
HAL Id: inria-00521432
https://hal.inria.fr/inria-00521432

Submitted on 23 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Aspect-Oriented Framework for Weaving
Domain-Specific Concerns into Component-Based

Systems
Frédéric Loiret, Romain Rouvoy, Lionel Seinturier, Daniel Romero, Kevin

Sénéchal, Ales Plsek

To cite this version:
Frédéric Loiret, Romain Rouvoy, Lionel Seinturier, Daniel Romero, Kevin Sénéchal, et al.. An Aspect-
Oriented Framework for Weaving Domain-Specific Concerns into Component-Based Systems. Journal
of Universal Computer Science, Graz University of Technology, Institut für Informationssysteme und
Computer Medien, 2011, Special Issue on Software Components, Architectures and Reuse, 17 (5),
pp.742-776. �inria-00521432�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50053329?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00521432
https://hal.archives-ouvertes.fr

An Aspect-Oriented Framework for Weaving

Domain-Specific Concerns into Component-Based Systems

Frédéric Loiret, Romain Rouvoy, Lionel Seinturier, Daniel Romero
Kévin Sénéchal

(INRIA Lille – Nord Europe, France
University of Lille 1 - LIFL, France

{firstname.lastname}@inria.fr)

Aleš Pľsek
(Computer Science Dept.

Purdue University, West Lafayette, USA
aplsek@purdue.edu)

Abstract: Software components are used in various application domains, and many
component models and frameworks have been proposed to fulfill domain-specific re-
quirements. The general trend followed by these approaches is to provide ad-hoc models
and tools for capturing these requirements and for implementing their support within
dedicated runtime platforms, limited to features of the targeted domain. The challenge
is then to propose more flexible solutions, where components reuse is domain agnos-
tic. In this article, we present a framework supporting compositional construction and
development of applications that must meet various extra-functional/domain-specific
requirements. The key points of our contribution are: i) We target development of
component-oriented applications where extra-functional requirements are expressed as
annotations on the units of composition in the application architecture. ii) These anno-
tations are implemented as open and extensible component-based containers, achieving
full separation of functional and extra-functional concerns. iii) Finally, the full machin-
ery is implemented using the Aspect-Oriented Programming paradigm. We validate our
approach with two case studies: the first is related to real-time and embedded applica-
tions, while the second refers to the domain of distributed context-aware middleware.

Key Words: component-based frameworks, domain-specific software engineering, as-
pect-oriented software architectures.

Category: D.2.2, D.2.11, D.2.13

1 Introduction

Component-Based Software Engineering (CBSE) promotes software architec-
tures by decomposing systems into logical modules, which can be easily packaged
and composed. CBSE has therefore emerged as an elegant technology for the
rapid assembly of flexible systems, fostering reuse and separation of concerns.
Although CBSE is already applied in IT systems using mainstream component
technologies, such as Enterprise Java Beans (EJB) or CORBA Component Model
(CCM), its benefits increase drastically when designing Domain-Specific Com-
ponent Frameworks (DSCF) in various application domains [LT09, LW07], from

dynamic adaptability [BCL+06] and distribution support [SVB+08] to embed-
ded applications imposing strict constrains in terms of performance [CHP06]. A
DSCF typically consists of a component model isolating the relevant domain-
specific abstractions and a toolkit for the generation of a dedicated execution
platform providing all the extra-functional services required by the application.

However, the plethora of DSCF propositions conflicts with the principles es-
tablished by CBSE, since each DSCF tends to provide its own abstractions and
non-extensible platforms, which therefore prevents any reuse or improvement of
legacy solutions when generating the dedicated frameworks. This raises the chal-
lenge of proposing more flexible solutions, where components can be designed as
pure logical modules, which can be independently deployed in various execution
contexts depending on these domain-specific/extra-functional requirements. Ac-
cording to our experience in this field [LNBL09, PSCD06, PLMS08, SMF+09],
we believe that DSCFs actually share many architectural concepts, design pat-
terns, and principles that are applied when implementing the domain-specific
parts of these execution platforms.

To solve these issues, the contributions exposed in this article revisit the
coupling of the Aspect-Oriented (AO) paradigm with an Architecture Descrip-
tion Language (ADL). More specifically, we are interested in an approach where
aspects are implemented as architectural fragments woven within component
containers. The idea of relying on AO techniques to inject domain-specific/extra-
functional features into an ADL has already been addressed in the state-of-the-
art. Nonetheless, the originality of our approach resides in the following two con-
tributions: First, the weaving mechanisms provided to the developer for express-
ing the composition of aspects from the ADL typically rely on pointcut expres-
sions and on advice implementation languages [aos]. Existing approaches, such
as CAM/DAOP [PFT05], FAC [PSCD06], FuseJ [SFV06], or the AO component
and composition model defined by the AOSD-Europe project [Pro08] rely on
low-level and verbose languages capturing all the composition rules between the
ADLs and their advice implementations. These solutions compose business com-
ponents and aspect connectors in a single software entity, thus partially violating
the obliviousness principle of aspect orientations. Within our approach, we rather
promote a higher-level specification language for expressing the composition be-
tween these two levels based on an annotation weaving process. Annotations are
used as concise domain-specific notations, which are easier to write, reuse, and
analyze to check potential conflicts. These annotations can be associated to busi-
ness components a posteriori via pointcut expressions, which select the target
architectural artefacts to be woven. Second, we consider the way advices are im-
plemented and the platform resulting from the weaving process of aspects on the
core architecture. The existing approaches sharing with our proposal the capa-
bility to implement aspects as architectures [Pro08] or those which propose an

Aspect-Oriented Architecture Description Language, such as AO-ADL [PF07],
AspectualACME [GCB+06], or AspectLEDA [MTM09], do not rely on a concise
platform model. Indeed, in these approaches, the weaving process results in a
flatten component-based architecture preventing any distinction at runtime be-
tween business and non-functional components. We rather believe that the weav-
ing process should preserve the separation of concerns, and we propose to exploit
the concept of container to isolate the non-functional concerns. In particular,
the containers we consider are implemented as composite components extending
business components with their domain-specific behaviors. In this sense, a con-
tainer acts as a concise weaving infrastructure, which is based on architectural
patterns specifying the composition rules between the component contents and
the selected aspects.

Therefore, this article introduces an incremental weaving process combining
aspects and components homogeneously from the application down to the plat-
form. At the application level, the system is designed as a software architecture
centered on the business logic and is incrementally specialized using domain-
specific annotations. These annotations act as meta-information reified at the
architectural level, thus expressing the domain-specific requirements of the appli-
cation. The expression of these annotations is uncoupled from the base architec-
ture, allowing the tailoring of the latter to various execution contexts by means
of an annotation injection process. At the platform level, each woven annotation
is reified as an aspect, which is implemented as a fine-grained component-based
architecture. Containers are then used as a base infrastructure, in which domain-
specific concerns can be injected and composed to generate dedicated containers,
which perfectly conform to the domain-specific requirements of the application.

The remainder of this article is organized as follows. Section 2 introduces
the background of this work and clarifies our proposal. Sections 3 and 4 expose
our approach at application and platform levels, respectively. Section 5 provides
some insights on implementation issues. Section 6 evaluates our approach on
two case studies. Finally, Section 7 discusses the related work, while Section 8
concludes the article.

2 Hulotte: Component Model & Design Process

2.1 Background

A Domain-Specific Component Framework (DSCF) is composed of a component
model and the associated toolkit enabling the assembly, deployment, and ex-
ecution of specific applications [BHM09]. In particular, the DSCF component
model defines the relevant architectural abstractions close to the problem do-
main, according to the requirements of the targeted application domain (e.g., to

address the distribution support or real-time constraints). According to [CL02],
a recognized methodology for developing DSCF is composed of two main steps:

First, the domain-specific component model is used to develop the functional
concerns of an application: the applicative components. Typically, the applicative
components encapsulate the business logic of the application and are specified
using the key abstractions for the considered domain.

Second, the domain-specific framework toolkit is employed to create a dedi-
cated runtime platform. Most of component frameworks provide a runtime plat-
form for hosting and running components following the container idiom (e.g., the
EJB container). In this case, containers provide, in a quasi-transparent manner,
platform-wide services to application components, thus relieving the developer
from dealing with domain-specific requirements and implementing the associated
execution support.

Although one of the main benefits expected in using the component paradigm
is reuse [Cle02], it has been argued [DHT01] that the vast and increasing number
of proposals to address these domain-specific requirements does not encourage
reuse. In particular, these container-oriented platforms are often statically config-
ured to support a fixed set of extra-functional services, which limits the integra-
tion of additional domain-specific concerns. From this observation, we proposed
Hulotte [LMP+09]: a framework for the specification and implementation of
arbitrary domain-specific concerns in a unified way, which is easily extendable
towards different application domains. In the following section, we present the
generic component model on which this framework relies, the mechanisms pro-
posed to extend it towards different domains, as well as the roles involved within
its design process. The latter is based on aspect-oriented weaving techniques
introduced in Section 2.3.

2.2 Hulotte Component Model

Hulotte relies on a component model based on general CBSE principles [Cle02],
and is inspired by the reflective Fractal component model [BCL+06]. In partic-
ular, Hulotte identifies as core architectural artifacts the concepts of Component
(either Primitive or Composite), Attribute, Interface, and Binding. The be-
havior of a primitive component is implemented by the underlying programming
language supported by our framework (Java or Scala in the context of this ar-
ticle) and is reified by a Content artifact. An architecture is then specified as
a set of interconnected components (at an arbitrary level of encapsulation by
using the composite design pattern) via oriented relationships between required
and provided Interfaces. Finally, an Interface type is specified by a signa-
ture specified within an Interface Description Language (IDL) file (e.g. a Java
interface specified in a .java file in the context of this article). An example of a
Hulotte architecture is given Figure 2.

According to the two above described steps for developing DSCF, we distin-
guish two roles involved in the Hulotte development process: the application
developer and the platform developer. The application developer is responsible
for the development of applicative components and the specification of domain-
specific requirements. She/he uses the Hulotte model concepts to design the
component-based application, which is annotated by Domain Specific Anno-

tations afterwards. These annotations mark the Hulotte Architectural Ar-

tifacts like Java 5 annotations mark the Abstract Syntax Tree (AST) of a Java
program. Hulotte annotations isolate and specify the concerns relevant to a
targeted application domain, so-called domain-specific concepts. Within our ap-
proach, it should be noticed that components are used as pure business units,
and a component-based architecture then implements the whole business logic of
the application. Therefore, annotations are used to specify the domain-specific
semantics over the architecture. For instance, in order to address the multi-
task applications domain, an annotation can be used on a component to qualify
under which execution model its business interfaces should be invoked, e.g. peri-
odically or sporadically. On a composite component, an annotation can qualify
the boundary of a memory scope in which its subcomponents will be allocated.
Finally, an annotation can also be used on a binding to specialize the com-
munication models and protocols (e.g., asynchronous, shared memory, CORBA,
SOAP) between the bound components.

The role of the platform developer is therefore to design and implement the
runtime platform generation process, and the domain-specific requirements de-
fined by the application developer. Within our approach, each application com-
ponent is hosted by a container, which is itself implemented as a component-
based architecture. Therefore, containers and applications are homogeneously
implemented using the same architectural concepts. Throughout this article, we
will refer to platform components for components implementing the logic of the
containers.

2.3 Hulotte Aspect-Oriented Process

The contribution of this article consists in the use of aspect-oriented weaving
techniques at two levels: At application level, for weaving Hulotte annota-
tions on the applicative architecture, and at platform level, for weaving platform
components within containers.

The design flow described throughout this article is depicted in Figure 1, as
well as the three roles it involves: i) the application developer, ii) the platform
developer and iii) the Hulotte process itself.
For clarity sake, we detail in the following a typical design scenario from the
application developer point of view based on this flow, according to the steps

Domain-Specific
Annotations

Domain-Specific
Annotations

Domain-Specific
Annotations

Applicative
Architecture

Annotated Applicative
Architecture

Container-Oriented
Architecture

Platform Component
Assemblies

Platform Component
Architectures (Aspects)

Final
Architecture

A+ e +

Executable

Arch

implemented byimplements

Annotation weaving Refinement Platform components weaving

Code generation
and compilation

Annotation SetComponent-based
Architecture

Annotation Set
Legend

Platform levelApplication level

Implemented by the application
developer

Implemented by the platform developer

Handled automatically by the Hulotte process
develodevelo

1 ed

42

5

+ Weaving Step

3

Figure 1: The Aspect-Oriented Hulotte Process.

numbered in Figure 1: The application developer is in charge of implement-
ing the applicative architecture according to its business requirements (step 1).
Then, she/he injects the domain-specific annotations (step 2) in a way which is
uncoupled from its architecture by means of a dedicated pointcut language, as
it will be presented in Section 3. This first weaving step outputs an annotated
architecture. The latter is refined according to our container model (step 3),
which acts as a host structure for weaving platform components, implemented as
aspects. The latter implement domain-specific annotation’s logic. This leads us
to the second weaving step (step 4) which outputs the final architecture. These
steps are presented in Section 4. Finally, a executable is generated (step 5).

3 Hulotte Application Level

The Hulotte application level corresponds to the design space provided to
the application developer. Therefore, the developer composes the application
business logic as an assembly of components, mentioned throughout this article
as the applicative architecture. Then, this applicative architecture is tagged with
annotations specific to the target application domain. This section gives some
insights on these two design steps.

3.1 Applicative Architecture Design

An illustration of an applicative architecture instance (and an excerpt of its
textual ADL1, called Hulotte-Adl) designed with the Hulotte component
model is sketched out in Figure 2. White boxes represent primitive components
and are implemented by the application developer. Primitive components are
1 At the textual ADL level, there is no distinction between composite and primitive

components.

elementary composition units, connected via bindings and encapsulated within
composite components (grey boxes). At this stage of the process, an applicative
architecture simply specifies how components are connected together to compose
the business logic of the application.

Writer
component

Reader
component

Action component

write

read

activate

required interface provided interface

Data
component

Reaction
component

activate

Library
component

Legend

Root component

runnable

runnable

binding

Compute
component

Activation
component

1 component Root {
2 component Action {
3 component Writer {
4 provides java.lang.Runnable as runnable
5 requires WriteItf as write
6 content WriterImpl
7 }
8 component Data {
9 provides WriteItf as write

10 provides ReadItf as read
11 requires ComputeItf as compute
12 content DataImpl
13 }
14 component Reader {...}
15 component Compute {...}
16 binds Writer.write to Data.write
17 // . . . Other internal Action bindings
18 }
19 component Reaction {...}
20 binds Action.activate to Reaction.activate
21 }

Figure 2: Applicative Architecture Example.

3.2 Weaving of Domain-Specific Annotations

The Hulotte framework exploits annotations to isolate the domain-specific
concerns of an applicative architecture. They are explicitly specified by the ap-
plication developer by means of a weaving process. This enables the uncoupling of
the annotation expression from the target architecture. This idea is motivated by
the fact that the same applicative architecture can be used in various execution
contexts. This section therefore introduces the characteristics of the Hulotte

aspect-oriented approach in order to automatically weave domain-specific anno-
tations into the applicative architecture, focusing on the architectural join point

model and its associated pointcut language.

Joint Point Model. Hulotte identifies four types of architectural join
points corresponding to any Architectural Artifacts of the Hulotte meta-
model that can be marked with a Domain-Specific Annotation—i.e., Component,
either primitive or composite, Interface, Binding and Attribute.

Pointcut Language. Our framework provides a pointcut language to select
the join points of the applicative architecture on which domain-specific anno-
tations should be attached. This pointcut language is structured as a query
language, called HPath (Hulotte Path), which is inspired by FPath [DLLC09]
and XPath languages. HPath is therefore a Domain-Specific Language (DSL)
that provides a concise and powerful notation to navigate and query Hulotte

architectures. With HPath, the application developer describes the domain-
specific pointcut using dedicated architectural concepts. Finally, it allows to
attach Domain-Specific Annotations to the Architectural Artifacts cap-
tured by the pointcut. The syntax of a HPath expression is depicted in Figure 3.

$component-name/AXE::*[filter expression]/.../=>@name()

Initial component name

Additional stepsA step

A query expressing a pointcut Annotation to attach to the set of artifacts
captured by the pointcut (with optional parameters)

An axe to expand over a set of input artifacts

name filter (regexp)

Optional filtering predicates

Figure 3: Syntax of a HPath Expression.

An HPath query expressing a pointcut is composed of a root component
name representing the initial artifact on which the query will be executed, and
a sequence of steps used to navigate through the applicative architecture. The
sequence of steps, separated by a slash (/) acts as a pipes and filters flow, each
step consuming and producing a set of Hulotte’s architectural artifacts. Each
step is composed of a navigation axis, followed by a name filter and an optional
expression of filtering predicates. Several navigation axis are available (most of
them are inherited from the FPath language), for instance:

– child (resp. parent): from an input set of components, this axe returns
their direct subcomponents (resp. their direct super-components).

– descendant-or-self (resp. ancestor-or-self) corresponds to the transi-
tive and reflective closure of child (resp. parent). In these cases, the suffix
-or-self can be omitted, meaning that the axe’s input set of components
will not be added to the output result set.

– interface returns the set of interfaces belonging to a set of input compo-
nents.

– binding returns the set of bindings incoming or outgoing to/from the set of
input architectural artifacts (this axe supports either components or inter-
faces as input).

– bound-to returns the set of components bound to the components given as
input.

– method returns the set of methods specified by interface signatures.

Within a step expression, a name filter is then applied over the set of elements
returned by the operation. The name filter is a regular expression that keeps
the matching Architectural Artifacts. The last part of a step expression is
a sequence of filtering predicates (optional), filtering the resulting set before it
is consumed by the next step. Each Architectural Artifact accepts a set of
predicates, for instance:

– The predicate size allows to test the number of artifacts processed by a
step.

– required and provided are predicates that apply to the interface or bind-
ing artifact in order to restrict a set of interfaces according to their kind
(i.e., required or provided). The predicate signature restricts the set of
interfaces according to a regular expression matching their full qualified sig-
nature names.

– The annotated-by predicate restricts the set of architectural artifacts al-
ready marked by the annotation given as a parameter of the predicate.

A filter expression can be a conjunction or a disjunction of predicates, or
a complete HPath expression. Finally, an HPath expression is suffixed by an
annotation name (with optional associated parameters), which will be attached
to all artifacts captured by the pointcut.

Annotations Weaving Process. The HPath expressions are specified by
the application developer as part of the textual specification of its applicative
architecture. The weaving process (illustrated in Figure 1, step (2)) consists in
interpreting these expressions and producing an annotated architecture where
each architectural artifact matched by the queries are attached to the anno-
tation(s) suffixed by the query. Table 1 illustrates some examples of HPath

expressions. The right part of the figure describes the architectural artifacts
matching each expressions when they are sequentially applied to the applicative
architecture specified in Figure 2 from the top-level component Root.

Expression (1) weaves a distribution concern by annotating all the direct
sub-components of Root with the DistributedComponent annotation. Expres-
sion (2) weaves a threading concern by annotating all components providing a

Table 1: HPath Expression Examples.

HPath expressions Matching element(s)
in Figure 2

(1) $Root/child::* => @DistributedCompo-
nent(...)

Components {Action,
Reaction}

(2) $Root/descendant-or-self::*[
size(./interface::*[provided]) == 1

Components {Writer,
Reader}

&& ./interface::*[signature(Runnable)])

== 1]

=> @ActivePeriodic(period="10ms",

priority="8", maxiter"*")

(3) $Root/child::*/binding::*[

./required::*[annotated-

by(@Distributed)] &&

Binding between com-
ponents

./provided::*[annotated-

by(@Distributed)]] => @AsyncBinding()
Action and Reaction

(4) $Root/child::Action:: descendant-or-

self::* => @Reconfigurable(),
Components {Writer,
Data, Reader,

@LoggedCompAccess Compute}
(hpcexp= "*;*;write")

(5) $Root/descendant-or-self::Data =>

@ProtectedComponent(maxval="1")
Component {Data}

single server interface typed by the Java Runnable signature with the ActivePe-
riodic annotation. Expression (3) weaves a concurrency concern by annotating
with the AsynchronousBinding annotation bindings specified between compo-
nents themselves annotated by the distribution concern. Expression (4) weaves
reconfiguration and logging concerns by annotating all the descendants of the Ac-
tion component with the Reconfigurable and LoggedCompAccess annotations.
Note that the latter takes a regular expression as parameter (hpcexp stands for
Hulotte pointcut expression) whose syntax is explained in Section 4.2. Finally,
expression (5) weaves the annotation ProtectedComponent in the component
Data. It should be noticed that annotations can be also added manually by the
application developer to annotate directly the artifacts of its architecture, with-
out using HPath expressions. This capability can avoid the well-documented
pointcut fragility problem of AOP [SK04], which stipulates that changes to the
architecture might cause join points to incorrectly fall in or out of scope. In our
case, an annotation can be attached directly to an artifact whose definition may
evolve during the application design lifespan.

Finally, as defined by the Hulotte process, the domain-specific annotations
are implemented by the platform developer as described in the next section.

4 Hulotte Platform Level

One of the key motivations of Hulotte is to provide an implementation of
domain-specific concerns in an oblivious manner to the application developer.
Separation between the business and domain-specific concerns is an essential
software engineering principle to consider, in particular when an execution plat-
form needs to be adapted to support heterogeneous execution contexts for its
applicative components. Another motivation within our approach lies in the na-
ture of domain-specific concerns, which can be arbitrarily complex, allowing the
design, for instance, of both real-time and reconfigurable distributed component-
based systems. Therefore, we propose a framework where the link between the
business and domain-specific layers is not hard-coded, but expressed using aspect
weaving.

4.1 A Unified Approach

The Hulotte platform level is handled by the platform developer, who is respon-
sible for implementing the execution platform supporting the domain-specific
requirements specified by an annotated applicative architecture. As presented
in Section 2, the Hulotte platform is engineered with components. This ap-
proach brings two significant features: i) The platform developer benefits from an
architecture-oriented design space to implement with fine-grained reusable com-
ponents, the semantics of arbitrary complex domain-specific annotations. ii) Our
approach is based on an isomorphic component model used at application level,
as well as platform level, in a symmetric and unified way. The container model
on which the platform is built is generalized, defining composition rules and ar-
chitectural invariants as architectural patterns to specify the link between these
two architectural levels. As an example, Figure 4 depicts the component-based
container of the applicative component Data (specified in Figure 2). The internal
structure of this container implements the semantics of the domain-specific an-
notations attached to Data—i.e., @Reconfigurable, @LoggedCompAccess, and
@Protected component—using HPath expressions (4) and (5) given Table 1.
Throughout this Section, we rely on this Figure, which will therefore be detailed
step by step.

Architectural Patterns. The container architecture introduced in Figure 4
is systematically structured according to two architectural patterns [LMP+09].
First, we define the ChainComposite pattern as a composite component, whose

Figure 4: Component-based Architecture of a Container.

subcomponents are special components—interceptors. Within the ChainCompos-
ite pattern, the interceptor components are bound via their incoming and outgo-
ing interfaces (respectively named IN and OUT, see Figure 4), thus implementing
a pipes and filters architectural style.

Second, the ContainerComposite pattern—i.e., the container itself—is also
specified as a composite component. This pattern corresponds to the host in-
frastructure for the platform components implementing the domain-specific logic
required by the applicative components. This pattern is systematically applied
on each applicative component instances (either primitive, like for the Data com-
ponent in Figure 4, or composite) as follows:

1. A set of Controller components2 implementing various domain-specific ser-
vices and meta-data influencing the whole component (or component set,
e.g. life-cycle management, threading management) is composed in the con-
tainer. In addition to that, controllers can provide interfaces to allow an
access to these services from outside of the component.

2. For each interface of the applicative component, a ChainComposite pattern
is injected, implementing an interception chain, which will be applied over
incoming and outgoing invocations of the component. Interceptors and con-
trollers are bound together via bindings (so called a trap binding from a client

2 It should be noticed that we use the term controller to qualify services implemented
by the platform implemented by aspects, but controller, interceptor and applicative
components are isomorphic.

trap interface at interceptor side), thus allowing a centralized management
of strategies for the interception mechanisms.

The container composite pattern is used in the same way when applied to ap-
plicative bindings, but without managing a business logic (since at application
level, a binding is an abstract communication channel). In this case, incoming
and outgoing ChainComposites implement the logic of stub and skeleton proxies
deployed at client and server sides, respectively.

The Hulotte containers bring several advantages for engineering the plat-
form: i) They allow the inversion of control over the applicative components and
provide new interfaces to the environment to introspect/control them. ii) They
provide a full separation of concerns between applicative and platform compo-
nents. Moreover, the latter are encapsulated within a composite, acting as a host
structure for domain-specific concerns and limiting their scope of action to the
nested applicative components. Finally, iii) containers provide a structure for
which interceptor chains and platform components are fully specified as com-
ponent assemblies. Based on these Hulotte platform concepts, the following
sections detail how the platform developer specifies domain-specific concerns as
aspects woven on applicative architectures.

4.2 Aspect Weaving at the Platform Level

Within our approach, implementations of domain-specific concerns are architec-
ture-oriented. As illustrated in Figure 1, each domain-specific annotations are
implemented as component architectures by the platform developer. These plat-
form architectures are designed as aspects: they are implemented independently
for the base applicative architecture on which they will be woven, and indepen-
dently from each other in a modular way. The ContainerComposite pattern,
deployed around each applicative components and applicative bindings, is the
host infrastructure for weaving these aspects. Each aspect is designed as assem-
blies of interceptor and controller components. An advice therefore corresponds
to interceptors, which will be woven around applicative components (according
to the ChainComposite pattern composition rules) and bound to controllers via
trap bindings. The platform developer implements aspects using the Hulotte

architectural concepts and should then specify how they will be woven using the
join point model.

Join Point Model. At this abstraction level, the join points used by the
platform developer are the business interfaces of the applicative components.
Indeed, the base language on which our aspect framework relies is an applicative
architecture, abstracting the details of the underlying programming language
used to implement the components. Therefore, only the incoming or outgoing

operation calls crossing the component interfaces are relevant for advice specifi-
cations.

Pointcut Expression. A Hulotte pointcut expression (hpcexp) is divided
into two parts3. First, a keyword that specifies if the incoming calls (keyword
SERVER) or outgoing calls (keyword CLIENT) or both of them (no keyword) must
be selected. This compares to before, after, and around advices in AspectJ

terminology, but for a join point expressed as a component. Second, three regular
expressions separated by semicolons specifies which interface signature, name,
and operations must be matched, respectively (they rely on the java.util.regexp
package). These expressions are used by the platform developer to specify how
interceptor components should be woven around the business interfaces of ap-
plicative components, at the granularity of an interface and/or an operation
call.

To illustrate these points, the container infrastructure depicted in Figure 4
is obtained by weaving three aspects around the Data applicative component,
corresponding to the implementations of the domain-specific annotations @Re-

configurable, @LoggedCompAccess and @ProtectedComponent (the resulting
aspects woven are represented by shadowed areas in the Figure). We rely on
this example to explain precisely how these aspects are specified by the platform
developer and then woven by the Hulotte platform weaving process. Figure 6
gives relevant excerpts of aspects implementing the above mentioned annota-
tions using Hulotte-Adl. Let’s first focus on the @ProtectedComponent aspect
(lines 5--32). Basically, its semantics is close to a semaphore used in concurrent
programming: only a maximum number of parallel executing threads (maxval)
are allowed to execute operations provided by the component; if the maximum
is reached, new incoming calls are then queued. The two interceptor definitions
for this aspect begin lines 9--10 and 20--21. Note that in this example, anno-
tations are used to mark architectural artifacts with platform-specific concerns,
but directly within the ADL declarations and not via HPath expressions, as it
was mentioned earlier. For instance, the @Interceptor annotation takes a point-
cut expression as a first argument: line 9 specifies that component InProtect is
an interceptor that should be woven on each client interface whatever their sig-
natures/names/operations are (hpcexp="CLIENT *;*;*"). InProtect extends
interceptorType specified in lines 1--4 (the signatures of the interfaces IN and
OUT are variables known only at weaving time according to the advice business
interface).

Advice Implementation. Hulotte relies on generative techniques to cre-
ate the implementation of interceptor components. The basic way provided to
3
(CLIENT|SERVER|) [str reg exp] ; [str reg exp] ; [str reg exp]

the platform developer is to declaratively express within the aspect specification
how the operation calls to the trap interfaces are performed according to the ad-
vice business calls. These requirements are classical pointcut-advice mechanisms
around operation invocations and are specified by an annotation (WeaveTrap-
Operation). It specifies which operation of the trap interface should be invoked
and when—i.e., before or after the advice call. The signature of the trap in-
terface can syntactically reflect the platform services provided by the controller
component bound to it. This feature strengthens the symmetry between platform
and applicative layers since controllers can be handled as regular components
without being implemented knowing they will be used as aspects. Otherwise, our
approach supports also the case where the trap interface is based on an opera-
tion used to pass the reified original business invocation as a parameter. Finally,
more advanced generative tools are also provided to the platform developer for
generating arbitrary complex interceptor implementations independently from
the intercepted business interface signatures. However, describing these tools
exhaustively is out of the scope of this article.

To illustrate these features, let us consider again the ProtectedComponent
aspect woven around the component Data. It defines two interceptors for the
following reason: each applicative component’s incoming call should be trapped
in order to increment the semaphore counter before calling the component Data
and to decrement it after Data returns. However, the reverse policy is required
for outgoing calls from Data.

According to that, lines 11--18 express that the weaving task should gen-
erate the content of the InCProtect interceptor via the trap interface sem with
a call to the method acquire before the proceed and a call to release after
(the proceed denoting the business method call executed on the Data compo-
nent). The reverse policy is implemented by the OutGProtect interceptor. The
result of the weaving task is illustrated in Figure 4. The sequence diagram given
in Figure 5 represents the simplified behavior of the resulting container accord-
ing to an incoming invocation from its read interface. Notably, it clearly depicts
the message sequences implementing the logic of the ProtectedComponent aspect.

Aspects Weaving Process. For each applicative component, the Hulotte

platform weaver first generates a composite container used as a host infrastruc-
ture to weave the aspects implementing the domain-specific annotations: each
applicative instance is nested within a container and empty chainComposite
components are instantiated around their business interfaces (note that this
latter pattern is not explicitly handled by the platform developer within its as-
pect specifications). This process is illustrated in Figure 1 (step (3)). Then, for
each aspect specification, the weaving process (Figure 1, step 4) consists in gen-
erating interceptors, adding them within ChainComposites according to their

business logic

DataContainer
Composite

InC Lcc LCC LogI LoggingC
InC

Protect

Data
Component

OutG
Protect

ProtectedC
DataContainer

Composite

acquire()

release()

acquire()

release()

log()

log()

checkState()

domain-specific logic domain-specific logic

read() read()

read()

read()

read()

in
te

rc
ep

to
r

in
te

rc
ep

to
r

in
te

rc
ep

to
r

in
te

rc
ep

to
r compute()

acquire()

release()

acquire()

release()(

rea

in
te

rc
ep

to
r

nt
er

ce
pt

or

in
te

rc
ep

to
r

in
te

rc
ep

to
r

@Protected logic

Figure 5: Sequence Diagram of an Incoming Call (from the read interface) within
the container given Figure 4.

pointcut expressions, adding controller components to the container, and finally
setting their bindings. Aspects are simply stored within a component library
and identified by the platform developer by the @CompositeContainerAspect

annotation (e.g., lines 5, 33, and 47). The annotation parameters filled in by
the application developer are propagated to aspect specifications by the mean of
template parameters at ADL level. For instance, the parameter maxval filled in
Table 1(5) is propagated to its aspect specification as an attribute value of the
ProtectedC controller line 26 (while this template parameter is defined line 7).

There are several benefits when weaving component-based aspects on ap-
plicative components to modularize domain-specific concerns. First, aspects can
be woven according to the incoming and outgoing interaction points external-
ized by the base components, through explicitly defined and stable interfaces.
Second, the weaving process does not require the source code of the base com-
ponent, and aspects do not have dependencies on internal elements of the base
implementation. Moreover, the internal behavior of the base components is not
altered by the weaving process. Finally, dependencies between aspects and base
components can be explicitly captured at architectural level, as detailed in the
following section.

1 component interceptorType {
2 provides ${derived:BOUND -ITF -SIGN} as IN
3 requires ${derived:BOUND -ITF -SIGN} as OUT
4 }

5 @ContainerCompositeAspect
6 (implements="@ProtectedComponent")
7 component ProtectedAspect arguments (maxval) {
8 provides externPItf as extP
9 @Interceptor(hpcexp="CLIENT *;*;*", order="LIN -FOUT")

10 component InCProtect extends interceptorType {
11 @TrapInterface
12 @WeaveTrapOperation(trapweaveexp="acquire",
13 advice="before")
14 @WeaveTrapOperation(trapweaveexp="release",
15 advice="after")
16 requires semaphoreItf as sem
17 @GenerateBasicInterceptor
18 content InComingProtectImpl
19 }
20 @Interceptor(hpcexp="SERVER *;*;*", order="LIN -FOUT")
21 component OutGProtect extends interceptorType {...}
22 // protected−control l er instance
23 component ProtectedC {
24 provides semaphoreItf as sem
25 provides externPItf as extP
26 attributes int initval = ${maxval}
27 content ProtectedCImpl
28 }
29 binds this.extP to ProtectedC.extP
30 binds InProtect.sem to ProtectedC.sem
31 binds OutProtect.sem to ProtectedC.sem
32 }

33 @ContainerCompositeAspect
34 (implements="@LoggedCompAccess")
35 component LoggedCompAccessAspect arguments(hpcexp) {

37 @Singleton
38 component LoggingC {...}
39 @Interceptor(hpcexp=${hpcexp}, order="ANY")
40 component LogI extends interceptorType {
41 @TrapInterface
42 requires AOPAllianceItf as aopitf
43 content LoggingCImpl
44 }
45 binds LoggingIntercept. aopitf to LoggingC.aopitf
46 }

47 @ContainerCompositeAspect (implements="@Reconfigurable")
48 component ReconfigurableAspect {
49 // l i f e−cycle−control ler instance
50 component LCC {...}
51 // BC, Comp, NC, SC control lers ,
52 // interceptors , bindings
53 }

54 @ContainerCompositeAspect (implements="@AsyncBinding")
55 component AsyncBindingAspect {
56 @Interceptor (hpcexp="CLIENT *;*;*: void"
57 order="LIN -FOUT")
58 component stub {...}
59 @Interceptor (hpcexp="SERVER *;*;*: void"
60 order="LIN -FOUT")
61 component skeleton {...}
62 }

Figure 6: Aspects Excerpts Implementing the Domain-Specific Logic of an-
notations @ProtectedComponent, @LoggedCompAccess, @Reconfigurable and
@AsyncBinding using Hulotte-Adl.

4.3 Handling Dependencies between Aspects

AOP is a programming paradigm that increases modularity by allowing the sep-
aration of crosscutting concerns. However, a major well-known difficulty appears
at weaving time, since a composition of aspects can result in an inconsistent sys-
tem. Indeed, aspects may be incompatible or may be dependent on each others.
In this section, we present how these issues are handled at the application and
platform levels of the Hulotte framework (all these mechanisms have been
used within the two case-studies presented in Sections 6.1 and 6.2).

• Within our framework, mutual exclusion between domain-specific concerns
is ensured at applicative level by means of OCL constraints over instances of the
annotated applicative architectures (i.e, just after the weaving step 2 repre-
sented Figure 1), and checked automatically to guarantee that they are verified
before the platform weaving process. Moreover, we provide also the capability to
express constraints that implementations must fulfill at source code level before
weaving. These points are reported in details in [NL09].

• In our case, ordering of a stack of advices on a particular join point corre-
sponds to the execution order of interceptor components within the ChainCom-

posite patterns. Far from resolving this problem generally, we however provide
to the platform developer a way to specify basic ordering strategies over advice
weaving. Within the scope of a single aspect specification, relative orders can
be specified over several advice definitions. Moreover, two kinds of absolute or-
ders (meaning that they should be respected whatever other aspects are woven
by the weaving process) can be specified: FIN-LOUT or LIN-FOUT. The former
corresponds to an interceptor placed at the first position of a ChainComposite

for an incoming base interface and/or at the last position for an outgoing base
interface. The latter refers to the reverse policy. Examples of absolute orders are
given in Figure 6, lines 9, 20, and 39.

• In the case where platform components specified in different aspects need
to collaborate, we provide a feature to the platform developer called late-binding.
Such a binding is processed at the end of the container weaving process. It con-
sists in injecting dependencies between controllers when the source or target
controller has been added within the container by an another aspect. For ex-
ample, a relevant use-case of such a feature concerns a dependency between an
applicative component annotated with @ActivePeriodic and @Reconfigurable

annotations. Indeed, the former is implemented by a controller that periodically
executes the operation run of the interface java.lang.Runnable provided by
the applicative component. If the Reconfigurable aspect is also woven in this
component, the life-cycle controller it implements should be synchronized with
the periodic controller—i.e., the periodic activation is started/stopped when the
component is started/stopped from its life-cycle controller. This requirement is
depicted in Figure 7. At the end of the container weaving process, if these two

Reconfigurable and ActivePeriodic aspects have been woven, this late-binding
specification consists in adding a client interface typed by the PeriodicItf sig-
nature to the life-cycle controller (named LCC), then in weaving an invocation to
the operation startPeriodicAct at the end of the implementation of startComp
provided by the life-cycle controller, and finally in binding the two controllers.

1 @ContainerCompositeAspect (implements="@ActivePeriodic")
2 component ActivePeriodic {
3 component PeriodicC { provides PeriodicItf as periodicI}
4 @LateBinding (controllerNameDependency="LCC",
5 kind="export", trapweaveexp="startPeriodicAct",
6 hpcexp="SERVER *;*; startComp:void", advice="after")
7 @LateBinding (controllerNameDependency="LCC",
8 kind="export", trapweaveexp="stopPeriodicAct",
9 hpcexp="SERVER *;*; stopComp:void", advice="after")

10 binds ${derived:LATE -BINDING} to PeriodicC.periodicI
11 }

Figure 7: @ActivePeriodic Aspect, Excerpt Focused on Late-Binding.

• Finally, a relation between an applicative component and controller com-
ponents is not always bijective. In some case, controller instances are globally
shared by the whole application containers. To handle this requirement, our
component model supports component sharing, meaning that a single instance
of a component can be encapsulated by several composites. At design time, this
feature is specified using the @Singleton annotation as it is the case for the
LoggingC controller (cf. Figure 6, line 37).

5 Implementation

This section gives an insight of the basic parts of the Hulotte framework
implementation. It consists of three main units: i) The front-end processing the
IDL files4 and the description of an applicative architecture and its corresponding
HPath expressions stored in ADL files, ii) the middle-end implementing the
two-level weaving engines presented in Sections 3 and 4, and iii) the back-end
generating the code of the final execution infrastructure, which is afterwards
compiled by a classical Java compiler, as illustrated in Figure 1(5).

The framework relies on the Eclipse Modeling Framework (EMF) technol-
ogy [BSE+04]. EMF has been used to implement the Hulotte model introduced
in Section 2.2. The front-end is then in charge of parsing the IDL and ADL files
and of instantiating the corresponding EMF instances. It also instantiates an
EMF model of the primitive component implementations. The implementation
4 .java files in the context of this article.

model corresponds to the Java AST defined by SpoonEMF
5 and based on the

Spoon [PNP06] program transformation framework. The middle-end relies on
these two models (i.e. architecture and implementation models) to implement
the Hulotte weaving engines, and more specifically, the following points:

– It implements the constraints checker mentioned in Section 4.3 and based on
OCL rules specified over the EMF instances. Implementation details about
this feature is given in [NL09].

– It implements the late-bindings presented in Section 4.3. Indeed, a late-
binding consists in weaving operation calls in controller implementations.
This feature relies on the Spoon API to inject the required calls into imple-
mentation models of the controllers. The implementation models are then
pretty printed in order to obtain the transformed Java code.

– It generates the Java code of interceptor components. The generation pro-
cess is based on code templates taking three parameters as arguments: i)
the signature of the intercepted applicative interface, ii) the pointcut ex-
pression (hpcexp) attached to the interceptor definition, and iii) the list of
@WeaveTrapOperation required to generate trap calls. We also mentioned
more advanced tools providing by our framework for generating arbitrary
complex component implementations. They are defined as Hulotte plu-
gins taking as input introspectable interface definitions and which output
Java code according to them. The Java code produced by these plugins are
implemented by the platform developer, based on the Spoon API.

– And last but not least, it notifies the back-end to apply optional optimiza-
tions on the executable, which can be configured by the end-user.

According to the last point, the back-end generates by default an infrastruc-
ture for which dependency injections between components are handled by ded-
icated component factories, themselves generated by the back-end. This mech-
anism relies on proxy objects interposed on component interfaces, and is the
basic feature required to provide reflective and reconfigurable component-based
systems. However, it can notoriously impact on the performances—in terms
of memory footprint and execution time—of the deployed executable, all the
more as the platform is implemented by component architectures. Within the
back-end, we have introduced optimization heuristics in order to mitigate these
overheads. The heuristics focus on reducing interceptions in inter-component
communications and on merging implementations of architectural artifacts. The
merge algorithm consists in inlining, for instance, interceptors, controllers, and
applicative component implementations in a single Java class. A detailed de-
scription of the heuristics provided by our framework is out of the scope of this
5 Available from http://tinyurl.com/spoon-emf09

article, we refer the interested reader to [PLMS08]. These optimization features
can be specified as Hulotte’s annotations by the application developer.

Finally, Hulotte is coupled to basic editing tools provided by the EMF
framework. These tools can be used by the application developer to visualize
the annotated architecture resulting from the annotations weaving process (i.e.,
after the weaving step illustrated in Figure 1(2)). It allows her/him to check if
the pointcuts captured by the queries have correctly matched the architectural
artifacts, and eventually to debug them. Since the same language (Hulotte-

Adl) is used at platform level, the final architecture can also be edited by these
tools (i.e., after the platform weaving process, Figure 1(4)), to verify if aspects
have been correctly woven into each containers.

6 Evaluation

In this section, we evaluate our approach on two case studies. The first is related
to real-time and embedded applications, while the second refers to the context-
aware middleware domain.

6.1 A Framework for Real-Time Java based Systems

Application-level Overview. Hulotte has been experimented in the design
of a component-based framework for RTSJ-based real-time and embedded sys-
tems [PLMS08]. The Real-Time Specification for Java (RTSJ) [BGB+00] is a
specification for development of predictable real-time Java-based applications.
Among many constructs, which mainly pose special requirements on the under-
lying JVM, two new programming concepts were introduced: i) real-time threads
(RealTimeThread, NoHeapRealTimeThread) that have precise scheduling seman-
tics, and ii) special types of memory areas (ScopedMemory, ImmortalMemory),
which are outside the scope of action of the garbage collector to ensure pre-
dictable memory access among the objects where they are allocated. RTSJ in-
troduces a non-intuitive and difficult-to-take-in-hand programming model and
imposes several rules on the software composition process.

Table 2 sums up the main architectural annotations provided to the appli-
cation developer to mark its applicative architecture. They provide the ability
to specify the multi-task and concurrent nature of the application according
to RTSJ concepts. An active component represents various execution concepts
enforced by RTSJ—non real-time, real-time, and non-heap real-time. The se-
mantics of such a component is the one of a monitor controlling the execution
of the business operations it provides. It is attached to its own thread of con-
trol (or pool of threads), activated periodically or sporadically—i.e., triggered
by incoming invocations. @MemoryArea expresses the allocation contexts of the
components—heap, scoped, and immortal memory.

Table 2: RTSJ-Specific Hulotte Annotations.

Annotation Parameters

@ActivePeriodic threadkind, period, priority, maxiter
@ActiveSporadic threadkind, priority, threadpoolsize
@MemoryArea memkind, memsize
@AsyncBinding –
@ProtectedComponent maxval

Platform-level Overview. Each annotation is implemented by aspects as
described in Section 4.2. The controller implementations rely on the RTSJ API
and its library (Priority Scheduling, High-resolution Timers, Wait-Free Queues,
and Memory Contexts). An aspect has been also implemented to support cross-
scope communication, since RTSJ imposes the use of code patterns [PFHV04] to
pass values back and forth across the boundaries formed by memory areas. This
aspect consists of interceptor components, generated according to the interfaces
involved in a binding between components allocated in different areas.

Application Scenario. To apply our domain-specific framework, we have
reengineered a large application: the Real-Time Collision Detector (RCD) pre-
sented in [KHP+09]. The RCD algorithm is about 2.3KLoc and its task is to
proceed a periodic stream of aircraft positions and determine if any of these
aircrafts are on a collision course. The original object-oriented implementation
has been reengineered as a Hulotte architecture composed of about ten ap-
plicative components. The main part of the algorithm is periodically executed
by a non-heap real-time ActivePeriodic component and processed by com-
ponents allocated in immortal and scoped areas according to its requirements.
The environment is simulated by a non-real time ActivePeriodic component
and interactions between real-time and non real-time parts of the application is
ensured by a ProtectedComponent. The results from each algorithm iteration
are asynchronously transferred to an ActiveSporadic component. The result-
ing platform produced by the Hulotte weaving process for this application
scenario is about 2.5K generated Loc.

6.2 SPACES: A RESTful Context Dissemination Framework

Application-level Overview. SPACES is a RESTful middleware solution for
the flexible dissemination of context information. In particular, SPACES pro-
poses to distribute context information in ubiquitous computing environments
by combining the principles of REpresentational State Transfer (REST) and
the COntext entitieS coMpositiOn and Sharing (COSMOS) context framework
[CRS07, RCS08]. By combining COSMOS and REST, SPACES therefore in-

tends to provide Context as a Service and to enable the efficient distribution of
context information among heterogeneous devices.

Weaving Context Processing Concerns. In COSMOS, context policies
are hierarchically decomposed into fine-grained units called context nodes. A
context node refers to context information controlled by a software component.
A Context policy refers to a hierarchical composition of context nodes reflect-
ing the inference of a specific context information. Context nodes leaves (the
bottom-most elements, with no descendants) encapsulate raw context data ob-
tained from collectors, such as operating system probes, sensors near the device,
and user preferences in profiles. Intermediate context nodes are context opera-
tors used to process the context information collected from the lower layers in
order to compute an high-level context information. The efficiency of the con-
text policy processing can be improved by tuning the following context node
properties. Active/Passive: An active node is associated with a thread of con-
trol, while a passive node obtains context information upon demand. Typical
examples of active nodes include a node in charge of the centralization of several
types of context information, a node responsible for the periodic computation of
higher-level context information, and a node to provide the latter information
to upper nodes. Observation/Notification: Communication into a context
node’s hierarchy can be top-down or bottom-up. The former—implemented by
the interface Pull—corresponds to observations that a parent node triggers.
The latter—realized by the interface Push—corresponds to notifications that
context nodes send to their parents. Pass-through/Blocking: Pass-through
nodes propagate observations and notifications while blocking nodes stop the
traversal. For observations, COSMOS transmits the most up-to-date context in-
formation without polling child nodes. For notifications, COSMOS uses context
data to update the node’s state, but it does not notify parent nodes.

Table 3: Context Processing Hulotte Annotations.

Annotation Parameter

@Active period: Integer
@Notification policy: {sequential or parallel}
@Blocking static: {true or false}

Table 3 summarizes the Hulotte annotations associated to the COSMOS
parameters. By default, context nodes are configured as passive, observable,
and pass-through. The Hulotte annotations are therefore used to refine the
configuration of the marked context nodes.

Weaving Context Distribution Concerns. REpresentational State Trans-
fer (REST) is a resource-oriented software architecture style for building Internet-
scale distributed applications [Fie00]. Typically, the REST triangle defines the
principles for encoding (content types), addressing (nouns), and accessing (verbs)
a collection of resources using Internet standards. Resources, which are central to
REST, are uniquely addressable using a universal syntax (e.g., a URL in HTTP)
and share a uniform interface for the transfer of application states between client
and server (e.g., GET/POST/PUT/DELETE in HTTP). REST resources may typi-
cally exhibit multiple typed representations using—for example—XML, JSON,
YAML, or plain text documents. Thus, RESTful systems are loosely-coupled
systems following these principles to exchange application states as resource
representations. This kind of stateless interactions is particularly interesting in
the context of SPACES since it improves the resources consumption and the
scalability of the system.

Table 4: Context Distribution Hulotte Annotations.

Annotation Parameter

@Host identifier: Uniform Resource Identifier
@Provider type: MIME Type[]

Table 4 summarizes the Hulotte annotations associated to the REST pa-
rameters. The Hulotte annotations are used to describe the distribution of
context nodes among the physical devices considered in the environment. In
SPACES, REST contextual resources are described by the following parameters:
Host points to a physical device described using the Uniform Resource Iden-
tifier (URI) format (e.g., http://device.inria.fr:8080). Therefore, context
identifiers include a communication scheme, a server address, a context path,
and a sequence of request parameters: scheme://context-server/context-

path?request-parameters. Provider refers to the different representations,
designed by their MIME media types classification [IAN07], under which a REST
resource can be retrieved. In particular, SPACES promotes the Java object se-
rialization as the default resource representation (application/octet-stream)
for performance concerns. Nevertheless, SPACES provides also representations of
context resources as XML (application/xml) and JSON (application/json)
documents.

Platform-level Overview. The platform level of SPACES is implemented
using the Scala programming language [OSV08]. Specifically, the mechanism of
trait provided by Scala enables SPACES to support a modular implementation
of the container controllers and interceptors. Therefore, the context processing

and distribution concerns are implemented as specific traits, which are combined
in order to implement SPACES controllers and interceptors.

In this context, Hulotte serves as a weaving framework that selects the
SPACES traits according to the annotated applicative architecture describing
the context policy and mixes them into the component containers according
to a particular weaving strategy (e.g., optimization level). Figure 8 depicts an
example of component-based container hosting a context node and generated by
the Hulotte framework from the annotated description of a SPACES context
policy. For each context node, 2.3KLoc are generated by the weaving process,
and the whole code imported via singleton components (implemented within a
library and used by SPACES containers) is about 9KLoc.

Local
Observations

Local
Notifications

Remote
Observations

Remote
Notifications

Local
Observations

Local
Notifications

Remote
Observations
Remote
Notifications

Context
Node

pull

push pull

push
GET

PUT

ASync

Blocking

Async

Scheduler
Web

Server Memory
Thread

Pool

Web Client

Activity

Provider

Actor

PUT

GET

Web
Server

MemoryPUT singleton
controller

container
controller

container
interceptor

chain
composite

Blocking

Legend

Figure 8: Component-based Architecture of a SPACES Generated Container.

6.3 Evaluation Synthesis, Discussions and Lessons Learned

When developing the two case studies, we witnessed many benefits of our ap-
proach that we present in the following, and discuss their limitations before a
comparison with existing ones in Section 7.

Relying on Concise Annotations for Specifying Domain-Specific Con-

cerns. Hulotte allows us to define domain-specific component-based frame-
works addressing the challenges of RTSJ-based software development and these
of a RESTful context middleware for which dedicated execution and communi-
cation models are supported. Therefore, the way annotations are used at appli-
cation level is not a curb on expression complex domain-specific concerns.

The features provided by HPath make use of convenient queries to easily
adapt annotations (and their parameters), which will be woven. HPath provides
a rich expression power, the variety of navigation axis it offers allows to capture
precise pointcuts over the architecture artifacts. Even if the examples of queries
presented in Table 1 might appear complex to the reader, the fact remains that
the use of HPath is straightforward since it is based on the component model’s
artefacts to navigate through the applicative architecture. However, we can men-
tion a drawback arising in using HPath. In minor cases, the use of queries can
turn out to be more verbose than annotations manually set into the architec-
ture. This is typically the case when the same annotation should be woven with
different parameters, which must be specified by multiple queries.

Finally, if the semantics attached to the annotations is well documented, we
believe that the learning curve for application developers is equivalent when using
our approach compared to the one required to take domain-specific component
models in hand.
Improving Separation of Concerns. The HPath queries allow to specify
the annotations in a completely uncoupled way from the architecture’s specifi-
cations, without polluting the latter. Moreover the queries can be expressed in
a centralized way (e.g. at the end of the top-level component’s ADL file).

In the general case, relying on annotations enforces separation of concerns
between the business and domain-specific logics, the latter being externalized at
the architectural level with well-defined semantics, emphasizing on the problem
domain. Moreover, this feature allows the support of tools reasoning on high-level
perspectives of the application, rather than source code implementations, and
conducting domain-specific analysis of the system. For instance, we proposed
a validation framework [Pls09] to check the compliance with RTSJ based on
annotated architectures.

This separation of concerns occurs also at code level since domain-specific
code is implemented by the Hulotte platform, rather than buried and tangled
within the business classes, and the composition process of platform components
is established without any dependency on the internal elements of the applica-
tive code. As a consequence, the business code implementing the components
becomes more readable and maintainable—reflecting the functional needs of the
application without any constraints imposed for instance, by RTSJ or RESTful
context middleware. Moreover, the domain-specific code handled by the plat-
form alleviates drastically the burden on the application developer, since from
one application to another, implementing these concerns is a redundant, time-
consuming, and error-prone task.
Exploiting CBSE at Platform Level. When considering the experiments we
have conducted using Hulotte, the large majority of the domain-specific anno-
tations are implemented as component architectures, which validate our proposal

of using the component paradigm at platform level. However, this design choice
has a limitation, in particular considering these two following issues: i) At a
stage within the Hulotte compilation flow, architecture transformations are
required to implement the distribution concern, since a standalone executable is
generated on each physical distributed node. ii) As presented in Section 6.1, a
memory allocation concern has been considered for applicative components. A
minor part of its implementation impacts on a process of Hulotte: the gen-
eration of the component factories in order to control the instantiation of these
components. These two points can not be implemented as component architec-
tures woven into containers but are instead implemented using specific extension
points defined within the Hulotte compilation flow. However, their descriptions
are out of the scope of this article.

We can also highlight the benefits raised by our approach from the aspect
paradigm point of view. First, the platform components are exclusively woven ac-
cording to the well defined interfaces of the applicative components. It simplifies
greatly the implementation of advices, compared to classical code-centric AOP
approaches, the latter relying on many low-level constructs from the base pro-
gramming language on which aspects are woven (e.g. method declarations and
calls, field access, etc.). Moreover, composition between platform and applica-
tive components does not distort the applicative code, since the latter remains
totally unchanged after the weaving process.
Handling Dependencies between Aspects. Our framework provides the Ob-
ject Constraint Language (OCL) support used by the platform developer i.e., the
domain expert, to express the constraints between annotations [NL09]. These
constraints are automatically checked at application level once the annotations
weaving process is completed. This is of great help for the application developer,
giving him a feedback on using annotations in a consistent way. We have success-
fully applied the OCL support on several constraints imposed by annotations of
both case-studies.

The notion of component sharing introduced in Section 4.3—widely used for
designing the RESTful context middleware—allows to preserve a strong encap-
sulation of the components nested within composite containers, while sharing
between them built-in middleware services. The notion of late binding was also
used within the two case-studies according to the use-case presented in Sec-
tion 4.3 (for synchronizing life-cycle controllers of active components). Even if
late bindings are quite complex to define, nevertheless, we believe that they pro-
vide an interesting feature for defining component interactions without any code
modification for the developer.
Towards more Flexibility and Reuse. The use of concise annotations at
architectural level introduces flexibility and configurability in the application
design process with regard to domain-specific concerns. First, annotations pa-

rameters ease the configuration of platform-level components. For instance, the
developer can simply specify and change a priority, a period of a thread man-
aged by the platform, or the size of an RTSJ memory area thanks to parame-
ters attached to their annotations. The propagation of these information from
application-level annotations to platform-level aspect implementations is auto-
matically handled by the platform weaving process by mean of ADL template
parameters (see Section 4.2, page 16). Second, the strong decoupling between an-
notations and architectural artefacts provides a straightforward way for adapting
the execution contexts of applicative components. For instance, according to the
two presented case-studies, we are able to easily change the internal concurrency
of the Real-Time Collision Detector (by changing the way components are exe-
cuted and synchronized), to change the component allocations within different
memory areas, or to adapt the deployment policy of a context node. When using
HPath, all these platform adaptations are conducted by the developer by simple
modifications of the queries centralized in Hulotte-Adl files.

Our approach improves reuse of platform components since they are specified
as regular components without being implemented knowing they will be used as
aspects. It was typically the case of the singleton components used to imple-
ment SPACES containers. Indeed, more than 9KLines of componentized code
were incorporated by the Hulotte process imported from component libraries
provided outside the scope of our case-study. Interceptor components are also
fully reusable units from one aspect to another since they are implemented (and
generated) independently of applicative component specifications on which they
will be woven.

We have also conducted an experiment related to the reconfigurable aspect
presented in Section 4. It was initially implemented to provide full architecture
introspection and reconfiguration capabilities at runtime and was successfully
applied in the context of our two case-studies. Moreover, from its initial imple-
mentation, we have derived several aspects, each of them providing a subset of
these capabilities, e.g., for providing only minimal introspection features when
reconfiguration is not required at runtime. This experiment has highlighted the
benefits brought by the use of architectures within aspect implementations where
fine-grained platform components are easily reusable as advices. Finally, we are
currently implementing a connection between the RTSJ concerns and the REST-
ful context concerns. We will therefore provide an RTSJ-based implementation
of SPACES to ensure predictability over context node executions, reusing an
already implemented Hulotte distributed aspect [MPL+08] based on Real-

Time CORBA.
Performance Issues. Finally, in [PLMS08], we have performed a quantita-
tive evaluation demonstrating the efficiency of the optimizations presented in
Section 5 over component-based containers. Indeed, the impact over the perfor-

mances are null when platform component implementations are merged within
the business code, compared to a reference application where domain-specific
concerns are implemented by the application developer. These results show that
the weaving process promoted in this article, based on high-level abstractions,
does not impact on the performances when component reification at runtime is
not required.

7 Related work

Specializing Architectural Artifacts with Annotations. In programming
languages, the use of annotations is widely applied to specialize their basic con-
structs. However, to the best of our knowledge, only the Think ADL [LNB09]
and UML2 [OMG07] exploits this feature to specialize architectural constructs.
Within Think ADL, a set of flexibility-oriented annotations are provided to the
application developer allowing to generate, for the same architecture, a set of
systems with different flexibility capabilities. Furthermore, Think shares with
our approach the capability to express these annotations in a uncoupled way
from the base architecture using AOP techniques [LNB09]. However, these an-
notations are limited to expression of flexibility degrees required by components
at runtime and do not address other extra-functional concerns. The pointcut lan-
guage provided for annotations weaving is based on pattern-matching rules over
architectural artifacts names, but it does not allow to capture more precisely the
base artifacts as it is the case with HPath queries. In turn, UML2 defines the
composite structure diagram for specifying software architectures, and introduces
the notion of profiles [FV04]. The latter is the built-in lightweight mechanism
that serves to customize UML artifacts for a specific domain or purpose via
stereotypes. Thus, the latter could be used to extend the semantics of the com-
posite structure diagram artifacts. Our approach share with UML the notion of
annotation, close to the one of a stereotype.

Aspect Weaving for EJB Component. JBoss AOP6 and Spring AOP7

(and JAsCo [SVJ03] based on Java Beans) are Java frameworks for AOP. When
applied to application servers, aspects are woven to EJB components. We can put
forward two main differences with Hulotte. First, EJB’s are basically deploy-
ment units and not composition units which reify their dependencies allowing to
specify the application as an architecture. Therefore, advices can not be specified
according to high-level architectural constructs, and the base language remains
code-centered. Second, aspects are implemented as plain Java classes whereas
Hulotte implements them as an architecture.

Symmetric Approaches: Aspects as Components. FuseJ [SFV06],
CAM-DAOP [PFT05], and FAC [PSCD06], are approaches sharing the goal of
6 JBossAOP: http://jboss.org/jbossaop
7

Spring AOP: http://www.springsource.org

reifying aspects as first class entities in the component based programming
model. The first defines its own ADL by introducing the concepts of gate and
connector, while the second and the third identify the concepts of component
and aspect. In particular, FAC is based on Fractal [BCL+06], which has itself
inspired Hulotte. A distinction is made in these three approaches between clas-
sical component and aspect-oriented interactions. The former is similar to the
notion of applicative binding and the latter allows defining around advices (so
called aspect bindings in FAC). Aspect-oriented interactions, intercepted from
operations externalized at component level, allow—by means of Plain Old Java
Objects (POJO) interceptors—the delegation of a behavior implemented itself by
a component, realizing this symmetric aspect/component architecture. However,
in both approaches, the weaving process results in a flatten architecture where
applicative and aspect components are composed at the same level, whereas Hu-

lotte exploits the notion of container. The same distinction with our proposal
can be made with the AO component and composition model defined by the
AOSD-Europe project [Pro08]. Moreover, compared to these three approaches,
Hulotte adds the capability to advice applicative bindings, a required feature
to support implementations of specific communication schemes between com-
ponents. Furthermore, Hulotte provides a deeper insight of the aspect weav-
ing impact by reflecting the woven advices within the component containers as
domain-specific components.

Extensible Container-Based Approaches. Even if component containers
are a key part of mainstream component frameworks such as EJB, they support
a predefined and non extensible set of extra-functional services. On the contrary,
the PIN component model [Mor06] is based on generative techniques to produce
custom containers encompassing component interactions (stubs and skeletons
generation) and implementing extra-functional concerns. This approach shares
also with Hulotte a strong separation of concerns between the containers logic
and those of applicative components. Despite of these similarities, the work pre-
sented in this article differs from theirs in that they propose the use of As-

pectC++ and template meta-programming for generating containers, the weav-
ing process is then code-oriented whereas our solution abstracts it at architec-
tural level. In this aspect, Asbaco [MB05] and AoKell [SPDC06] are aligned
with the approach in this article because both rely on containers engineered as
a component-based architectures. However, with Asbaco, integrating platform
and applicative components is performed with load-time mixin technique based
on a bytecode engineering library, resulting in an infrastructure where both lev-
els are tangled, contrary to our approach. Moreover, we believe that, with this
technique, it becomes quite difficult to ensure traceability—required for evo-
lution purposes—between the final infrastructure built by the weaving process
and the starting applicative and platform architectures. Indeed, in our approach,

the final infrastructure is fully specified as an architecture thanks to the use of
architectural patterns. On the contrary, AoKell preserves the platform archi-
tecture but suffers from the same drawback since the integration between the
two levels is based on AspectJ. Finally, these two last approaches do not rely on
aspect weaving within their containers for integrating extra-functional concerns
implemented in a modular way and independently from each other.

Aspect-Oriented Architecture Description Languages. AO-ADL
[PF07], AspectualACME [GCB+06], or AspectLEDA [MTM09] generally pro-
pose to integrate aspects as first class entities in legacy ADLs. The objective of
these extensions is to design and reflect crosscutting concerns as aspect connec-
tors (or aspect coordinators) within the software architectures. These connectors
wire business artefacts and intercept the communications in order to inject the
crosscutting artefacts. Unlike these approaches, the integration of Hulotte dif-
fers with respect to several issues. First of all, Hulotte adopts a two-steps
approach in order to weave crosscutting concerns, where domain-specific anno-
tations are first attached to the architecture artefacts. The use of domain-specific
annotations supports both the interception and the injection of crosscutting con-
cerns within business components. Thanks to these architectural annotations,
conflicts can be detected by observing the annotations attached to the architec-
ture. Next, the injection technique used by Hulotte consumes the architectural
annotations and exploits code generation and optimization algorithms in order
to reduce the run-time overhead. In particular, Hulotte exploits the concept
of component container to isolate the crosscutting concerns and thus provide
a clear separation between business and technical concerns. These crosscutting
concerns are reflected at run-time as components, which can be dynamically in-
trospected and reconfigured. Finally, Hulotte defines also a pointcut language,
named HPath, which can be used to weave aspects a posteriori by selecting a
set of architecture artefacts to be modified.

8 Conclusion

The research activities presented in this article aim at exploring trails on a unified
approach, for which the architectural concepts, methodologies, and principles
used to implement the variety of existing Domain-Specific Component Frame-
works can be factorized. Our goals are to improve reuse, both at application
and platform levels, and to propose more flexible solutions for deploying compo-
nents in heterogeneous execution contexts depending on the targeted application
domains.

In this context, this article reports on the Hulotte framework, which relies
on using AOP principles at two CBSE levels. First, at the application level, rely-
ing on a join point language whose expression capabilities allow the application

developer to specialize, by means of domain-specific annotations, its business
architectures. Software architectures provide appropriate high-level abstractions
of the system—components, their interactions, their compositions—to specify
domain-specific execution, communication, or allocation models. Moreover, the
uncoupling between the annotations expression and the base architectures on
which they will be woven allows the developer to qualify and adapt the domain-
specific concerns in a highly flexible way.

Second, at the platform level, where domain-specific annotations are imple-
mented by aspects as fine-grained component assemblies in a symmetric and uni-
fied way. Advices are expressed according to the external incoming and outgoing
interaction points specified at architectural level by the base applicative compo-
nents. The weaving process relies on containers deployed on the base applicative
architectures, and defining the composition rules between the applicative and
the aspect components. This process corresponds to an incremental refinement
of the platform where aspects can be injected and composed to generate ded-
icated containers fitting the domain-specific requirements of the application,
while preserving the traceability and a full separation of concerns between these
two levels.

Our approach has been validated and has shown its benefits on two case stud-
ies addressing real-time embedded applications and the domain of distributed
context middleware. It has however a limitation such as the impossibility to
completely implement some parts of domain-specific concerns as component ar-
chitectures. Even if this point is currently handled programmatically by specific
extension points of the Hulotte framework, an open issue is to specify these
requirements as code-centric aspects. Another issue is related to the support
of dynamic weaving of the platform components at runtime. This is a typical
domain-specific concern, which can be implemented by a Hulotte aspect.

Acknowledgment

This work was supported by Ministry of Higher Education and Research, Nord-
Pas de Calais Regional Council and FEDER through the “Contrat de Projets
Etat Region” (CPER) 2007-2013 and by the french Minalogic Mind project8.

References

[aos] Aspect-oriented Software Development web site. http://aosd.net;.
[BCL+06] Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., and Stefani, J.-B.:

The Fractal Component Model and its Support in Java: Experiences
with Auto-adaptive and Reconfigurable Systems; Software Practice & Ex-
perience, 36(11–12):1257–1284, 2006.

8 http://mind.ow2.org

[BGB+00] Bollela, G., Gosling, J., Brosgol, B., Dibble, P., Furr, S., and Turnbull, M.:
The Real-Time Specification for Java Addison-Wesley, 2000.

[BHM09] Bureš, T., Hnětynka, P., and Malohlava, M.: Using a Product Line for Cre-
ating Component Systems; In Int. Symp. on Applied Computing (SAC’09),
pages 501–508. ACM, 2009.

[BSE+04] Budinsky, F., Steinberg, D., Ellersick, R., Merks, E., Brodsky, S., and
Grose, T.: Eclipse Modeling Framework Addison-Wesley, 2004.

[CHP06] Carlson, J., Haakansson, J., and Pettersson, P.: SaveCCM: An Analysable
Component Model for Real-Time Systems; In 2nd Workshop on Formal
Aspects of Components Software (FACS’05), volume 160 of ENTCS, pages
127–140, 2006.

[CL02] Crnkovic, I. and Larsson, S.: Building Reliable Component-based Systems
Addison-Wesley Professional, 2002.

[Cle02] Clemens Szyperski: Component Software: Beyond Object-Oriented Pro-
gramming, 2nd ed. Addison-Wesley, 2002.

[CRS07] Conan, D., Rouvoy, R., and Seinturier, L.: Scalable Processing of Context
Information with COSMOS; In 7th IFIP Int. Conf. on Distributed Appli-
cations and Interoperable Systems (DAIS’07), volume 4531 of LNCS, pages
210–224. Springer, June 2007.

[DHT01] Dashofy, E. M., Hoek, A. V. d., and Taylor, R. N.: A Highly-Extensible,
XML-Based Architecture Description Language; In Working Conf. on
Software Architecture (WICSA’01), page 103. IEEE, 2001.

[DLLC09] David, P.-C., Ledoux, T., Léger, M., and Coupaye, T.: FPath and FScript:
Language Support for Navigation and Reliable Reconfiguration of Frac-

tal Architectures; Annales des Télécommunications, 64(1–2):45–63, 2009.
[Fie00] Fielding, R. T.: Architectural Styles and the Design of Network-based Soft-

ware Architectures PhD thesis, University of California, Irvine, 2000.
[FV04] Fuentes, L. and Vallecillo, A.: An Introduction to UML Profiles; In UP-

GRADE, The European Journal for the Informatics Professional, pages
5–13, April 2004.

[GCB+06] Garcia, A., Chavez, C., Batista, T. V., Sant’Anna, C., Kulesza, U., Rashid,
A., and de Lucena, C. J. P.: On the Modular Representation of Architec-
tural Aspects; In Gruhn, V. and Oquendo, F., editors, Proceedings of the
3rd European Workshop on Software Architecture (EWSA), volume 4344
of Lecture Notes in Computer Science, pages 82–97. Springer, September
2006.

[IAN07] IANA: MIME Media Types; http://www.iana.org/assignments/media-
types, March 2007.

[KHP+09] Kalibera, T., Hagelberg, J., Pizlo, F., Pľsek, A., Titzer, B., and Vitek, J.:
CDx: A Family of Real-time Java Benchmarks; In 7th Int. Workshop on
Java Technologies for Real-time and Embedded Systems (JTRES’09), 2009.

[LMP+09] Loiret, F., Malohlava, M., Pľsek, A., Merle, P., and Seinturier, L.: Con-
structing Domain-Specific Component Frameworks through Architecture
Refinement; In 35th Euromicro Conf. on Software Engineering and Ad-
vanced Applications (SEAA’09), pages 375–382, August 2009.

[LNB09] Lobry, O., Navas, J., and Babau, J.-P.: Optimizing Component-Based
Embedded Software; Int. Conf. on Computer Software and Applications,
2:491–496, 2009.

[LNBL09] Loiret, F., Navas, J., Babau, J.-P., and Lobry, O.: Component-Based Real-
Time Operating System for Embedded Applications; In 12th Int. Symp.
on Component-Based Software Engineering (CBSE’09), LNCS, pages 209–
226. Springer, June 2009.

[LT09] Lau, K.-K. and Taweel, F.: Domain-Specific Software Component Models;
In Lewis, G., Poernomo, I., and Hofmeister, C., editors, Proc. 12th Int.

Symp. on Component-based Software Engineering, LNCS 5582, pages 19–
35. Springer-Verlag, 2009.

[LW07] Lau, K.-K. and Wang, Z.: Software Component Models; IEEE Transac-
tions on Software Engineering, 33(10):709–724, 2007.

[MB05] Mencl, V. and Bures, T.: Microcomponent-Based Component Controllers:
A Foundation for Component Aspects; Asia-Pacific Software Engineering
Conf., 0:729–737, 2005.

[Mor06] Moreno, G. A.: Creating Custom Containers with Generative Techniques;
In 5th Int. Conf. on Generative Programming and Component Engineering
(GPCE’06), pages 29–38. ACM, 2006.

[MPL+08] Malohlava, M., Pľsek, A., Loiret, F., Merle, P., and Seinturier, L.: Intro-
ducing Distribution into a RTSJ-based Component Framework; In 2nd
Junior Researcher Workshop on Real-Time Computing, October 2008.

[MTM09] Mart́ınez, A. N., Toledano, M. Á. P., and Murillo, J. M.: An ADL deal-
ing with aspects at software architecture stage; Information & Software
Technology, 51(2):306–324, 2009.

[NL09] Noguera, C. and Loiret, F.: Checking Architectural and Implementation
Constraints for Domain-Specific Component Frameworks using Models; In
35th Euromicro Conf. on Software Engineering and Advanced Applications
(SEAA’09), pages 125–132, August 2009.

[OMG07] OMG: Object Management Group: Unified Modeling Language – Super-
structure Version 2.1.1;, 2007.

[OSV08] Odersky, M., Spoon, L., and Venners, B.: Programming in Scala Artima,
2008.

[PF07] Pinto, M. and Fuentes, L.: AO-ADL: an ADL for describing aspect-
oriented architectures; In Proceedings of the 10th international conference
on Early aspects, pages 94–114, Berlin, Heidelberg, 2007. Springer-Verlag.

[PFHV04] Pizlo, F., Fox, J. M., Holmes, D., and Vitek, J.: Real-Time Java Scoped
Memory: Design Patterns and Semantics; In 7th Int. Symp. on Object-
Oriented Real-Time Distributed Computing (ISORC’04), pages 101–110.
IEEE, 2004.

[PFT05] Pinto, M., Fuentes, L., and Troya, J. M.: A dynamic component and
aspect-oriented platform; Comput. J., 48(4):401–420, 2005.

[PLMS08] Pľsek, A., Loiret, F., Merle, P., and Seinturier, L.: A Component Frame-
work for Java-based Real-time Embedded Systems; In 9th Int. Conf. on
Middleware (Middleware’08), December 2008.

[Pls09] Plsek, A.: SOLEIL: An Integrated Approach for Designing and Developing
Component-based Real-time Java Systems Phd thesis, USTL, September
2009.

[PNP06] Pawlak, R., Noguera, C., and Petitprez, N.: Spoon: Program Analysis and
Transformation in Java; Technical Report 5901, INRIA, 2006.

[Pro08] Project, A.-E.: Reference Architecture v3.0;, 2008 http://www.aosd-
europe.net/deliverables/d103.pdf.

[PSCD06] Pessemier, N., Seinturier, L., Coupaye, T., and Duchien, L.: A Model for
Developing Component-based and Aspect-oriented Systems; In 5th Int.
Symp. on Software Composition (SC’06), volume 4089 of LNCS, pages
259–273. Springer, March 2006.

[RCS08] Rouvoy, R., Conan, D., and Seinturier, L.: Software Architecture Pat-
terns for a Context-Processing Middleware Framework; IEEE Distributed
Systems Online (DSO), 9(6), June 2008.

[SFV06] Suvée, D., Fraine, B. D., and Vanderperren, W.: A Symmetric and Uni-
fied Approach Towards Combining Aspect-Oriented and Component-Based
Software Development; In 9th Int. Symp. on Component-Based Software
Engineering (CBSE’06), LNCS, pages 114–122. Springer, 2006.

[SK04] Störzer, M. and Koppen, C.: PCDiff: Attacking the Fragile Pointcut Prob-
lem, Abstract; In European Interactive Workshop on Aspects in Software,
Berlin, Germany, September 2004.

[SMF+09] Seinturier, L., Merle, P., Fournier, D., Dolet, N., Schiavoni, V., and Stefani,
J.-B.: Reconfigurable SCA Applications with the FraSCAti Platform; In
6th IEEE International Conference on Service Computing (SCC’09), pages
268–275. IEEE, September 2009.

[SPDC06] Seinturier, L., Pessemier, N., Duchien, L., and Coupaye, T.: A Compo-
nent Model Engineered with Components and Aspects; In 9th Int. Symp.
on Component-Based Software Engineering (CBSE’06), volume 4063 of
LNCS, pages 139–153. Springer, 2006.

[SVB+08] Sentilles, S., Vulgarakis, A., Bures, T., Carlson, J., and Crnkovic, I.: A
Component Model for Control-Intensive Distributed Embedded Systems;
In 11th Int. Symp. on Component-Based Software Engineering (CBSE’08),
2008.

[SVJ03] Suvée, D., Vanderperren, W., and Jonckers, V.: Jasco: an aspect-oriented
approach tailored for component based software development; In AOSD
’03: Proceedings of the 2nd international conference on Aspect-oriented
software development, pages 21–29, New York, NY, USA, 2003. ACM.

