ū, ∀ z ∈ Q, ∀ Q ∈ Q.
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Remark that 2DPQ
c ū−2DDPT

c ū satisfied the conditions (2.13) and (2.14) if αK = αL, thanks
to Proposition 2.2, there exists a unique δ̃D ∈ MnD,2(R) such that (δ̃D : δ0) = 0 (with δ0

defined in Proposition 2.1) and

DPQ
c ū − DDPT

c ū =
1
2
(BQδ̃D +

t
δ̃DtBQ), ∀ Q ∈ QD.

Then applying Theorem 2.1 with (DDPT
c ū, PD

mp), there exists a unique pair (δD, pQD ) ∈
MnD,2(R)×RnD satisfying (2.15). So we have DN

QPT
c ū = DDPT

c ū+ 1
2 (BQδD +

t
δDtBQ),

with (δD : δ0) = 0. We note now δ̂D = δ̃D − δD which satisfies (δ̂D : δ0) = 0 and

DPQ
c ū − DN

QPT
c ū =

1
2
(BQδ̂D +

t
δ̂DtBQ), ∀ Q ∈ QD, (6.17)

Replacing δD by δ̂D in (6.12) and using the fact that

1
2
(BQδ̂D +

t
δ̂DtBQ) = DPQ

c ū − DN
QPT

c ū = Dū(z) − DN
QPT

c ū − TQ̄,ū(z), (6.18)

we deduce that

Tr
“

t
cδDRD

”

=
P

Q∈QD

Z

Q
2η(z)

`

Dū(z) − DN
QPT

c ū : Du(z) − DN
QPT

c u
´

dz +
P

Q∈QD

mQTr (TQ̄,ū(z)) epQ
ex

−
P

Q∈QD

Z

Q
2η(z)

`

TQ̄,ū(z) : Du(z) − DN
QPT

c u
´

dz −
P

Q∈QD

mQTr
`

Dū(z) − DN
QPT

c ū
´

epQ
ex.

Now we can link RD and BD as follows

BD(u, p̃QD
ex ; ū, p̃QD

ex ) = Tr
(t

δ̂DRD
)
−

∑
Q∈QD

mQTr (TQ̄,ū(z)) p̃Q
ex

+
∑

Q∈QD

∫
Q

2η(z) (TQ̄,ū(z) : Du(z) − DN
QPT

c u) dz +
∑

Q∈QD

mQTr (Du(z) − DN
QPT

c u) p̃Q
ex.

Thanks to (1.2) and the Cauchy-Schwarz inequality, Proposition 6.3 implies that

BD(u, epQD
ex ; ū, epQD

ex ) ≤ ChD|||BQcδD|||QD

 

P

Q∈QD

Z

Q
(|||∇u(z)|||2F + |∇2u(z)|2 + |∇p(z)|2)dz

!
1
2

+ |||TQ̄,ū|||QD∥epQD
ex ∥2 + 2Cη|||Du − DN

QPT
c u|||QD |||TQ̄,ū|||QD + |||Du − DN

QPT
c u|||QD∥epQD

ex ∥2.

Thanks to Lemma 2.2 and the estimate (6.18), we have∑
Q∈QD

mQ|||BQδ̂D|||2F ≤ C
(
|||Dū − DN

QPT
c ū|||2QD

+ |||TQ̄,ū|||2QD

)
.

Using (6.15) and (6.16), Proposition 6.2 implies

|||Du − DN
QPT

c u|||2QD + ∥epQD
ex ∥2

2 ≤ Ch2
D
P

Q∈QD

Z

Q
(|||∇u(z)|||2F + |∇2u(z)|2 + |∇p(z)|2)dz

+ChD

“

|||Du − DN
QPT

c u|||QD+∥epQD
ex ∥2

”

 

P

Q∈QD

Z

Q
(|||∇u(z)|||2F + |∇2u(z)|2 + |∇p(z)|2)dz

!
1
2

+|||Du − DN
QPT

c u|||QD∥epQD
ex ∥2.

Finally, Young inequality gives the result. ¤
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REMARK 6.1. We immediately have the estimate on the whole norm for (u, p)

|||Du − DN
QPT

c u|||22 + ∥p̃Q
ex∥2

2 ≤ C23size(T )2(∥u∥2
(H2(Q))2 + ∥p∥2

H1(Q)). (6.19)

LEMMA 6.5. We assume that (u, p) is the solution of the problem (1.1). There exists a
constant C24 > 0, depending only on Cη, Cη, Cη, reg(T ) and sin(ϵ0), such that

mD|divDPT
c u|2 ≤ |||DN

QPT
c u − Du|||2QD

, ∀ D ∈ D,

∥divDPT
c u∥2 ≤ C24size(T )(∥u∥(H2(Q))2 + ∥p∥H1(Q)).

Proof. Thanks to divD(PT
c u) = Tr(DDPT

c u) and div u = 0, the equality (2.7) gives

divD(PT
c u) = divD(PT

c u) − div u =
1

mD

∑
Q∈QD

∫
Q

Tr(DN
QPT

c u − Du(z))dz.

Cauchy-Schwarz inequality implies the first estimate. Thanks to (6.19), we get the second
estimate with C24 =

√
C23. ¤

Now, we can control Ru
s,Q, as follows

LEMMA 6.6. We assume that (u, p) is the solution of the problem (1.1). There exists a
constant C25 > 0, depending only on Cη, Cη, Cη, reg(T ) and sin(ϵ0), such that

∥Ru
s,Q∥2 ≤ C25size(T )(∥u∥(H2(Q))2 + ∥p∥H1(Q)).

Proof. Definition 6.2 implies that

∥Ru
s,Q∥2

2 ≤
∑

Q∈Q

mQ

∑
s∈EQ

|Ru,η
s,Q|2 + |||Ru,Du

Q |||22.

First, the inequality (1.2) and Lemma 6.4 imply

|||Ru,Du
Q |||22 ≤ C

2

ηC23size(T )2
∑

Q∈Q

∫
Q

(
|||∇u(x)|||2F + |∇2u(x)|2 + |∇p|2

)
dx.

Finally, Lemma 6.3 implies the result, noting C25 =
√

C
2

ηC23 + C20.
¤

6.5. Pressure jumps in diamonds. LEMMA 6.7. We assume that (u, p) is the solution
of the problem (1.1). There exists C26 > 0, depending only on Cη , Cη, Cη , reg(T ) and
sin(ϵ0), such that ∑

s=Q|Q′=D|D′∈S

(pQ′

ex − pQ
ex)

2 ≤ C26(∥u∥2
(H2(Q))2 + ∥p∥2

H1(Q)).

Proof. We note Ps
mp :=

1
ms

∫
s

p(y)dy, for any s ∈ S, adding and subtracting Ps
mp,

Cauchy-Schwarz inequality implies∑
s=Q|Q′=D|D′∈S

(pQ′

ex − pQ
ex)

2 ≤4
∑

D∈D

∑
Q∈QD

∑
s∈∂Q∩∂D

|pQ
ex − Ps

mp|2.

Then adding and subtracting PQ
mp, Cauchy-Schwarz inequality implies

P

s=Q|Q′=D|D′∈S

(pQ′
ex − pQ

ex)
2 ≤8

P

D∈D

P

Q∈QD

|pQ
ex − PQ

mp|2+8
P

D∈D

P

Q∈QD

P

s∈∂Q∩∂D
|PQ

mp − Ps
mp|2. (6.20)
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Since we have p ∈ H1(Q), thanks to Lemma 4.5, we get

|PQ
mp − Ps

mp|2 ≤ C11reg(T )3
∫

Q

|∇p(z)|2dz. (6.21)

Lemma 6.4 and (6.21) conclude the proof with C26 = 8(C23 + C11reg(T )3).
¤

6.6. End of the proof of Theorem 6.1. We may now collect all the previous results in
order to conclude the proof of Theorem 6.1, that we started in Section 6.2.
Proof. Having denoted by eT = PT

c u − uT and eD = PD
mp − pD, we have obtained the

inequality (6.8)

|||∇N
QeT |||22 + ∥eQ∥2

2 ≤ eC1(|||∇N
QeT |||2 + ∥eQ∥2)(∥Rs,Q∥2 + ∥divDPT

c u∥2)

+ eC2size(T )(|||∇N
QeT |||2 + ∥eQ∥2)

 

P

s=Q|Q′=D|D′∈S

(pQ′
ex − pQ

ex)
2

!
1
2

.

Using the estimate ∥Rs,Q∥2 ≤ 2∥Ru
s,Q∥2 +∥Rp

s,Q∥2 +∥p̃QD
ex ∥2, Lemmas 6.1, 6.19, 6.6 and

Lemma 6.5 imply ∥Rs,Q∥2 + ∥divDPT
c u∥2 ≤ Csize(T ). Finally, Lemma 6.7 gives

|||∇N
QeT |||2 ≤ Csize(T ) and ∥eQ∥2 ≤ Csize(T ). (6.22)

Estimate of ∥u−uT ∥2. We have ∥u−uT ∥2 ≤ ∥u− PT
c u∥2 + ∥PT

c u−uT ∥2. Lemma
6.2 and the discrete Poincaré inequality Theorem 4.5 imply

∥u − uT ∥2 ≤ Csize(T ) + C|||∇DPT
c u −∇DuT |||2.

Lemma 4.2 and (6.22) gives the estimate of ∥u − uT ∥2.
Estimate of |||Du−DN

QuT |||2. We have |||Du−DN
QuT |||2 ≤ |||Du−DN

QPT
c u|||2+|||DN

QPT
c u−

DN
QuT |||2. Finally, (6.19) and (6.22) imply the estimate of |||Du − DN

QuT |||2.
Estimate of ∥p−pQ∥2. Using (6.22), we obtain ∥PQ

mp−pQ∥2 ≤ Csize(T ). We conclude
thanks to Lemma 6.1. ¤

Remark that we can improve the estimate of the velocity as follows
COROLLARY 6.1. If for any D ∈ D, we have αK ̸= αL. We assume that the assumption

of Theorem 6.1 are satisfied. There exists a constant C27 > 0 depending only on reg(T ), λ,
sin(ϵ0), Cη, Cη, Cη, ∥u∥(H2(Q))2 and ∥p∥H1(Q), such that:

|||∇u −∇N
QuT |||2 ≤ C27size(T ).

Proof. The difficulty lies in the proof of the existence of a constant C28 > 0, such that

|||∇u −∇N
QPT

c u|||2 ≤ C28size(T )(∥u∥(H2(Q))2 + ∥p∥H1(Q)).

Indeed with this estimate, we have

|||∇u −∇N
QuT |||2 ≤ C28size(T )(∥u∥(H2(Q))2 + ∥p∥H1(Q)) + |||∇N

QPT
c u −∇N

QuT |||2.

Finally, (6.22) imply the estimate of |||∇u − ∇N
QuT |||2. We prove now the existence of C28.

Let D ∈ D. Thanks to Proposition 6.1, there exists δD
ex ∈ MnD,2(R) such that (δD

ex : δ0) = 0
and DN

QPT
c u = DDPT

c u+ 1
2 (BQδD

ex + tδD
ex

tBQ) for all Q ∈ QD. So we can write ∇N
QPT

c u =
∇DPT

c u + tδD
ex

tBQ for all Q ∈ QD. By the discussion of Section 2.4.1 we remark that, there
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exists δ̃D ∈ MnD,2(R) such that ∇PQ
c u = ∇DPT

c u +
t
δ̃DtBQ, using the affine function

ΠDPT
c u (see Fig. 2.4), that is

δ̃K = u(xσK) − ΠDPT
c u(xσK) δ̃L = u(xσL) − ΠDPT

c u(xσL)

δ̃K∗ = u(xσK∗ ) − ΠDPT
c u(xσK∗ ) δ̃L∗ = u(xσL∗ ) − ΠDPT

c u(xσL∗ ).
(6.23)

Noting δ̂D = δ̃D−δD
ex, we deduce that ∇PQ

c u−∇N
QPT

c u =
t
δ̂DtBQ and DPQ

c u−DN
QPT

c u =
1
2 (BQδ̂D +

t
δ̂DtBQ).

•Case αK ̸= αL. Since δ0 is zero, we have (δ̂D : δ0) = 0 and Lemma 2.2 implies∑
Q∈QD

mQ|||BQδ̂D|||2F ≤ C1

∑
Q∈QD

mQ|||DPQ
c u − DN

QPT
c u|||2F .

Lemma 6.4 gives∑
Q∈QD

mQ|||BQδ̂D|||2F ≤ C1C23h
2
D

∑
Q∈QD

∫
Q

(|||∇u(z)|||2F + |∇2u(z)|2 + |∇p(z)|2)dz. (6.24)

Proposition 6.2 and (6.24) conclude the proof in that case. ¤
7. Numerical results. We show here some numerical results obtained on the domain

Ω =]0, 1[2. Error estimates are given for two different tests with a stabilization coefficient
λ = 10−3.

In order to illustrate error estimates, the family of meshes (see Fig. 7.1) are obtained
by successive global refinement of the original mesh. We recall that in the theoretical study

(a) Non conformal quadrangle mesh. (b) Quadrangle and triangle mesh.

FIG. 7.1. Family of meshes.

presented here, we have either the same angles αK and αL (see Fig. 2.2(a)) or the angles
distant from ϵ0. This restriction is not required in the numerical test. We get the same results
using the barycentric dual mesh or the direct dual mesh. And we observe that the convergence
order of the velocity gradient is one even in the case of direct dual mesh.

In all the tests, we choose an exact solution (u, p) and a viscosity η and then define the
source term f and the boundary data g in such a way that (1.1) is satisfied. In Fig. 7.2
and 7.3, we compare the three following schemes the original DDFV scheme (1.4), the
m-DDFV scheme (3.1) and the m-DDFV-∆D scheme (3.1) with the old stabilization term
−λh2

D∆DpD instead of −λh2
D∆DpQ. The comparison is performed in term of L2(Ω)-norm

for the pressure
∥PQ

c p − pQ∥2

∥PQ
c p∥2

, for the velocity gradient
∥PQ

c ∇u −∇N
QuT ∥2

∥PQ
c ∇u∥2

and for the

velocity
∥PT

c u − uT ∥2

∥PT
c u∥2

resp. as a function of the mesh size, in a logarithmic scale, where

PQ
c p = ((p(xQ))Q∈Q) is the center-value projection on Q.
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7.1. Test 1 - Discontinuous viscosity. The interface Γ is located at {y = 0.5}. Let

u(x, y) =
(

u(x, y)
0

)
, with:

u(x, y) =

{
y2 − 0.5y for y > 0.5

104(y2 − 0.5y) else.
, p(x, y) = 2x − 1,

and the discontinuous viscosity: η1 = 1, η2 = 10−4, which leads to Du discontinuous across
Γ. We use the non conformal quadrangle mesh, locally refined where the discontinuity occurs,
shown on Fig. 7.1(a).
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FIG. 7.2. Test 1, discontinuous viscosity on a non conformal quadrangle mesh Fig. 7.1(a).

In Fig 7.2, we show that in that case, the results using the m-DDFV-∆D scheme are
essentially the same than the one using the m-DDFV scheme (3.1). As predicted by the
theory, the m-DDFV scheme provides a much better convergence rate than the original DDFV
scheme. Furthermore, the error (in any of the three norms we consider) obtained by the m-
DDFV scheme is better than using the original DDFV scheme even in the case of coarse
meshes. Note that the convergence rates obtained with the m-DDFV scheme are greater than
the theoretical ones. This is related to some uniformity of the mesh away from the refinement
area. Furthermore, let us emphasize that the convergence rate is not sensitive to the presence
of non conformal control volumes.

7.2. Test 2 - Discontinuous viscosity and discontinuous pressure. The interface Γ is
now located at {x = 0.5}. We note c = − η2π

η1+0.5η2π . We take the discontinuous viscosity:
η1 = 102, η2 = 10−2, and

u(x, y) =

0

B

B

B

B

B

B

B

@

8

<

:

(x − 0.5)(cx + sin(5.0πx))
4.0π cos(4.0πy)

0.5c + 1
, for x ≤ 0.5

(x − 0.5)(cos(πx) + 1)4.0π cos(4.0πy), elsewhere.
8

<

:

− (cx + sin(5.0πx) + (x − 0.5)(c + 5.0π cos(5.0πx)))
sin(4.0πy)

0.5c + 1
, for x ≤ 0.5

− (cos(πx) + 1 − π(x − 0.5) sin(πx)) sin(4.0πy), elsewhere.

1

C

C

C

C

C

C

C

A

,

p(x, y) =

(

8.0π(η1 − η2) cos(4πy) + cos(4πx) sin(4πy), for x ≤ 0.5

cos(4πx) sin(4πy), elsewhere.

We use the quadrangle-triangle mesh shown on Fig. 7.1(b). As predicted in Theorem 6.1,
we observe for the m-DDFV a first order convergence for the L2(Ω)-norm of the velocity
gradient and of the pressure, which seems to be optimal in that case. We obtain a second
order convergence for the L2(Ω)-norm of the velocity. This super-convergence of the L2(Ω)-
norm is classical for finite volume methods, however its proof in general remains an open
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FIG. 7.3. Test 2, discontinuous viscosity and discontinuous pressure on the quadrangle-triangle mesh Fig. 7.1(b).

problem (see [26]). Fig. 7.3 brings out the role of the new stabilization term. We observe that
the m-DDFV-∆D scheme is still convergent even if we have lost the first order convergence,
as expected.

8. Conclusion. In this paper, we provide a modification of the stabilized DDFV scheme
with Dirichlet boundary conditions for the interface Stokes problem on general 2D grids in
order to take into account discontinuities in the viscosity. The m-DDFV scheme we obtained
is proved to present a better consistency of the fluxes at the discontinuities. We prove a first
order convergence of the DDFV scheme in the L2(Ω)-norm for the velocity gradient, for
the velocity and for the pressure. The performance of the scheme is illustrated by numerical
results. Let us mention some of the possible extensions of the present work to more general
situations. In this paper, we did not allow the viscosity η to depend on Du, so the first
extension could be to consider this situation with non-Newtonian flows. A second one could
be to extend this work to the 3D case.

Acknowledgments The author want to express its gratitude to Franck Boyer and Flo-
rence Hubert for their support during the preparation of this work.

9. Appendix.

9.1. Proof of Lemma 2.2.
Estimate between δD and the symmetric part of BQδD. Let us explicit the components

of δD in the local basis of the diamond cell.
tδK =µKτ⃗ K∗,L∗ + λKn⃗σK, tδL = µLτ⃗ K∗,L∗ + λLn⃗σK,

tδK∗ =µK∗ τ⃗ σKK∗ + λK∗ n⃗σKK∗ , tδL∗ = µL∗ τ⃗ σKK∗ + λL∗ n⃗σKK∗ ,

where µ., λ. lie in R. Using notation SQ = BQδD + tδDtBQ, for all Q ∈ QD, and the fact that
tXBQδDX = tXtδDtBQX for any X ∈ R2, the definition of BQ and the decomposition of
δD imply four equations:

µKmσK(X, τ⃗ K∗,L∗)(n⃗σKK∗ , X) + λKmσK(X, n⃗σK)(n⃗σKK∗ , X)
+ mσK∗ µK∗(X, τ⃗ σKK∗)(n⃗σK, X) + λK∗mσK∗ (X, n⃗σKK∗)(n⃗σK, X)

=
mQK,K∗

2
tXSQK,K∗ X,

(9.1a)

− mσKµK(X, τ⃗ K∗,L∗)(n⃗σKK∗ , X) − λKmσK(X, n⃗σK)(n⃗σKK∗ , X)
+ mσL∗ µL∗(X, τ⃗ σKK∗)(n⃗σK, X) + λL∗mσL∗ (X, n⃗σKK∗)(n⃗σK, X)

=
mQK,L∗

2
tXSQK,L∗ X,

(9.1b)
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mσLµL(X, τ⃗ K∗,L∗)(n⃗σLK∗ , X) + λLmσL(X, n⃗σK)(n⃗σLK∗ , X)
− mσK∗ µK∗(X, τ⃗ σKK∗)(n⃗σK, X) − λK∗mσK∗ (X, n⃗σKK∗)(n⃗σK, X)

=
mQL,K∗

2
tXSQL,K∗ X,

(9.1c)

− mσLµL(X, τ⃗ K∗,L∗)(n⃗σLK∗ , X) − λLmσL(X, n⃗σK)(n⃗σLK∗ , X)
− mσL∗ µL∗(X, τ⃗ σKK∗)(n⃗σK, X) − λL∗mσL∗ (X, n⃗σKK∗)(n⃗σK, X)

=
mQL,L∗

2
tXSQL,L∗ X.

(9.1d)

We deduce the different value of µ. by taking X = τ⃗ σKK∗ in (9.1a)-(9.1b) and by taking
X = τ⃗ K∗,L∗ in (9.1c)-(9.1d). Thanks to the relation (2.2), we have the following estimate

µ2
. ≤ C(reg(T ))

∑
Q∈QD

mQ|||SQ|||2F . (9.2)

•Case αK ̸= αL. We have (n⃗σLK∗ , τ⃗ σKK∗) ̸= 0. We deduce the different value of λ. by
taking in (9.1c) respectively X = τ⃗ σKK∗ and X = τ⃗ σLK∗ , and in (9.1d) X = τ⃗ σLK∗ . The
value λK is deduced from (9.1a). Using the criterion ϵ0 and the estimate (9.2), we obtain

λ2
. ≤ C(reg(T ), sin(ϵ0))

∑
Q∈QD

mQ|||SQ|||2F . (9.3)

Finally, we deduce thanks to (9.2) and (9.3) that

|||δD|||2F ≤ C
∑

Q∈QD

mQ|||SQ|||2F = C(reg(T ), sin(ϵ0))
∑

Q∈QD

mQ|||BQδD + t
δDtBQ|||2F .

•Case αK = αL. We have chosen δD such that (δD : δ0) = 0. We write the system on
λ. as follows Bλ = F, where B is a following matrix in M5,4(R)

B =

0

B

B

B

B

@

mσK 0 mσK∗ 0
−mσK 0 0 mσL∗

0 mσL −mσK∗ 0
0 −mσL 0 −mσL∗

− 1
mσK

1
mσL

1
mσK∗

− 1
mσL∗

1

C

C

C

C

A

,

λ = t(λK, λL, λK∗ , λL∗) is a vector in R4 and F = t(FQK,K∗ , FQK,L∗ , FQL,K∗ , FQL,L∗ , 0) is
a vector in R5. We have

∑
Q∈QD

FQ = 0 and using the estimate (9.2), for all Q ∈ QD

|FQ|2 ≤ C(reg(T ))h2
D

∑
Q∈QD

mQ|||SQ|||2F . (9.4)

The solution of Bλ = F is

λL∗ =
b

b∗
, λK∗ =

1
mσK∗

(
FQK,K∗ + FQK,L∗ − mσL∗

b

b∗

)
,

λL =
1

mσL

(
−FQL,L∗ − mσL∗

b

b∗

)
, λK =

1
mσK

(
−FQL,K∗ + mσL∗

b

b∗

)
,

(9.5)

where

|b|2 ≤ C(reg(T ))
1

h2
D

∑
Q∈QD

mQ|||SQ|||2F and |b∗| = −b∗ ≥ C(reg(T ))
1

hD
. (9.6)
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We deduce thanks to (9.5), (9.4) and (9.6) that

λ2
. ≤ C(reg(T ))

∑
Q∈QD

mQ|||SQ|||2F . (9.7)

Finally, we deduce thanks to (9.2) and (9.7) that

|||δD|||2F ≤ C(reg(T ))
∑

Q∈QD

mQ|||SQ|||2F = C(reg(T ))
∑

Q∈QD

mQ|||BQδD + t
δDtBQ|||2F .

Estimate between BQδD and δD. Thanks to hD ≤ C min(mσK ,mσK∗ ), we deduce
|||BQδD|||2F ≤ C 1

h2
D
|||δD|||2F . Thanks to reg(T ), we obtain

∑
Q∈QD

mQ|||BQδD|||2F ≤ C|||δD|||2F ,
that concludes the proof.

9.2. Proof of Lemma 2.3. We improperly note αs,D(DDuT ) = αQ = pQ − pD when
s = ∂D ∩ ∂Q. We have that (δD, αQD ) satisfied the following system

∑
Q∈QD

mQφQ(DDuT , δD, αQ)BQ = 0, Tr(tδDtBQ)=0, ∀Q ∈ QD,∑
Q∈QD

mQαQ =0, (δD : δ0) = 0.
(9.8)

Using the value of φQ in (9.8), we deduce that∑
Q∈QD

mQαQBQ = 2
∑

Q∈QD

mQηQDN
QuT BQ. (9.9)

We have that |||mQK,K∗ BQK,K∗ |||2F = m2
σK

+ m2
σK∗ ≤ 2h2

D. The same estimate holds for all
Q ∈ QD. We estimate the right hand side of (9.9) thanks to Cauchy-Schwarz inequality

|||2
∑

Q∈QD

mQηQDN
QuT BQ|||F ≤ 2CηhD

( ∑
Q∈QD

|||DN
QuT |||2F

) 1
2

. (9.10)

Then we have that the norm of the left-hand side of (9.9) is

|||
∑

Q∈QD

mQαQBQ|||2F =m2
σK

(αQK,K∗ − αQK,L∗ )2 + m2
σL

(αQL,K∗ − αQL,L∗ )2

+ m2
σK∗ (αQK,K∗ − αQL,K∗ )2 + m2

σL∗ (αQK,L∗ − αQL,L∗ )2

(9.11)
Using (9.10)-(9.11), the relation (2.2) implies that

|αQ − αQ′ | ≤ 2Cηreg(T )

( ∑
Q∈QD

|||DN
QuT |||2F

) 1
2

,∀Q,Q′ ∈ QD such that Q̄ ∩ Q̄′ ̸= ∅.

Thanks to (4.2) and to mD
mQ

≤ reg(T )3, we obtain
∑

Q∈QD

|||DN
QuT |||2F ≤ reg(T )3

Cη

Cη

|||DDuT |||2F .

We deduce that

|αQ − αQ′ | ≤ 2Cηreg(T )5/2
C

1/2

η

C1/2
η

|||DDuT |||F . (9.12)

Now we can estimate |αQ| with differences like αQ′ −αQ′′ , using (9.8). Thanks to (9.12), we

obtain the result with C2 = 6 reg(T )5/2C
3/2
η

C
1/2
η

.
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9.3. Proof of Proposition 6.4. We define FQ as follows

FQK,K∗ =
Id

mQK,K∗
, FQK,L∗ =− Id

mQK,L∗
, FQL,K∗ =− Id

mQL,K∗
, FQK,L∗ =

Id
mQL,L∗

.

We check that FQ satisfy the conditions (2.13) and (2.14) if αK = αL. Thus, there exists
δ̄D ∈ MnD,2(R) such that (BQδ̄D + t

δ̄DtBQ) = FQ, ∀ Q ∈ QD and (δ̄D : δ0) = 0. Taking
δD equal to δ̄D in (6.12), we deduce that

∑
Q∈QD

∫
Q

η(z) (FQ :Du(z)−DN
QPT

c u) dz −
∑

Q∈QD

mQTr (FQ) p̃Q
ex =Tr

(
t
δ̄DRD

)
. (9.13)

We construct a function ṽD such that ṽD ∈ (H1(D))2 ∩ (H2(Q))2, for all Q ∈ QD, such that

div(ṽD)(x) =


− p̃Q

ex +
divD(PT

c u)
2mQ

∫
Q

η(z)dz − 1
2
Tr(t δ̄DRD), if x ∈ QK,K∗ ,

− p̃Q
ex +

divD(PT
c u)

2mQ

∫
Q

η(z)dz, if x ∈ Q, Q ∩ QK,K∗ = ∅,
(9.14)

with RD defined by Definition 6.4. We choose ṽD linear per quarter diamond cells of the
form AQ(x − xD) if x ∈ Q, with

AQK,K∗ =
ṽD

K∗ ⊗ n⃗σKK∗

n⃗σKK∗ · τ⃗ K∗,L∗
+

ṽD
K ⊗ n⃗σK

n⃗σK · τ⃗ σKK∗
, AQK,L∗ =

ṽD
L∗ ⊗ n⃗σKK∗

n⃗σKK∗ · τ⃗ K∗,L∗
+

ṽD
K ⊗ n⃗σK

n⃗σK · τ⃗ σKK∗
,

AQL,K∗ =
ṽD

K∗ ⊗ n⃗σLK∗

n⃗σLK∗ · τ⃗ K∗,L∗
+

ṽD
L ⊗ n⃗σK

n⃗σK · τ⃗ σLK∗
, AQL,L∗ =

ṽD
L∗ ⊗ n⃗σLK∗

n⃗σLK∗ · τ⃗ K∗,L∗
+

ṽD
L ⊗ n⃗σK

n⃗σK · τ⃗ σLK∗
,

where ṽD
K, ṽD

L , ṽD
K∗ , ṽD

L∗ belong to R2, they will be determined above. Remark that we have

ṽD(xD + ατ⃗ K∗,L∗) =

{
αṽD

K∗ , if xD + ατ⃗ K∗,L∗ ∈ σK∗ ,

αṽD
L∗ , if xD + ατ⃗ K∗,L∗ ∈ σL∗ .

Thus ṽD is continuous across the diagonals of D and ṽD(xD) = 0.
• Case αK = αL: We choose ṽD

K = aKn⃗σK, ṽD
L = aLn⃗σK, ṽD

K∗ = aK∗ τ⃗ K,L, ṽD
L∗ =

aL∗ n⃗σ∗K∗ . To determine the unknowns aK, aL, aK∗ , aL∗ we impose (9.14):

aK = sin(αD)

 

−epex
QK,K∗ +

divD(PT
c u)

2mQK,K∗

Z

QK,K∗
η(z)dz − 1

2
Tr(

t
δ̄DRD)

!

:= sin(αD)b1,

aL = sin(αD)

 

−epex
QL,K∗ +

divD(PT
c u)

2mQL,K∗

Z

QL,K∗
η(z)dz

!

:= sin(αD)b2,

aK + aL∗ = sin(αD)

 

−epex
QK,L∗ +

divD(PT
c u)

2mQK,L∗

Z

QK,L∗
η(z)dz

!

:= sin(αD)b3,

aL + aL∗ = sin(αD)

 

−epex
QL,L∗ +

divD(PT
c u)

2mQL,L∗

Z

QL,L∗
η(z)dz

!

:= sin(αD)b4.

We get

aK = sin(αD)b1, aL = sin(αD)b2, aL∗ = sin(αD)(b3 − b1).
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Thanks to (9.13) that is b1−b2−b3+b4 = 0, we also have aL = sin(αD)(b1−b3+b4)
and we choose aK∗ = 0. We deduce that there exists C > 0 depending only on
reg(T ) and Cη such that

P

Q∈QD

mQ|||AQ|||2F ≤ C(
P

Q∈QD

mQ|epQ
ex|2 + mD|divD(PT

c u)|2 + mD|Tr(
t
δ̄DRD)|2).

(9.15)
• Case αK ̸= αL: We choose ṽD

K = aKn⃗σK, ṽD
L = aLn⃗σK, ṽD

K∗ = aK∗ τ⃗ σKK∗ ,
ṽD

L∗ = aL∗ n⃗σKK∗ . To determine the unknowns aK, aL, aK∗ , aL∗ we impose (9.14):

aK = sin(αK)b1, aK + aL∗ = sin(αK)b3,

aL + aK∗ sin(αK − αL) = sin(αL)b2, aL + aL∗ cos(αK − αL) = sin(αL)b4.

We get

aK = sin(αK)b1, aL = sin(αL)b4 + cos(αK − αL) sin(αK)(b1 − b3),

aK∗ =
sin(αL)(b2 − b4) + cos(αK − αL) sin(αK)(b3 − b1)

sin(αK − αL)
, aL∗ = sin(αK)(b3 − b1).

In that case, we have that aK∗ blows up if the angles αK, αL are too close. So there
exists C > 0 depending only on reg(T ), Cη and sin(ϵ0) such that

P

Q∈QD

mQ|||AQ|||2F ≤ C(
P

Q∈QD

mQ|epQ
ex|2 + mD|divD(PT

c u)|2 + mD|Tr(
t
δ̄DRD)|2).

(9.16)
From (9.15) and (9.16) and applying Lemma 6.5, we obtain

∥ṽD∥H1(D) ≤ C(∥p̃QD
ex ∥2 + |||Du − DN

QPT
c u|||QD +

√
mD|Tr(t δ̄DRD)|). (9.17)

Lemma 2.2 implies that mD|||BQδ̄D|||2QD
≤ C(reg(T )). Thanks to Proposition 6.3, we deduce

mD|Tr(t δ̄DRD)|2 ≤ Ch2
D

∑
Q∈QD

∫
Q

(|||∇u(z)|||2F + |∇2u(z)|2 + |∇p(z)|2)dz. (9.18)

We have |||DṽD−DN
QPT

c ṽD|||QD ≤ ∥ṽD∥H1(D)+|||DN
QPT

c ṽD|||QD . Proposition 4.1 and Lemma
6.2 give |||DṽD − DN

QPT
c ṽD|||QD ≤(1 + C18)∥ṽD∥H1(D). Thanks to (9.17) and (9.18), we

deduce that

|||DṽD − DN
QPT

c ṽD|||QD ≤ C(∥p̃QD
ex ∥2 + |||Du − DN

QPT
c u|||QD + ChD).

Furthermore, we have

−
P

Q∈QD

Z

Q
divevDep

Q
exdz ≥ ∥epQD

ex ∥2
2−divDPT

c u
P

Q∈QD

Z

Q
η(z)dzepQ

ex−mQK,K∗ Tr(
t
δ̄DRD)epex

QK,K∗ .

Thanks to divu = 0, Proposition 6.3 gives

−
P

Q∈QD

Z

Q
divevDep

Q
exdz ≥ ∥epQD

ex ∥2
2 − C|||Du − DN

QPT
c u|||QD∥epQD

ex ∥2 − Csize(T )|∥epQD
ex ∥2.

Young inequality concludes the proof.
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