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Abstract

Video inpainting consists in recovering the missing or corrupted parts of an image sequence so that the recon-

structed sequence looks natural. For each frame, the reconstruction has to be spatially coherent with the rest of

the image and temporally with respect to the reconstructions of adjacent frames. Most of existing methods only

focus on inpainting foreground objects moving with a periodic motion and consider that the background is almost

static. In this paper we address the problem of background inpainting and propose a method that handles dynamic

background (illumination changes, moving camera, dynamic textures...). The algorithm starts by applying an

image inpainting technique to each frame of the sequence and then temporally smoothes these reconstructions

through Kalman smoothing along the estimated trajectories of the unknown points. The computation of the

trajectories relies on the estimation of forward and backward dense optical flow fields. Several experiments and

comparisons demonstrate the performance of the proposed approach.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Image Processing and Computer Vision]: En-
hancement —Smoothing I.4.4 [Image Processing and Computer Vision]: Restoration—Kalman filtering

1. Introduction

Image inpainting consists in recovering the missing or cor-
rupted parts of an image so that the reconstructed image
looks natural. In the same way, video inpainting aims at com-
pleting the corrupted areas of a video. For each frame, the
reconstruction has to be spatially coherent with the rest of
the image and temporally with respect to the reconstructions
of adjacent frames. There are many possible applications to
the inpainting problem: movie post-production, product re-
placement, video stabilization, image restoration...
For still images, an extensive panel of approaches has
been proposed. These methods are based on texture synthe-
sis [EL99, CPT04], geometric diffusion [MM98, BSCB00,
Tsc06,BM07], or on a combination of these two approaches
[DSC03, ACS09, ALM08, BBCSar]. The extension of these
methods to video is at its early stage of development but
different strategies have already been proposed to ensure
some temporal consistency between the successive recon-
structions. We briefly review here a selected panel of meth-
ods from the exhaustive literature.

1.1. Related work

A straightforward extension of image inpainting methods to
video inpainting consists in treating each frame indepen-
dently. Nevertheless this technique fails as it does not take
into account the high temporal correlation between succes-
sive frames that exists in video sequences.

When dealing with video inpainting, the patch-based tex-
ture synthesis approaches are the most efficient to produce
more realistic results, since they allow to reconstruct tex-
tures whereas the geometrical methods lead to smoothed in-
paintings [BBS01]. Such methods are inspired by the tex-
ture synthesis from non-parametric sampling [EL99]. The
texture is synthesized by copying patches from the rest of
the image after comparing the spatial neighborhood of the
current pixel with all the patches lying within the known
texture. Its natural extension to video inpainting has been
proposed in [WSI04]. The mask of the video is filled by us-
ing spatio-temporal patches sampled from the whole known
part of the video. The problem is posed as a global optimiza-
tion scheme which makes it very computationally expensive.
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Furthermore it assumes no illumination changes, a non de-
formable background and a static camera. Moreover, the ob-
jects have to move with a periodic motion and their size must
not change significantly. A closely related area of research is
dynamic texture synthesis. A dynamic texture is a sequence
of images characterized by temporal stationarity. Examples
of dynamic textures are videos representing flowing water,
flames, moving grass... Non-parametric approaches extract
different part of from the original video and fuse them to-
gether to obtain a new video. In [SSSE00], complete video
frames are synthesized by assuming that the missing frame
already appears entirely elsewhere in the input video se-
quence. Instead of copying entire frames, other methods use
spatio-temporal patches [WL00, KSE∗03] and then simply
extend static texture synthesis method to dynamic textures.

Based on the seminal work of [KSE∗03] for inpaint-
ing dynamic textures, the priority queue of spatio-temporal
patches to inpaint videos has been enhanced in [KBBN05].
Spatio-temporal patches have also been used in [CFJ05]
in which patch-based probability models (called epitomes)
are learnt by compiling together a large number of spatio-
temporal patches from the input video. The results obtained
by using these epitomes are nevertheless over-smoothed.

More recent works on video inpainting separate the
background from the foreground objects and inpaint these
two parts independently. In [PSB07], background and fore-
ground mosaics are created using optical flow. Foreground
objects and stationary background are then both inpainted
through a priority-based texture synthesis process. This
method implies that the objects move in a repetitive way and
that their size do not change significantly. The background
is reconstructed by computing mosaics and is therefore as-
sumed to be static while the camera motion has to be paral-
lel to the plane of image projection. Similarly, in [ZXS05],
a method based on motion layer estimation followed by mo-
tion compensation and texture synthesis has been proposed.

All previous frameworks present the same drawbacks
as patch-based approaches for still images: they assume
that there is redundant information and that the appropri-
ate patches are available in the video. Moreover, the dimen-
sion of the search space becomes very high when processing
a long video. The search space can be reduced using ob-
ject tracking [JHM05]. In [SLCF06], the authors reduce the
search space from 3D to 2D by slicing the volume along
the motion manifold of the moving object. The foreground
and background layers are here separated and objects in the
foreground volume are rectified to compensate the perspec-
tive projection. To accelerate the foreground reconstruction,
dynamic programing has been proposed in [VCZ09].

In the general case of inpainting a (potentially) moving
object in a (potentially) moving scene, another solution con-
sists in inpainting the optical flow. This motion inpainting
can, for example, be done with a maximization a posteri-
ori through a multi-resolution variational approach [LN04].

In [BKGR09], the motion inpainting is done through total
variation anisotropic diffusion in order to reconstruct the
corrupted regions of a dense optical flow. Spatio-temporal
patches of local motion can also be used to reconstruct the
flow [SMKT06]. This method is limited to small motions
and is sensitive to noise. Moreover, the final color propaga-
tion scheme produces blurred results. With a similar idea,
[Zha04] first reconstructs dense optical flow fields that are
further used to copy the colors from previous frames.

1.2. Contributions

In this paper, we want to relax all the previous assumptions
on static background and camera, and illumination or size
conservations. Our objective is thus to replace any object
in the video by the unknown background, so that we do
not consider interaction of objects. Therefore this paper ad-
dresses the background inpainting problem. We propose to
tackle this problem from the filtering point of view, by com-
bining an optical flow reconstruction with an independent
inpainting of each frames within a Kalman smoothing pro-
cess. To this end, we first independently inpaint each frame
of the video with any classical technique dedicated to still
images. Next, we smooth these inpaintings along the whole
point trajectories defined thanks to a backward and forward
motion inpainting. Hence, we want to take advantage of the
whole information of the inpainted sequence in order to re-
construct the textures and structures that can only be par-
tially observed from the original images. The global pro-
cess is summed up in Algorithm 1. It can handle illumina-
tion changes, dynamic and deformable backgrounds, mov-
ing cameras and erroneous image inpaintings. Nevertheless,
it relies on the assumption that no foreground objects inter-
act with the hole, except if those objects are the ones to be
removed. Also our method considers that we have a good
(though not necessarily perfect) inpainting of the first and
last frames of the sequence.

Algorithm 1 Video inpainting

Given a sequence of images with their masks to inpaint

1. Independent image inpainting at each frame
2. Estimation of points trajectories, through motion estima-

tion and reconstruction inside the masks (section 3)
3. Kalman smoothing of the observed colors along each tra-

jectory (sections 2.2 and 4)
4. Reconstruction of the colors in the masks (section 2.2.2)

1.3. Overview of the paper

The paper is organized as follows. Section 2 reminds the
principle of Kalman smoothing and explains how we apply it
to video inpainting in section 3. Next, the inpainting of mo-
tion and the extraction of trajectories are described. Illumi-
nation changes and textures handling is explained in section
4 and some experiments are finally shown in section 5.
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2. Kalman smoothing and its application to video

inpainting

In this section, we explain the scheme of our algorithm for
dynamic background completion.

2.1. A reminder on Kalman smoothing

The goal of Kalman filtering is to track a state xt ∈ R
N

knowing some observations zt ∈ R
M of xt at each time in-

stant t. The observations may belong to a different space
than the state, but can be related with the linear operator
H : RN 7→ R

M , called observation model. The dynamic of
the state is defined through the linear operator F , called state
transition model. We consider the linear system:

{

xt+1 = Fxt +µt

zt = Hxt +νt ,
(1)

where µt represents the noise of the dynamics, while νt mod-
els the measurement noise. These noises are considered to be
Gaussian with covariance matrices Qt and Rt respectively.
Such systems of equations are generally initialized with a
condition x0 up to an initial noise ε0 of covariance B0.

2.1.1. Kalman Filtering

The aim of filtering methods is to estimate the state at each
time t from its past measures: xt:z0,···zt . The best estimator
of xt knowing all the previous data is given by the con-
ditional expected value x̂t = E[xt |z0:t ] and its covariance
Bt = E[(x̂t − xt)(x̂t − xt)

T ]. These two first moments can be
computed with the standard Kalman filter [Kal60], as long
as the dimension M is small enough. The Kalman filter is
divided in two steps:

• The prediction step:

x̂t|t−1 = Fx̂t−1,

Bt|t−1 = Qt +F Bt−1 F
T

.

• The correction step:

x̂t = x̂t|t−1 +Kt(zt −Hx̂t|t−1),

Bt = Bt|t−1 −Kt HBt|t−1,

where Kt = Bt|t−1 H
T
(Rt +H Bt|t−1 H

T
)−1 is the Kalman gain

matrix. The parameters of the Kalman filter are the covari-
ance matrices B0, Rt and Qt .

2.1.2. Kalman smoothing

For some applications, using only the observations from the
past to compute the state at current time might not be suf-
ficient. In order to reconstruct smooth trajectories along a
whole time interval [t0; t f ], Kalman smoothing is more ap-
propriate, since its allows computing the state at each time
t from the whole set of measurements: xt|z0···z f

, ∀t ∈ [t0; t f ].
The Kalman smoothing is applied to the result of the Kalman
filtering in order to obtain the estimation x̂

t0···t f

t . In prac-
tice, the process requires the definition of the matrix Jt (see
[YSS04] for more details):

Jt = Bt F
T

(Bt+1|t)
−1.

The smoothed value is then obtained with:

x̂
t0···t f

t = x̂t + Jt(x̂
t0···t f

t+1 −Fx̂t),

by initializing x̂
t0···t f

t f
= x̂t f

. The posterior covariance B
t0···t f

t

of the variable x̂
t0···t f

t can also been estimated. Initializing
B

t0···t f

t f
= Bt f

, the estimation is given by:

B
t0···t f

t = Bt + Jt(B
t0···t f

t+1 −Bt+1|t)J
T

t .

2.2. Application to inpainting

By applying Kalman smoothing to video inpainting, we are
willing to incorporate temporal consistency between suc-
cessive independent inpaintings. In other words we want
to temporally smooth the reconstruction of each frame us-
ing the motion information of each pixel. Hence, we as-
sume that some inpainted images Z(x, t) are available for all
frames t ∈ [t0; t f ] on the image domain x ∈ Ω̄. These obser-
vations may be obtained with any classical method allow-
ing to fill-in independently the masks Ωt of the sequence
(e.g. [CPT04, Tsc06]).

We also assume that the dynamic can result from a dense
motion field reconstruction (see section 3). The introduction
of these variables into the system (1) leads to the system:

{

It+1(x)=It(x+wb(x, t +1))+µt

zt+1(x)=It+1(x)+νt+1,
(2)

where x is a pixel of mask Ωt+1, It(x) its reconstructed color
at time t and wb(t) is the backward dense optical flow field
between times t and t − 1. Applying the Kalman smoothing
process to such a high dimensional system leads to the inver-
sion of huge matrices and is therefore not feasible for large
images. The solution we here propose consists in processing
independently each point of the masks and smoothing the
color along the trajectory of the point.

2.2.1. States, dynamics and observations

Let us describe in more details the state variable as well as
the dynamics and observation equations.

2.2.1.1. State variable When dealing with the problem of
inpainting filtering, the main trouble comes from the defini-
tion of the state variable. Indeed, as the mask size |Ωt | can
change at every frame, it is therefore impossible to define a
discrete spatial variable representing the area to inpaint in
time. Our claim is to define a pixel-based approach for filter-
ing inpainted color values.

We then consider p(t), the fixed 2D trajectory of a point
in the video, obtained from a motion inpainting method (see
section 3). Let p(t p

0 ) define the last position of the point be-
fore entering an inpainting mask (at time t

p
0 ≥ t0) and p(t p

f )

the position when leaving the inpainting masks (at time
t

p
f ≤ t f ). The goal is to filter the color value of the point p

with respect to all the observations Z(p(t), t) in the time range
[t p

0 , t
p
f ]. The state variable is I(p(t), t), the color of the point p
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that can change with time. For the sake of clarity, this state
will be denoted as I(p, t). The initial condition is given by
I(p, t p

0 ) = Z(p, t p
0 ) + ε0, the noise ε0 being defined by the co-

variance B0. Obviously, the initial condition will either be an
original color (if p(t p

0 ) /∈ Ωt
p
0

) or a color of the reconstruction
of the first image (if p(t p

0 ) ∈ Ωt
p
0

and t
p
0 = t0).

2.2.1.2. Dynamics To represent the dynamic of the color
I(p, t) of point p, we simply assume that the color is pre-
served through time, up to a noise µt , the model is then:

I(p, t +1) = I(p, t)+µt ,

where the dynamic noise µt is defined by the scalar covari-
ance Qt . The dynamic operator F is the identity matrix.

2.2.1.3. Observations The first simple idea is to consider
as observation the color values Z(p, t) for t ∈ [t p

0 , t
p
f ]. However,

as detailed in section 4, such filtering smoothes the observed
value and is not able to deal with bad observations. There-
fore we here propose to use patches Zs(p, t) of size M = s× s

(or M = 3 × s × s for color images) taken from the image
Z(t). They are centered on the closest pixel to the position
p(t), instead on p(t) directly in order to avoid the smoothing
that would result from a bilinear interpolation of the obser-
vations. We use the different pixels of a patch as if they were
different observations of the same state. The derivation of
the Kalman filtering and smoothing equations for multiple
observations such that

{

xt+1 = Fxt +µt

zi
t = Hxt +νi

t , ∀i = 1 · · ·M
(3)

can be obtained similarly as for one observation follow-
ing for example [YSS04]. It leads to defining the following
pseudo-observation

z̃t =

(

M

∑
j=1

(R
j
t )

−1

)−1
M

∑
i=1

(Ri
t)
−1zi

t , (4)

associated to its pseudo-covariance matrix:

R̃t =

(

M

∑
i=1

(Ri
t)
−1

)−1

, (5)

and to a gain defined as K̃t = Bt|t−1 HT
[

R̃+H Bt|t−1 H′
]−1.

Therefore, it is similar to computing a weighted mean of all
the observations, the weight being dependent on the confi-
dence of each observation. The patches are finally used in
the observation equation as:

Z̃(p, t) = I(p, t)+νt , (6)

with

Z̃(p, t) =

(

M

∑
j=1

(R
j
t )

−1

)−1
M

∑
i=1

(Ri
t)
−1Zs(p+ i, t). (7)

and νt computed such that equation (5) is verified. Details on
the computation of the noises will be given in section 4. The
Markov chain for applying Kalman filtering on one point is
summed up on figure 1.

I(p, t p
f )

...
...

...
...

I(p, t p
0 )

Zs(p, i, t p
0 )

Figure 1: Markov chain representing the filtering process

for one point p. The observations are here5×5 patches, each

pixel of the patch being taken as a different observation.

2.2.2. Images reconstruction

Once the colors have been smoothed along trajectories, we
need to transfer them into the masks Ωt . The color of a pixel
x ∈ Ωt is given by the median value of the colors I(p, t) of all
the points p crossing this pixel. We consider that a trajectory
crosses a pixel if it passes through the 8-neighborhood of
this pixel. We know that there will be at least one from the
definition of trajectories (see subsection 3).

3. Extracting point trajectories

In order to extract the trajectories of the points, we have
to inpaint the motion into the holes Ωt . The dense optical
flow field is first computed using a convexified multi-label
approach [PBGC10]. Then its reconstruction within the
mask is obtained by applying the texture synthesis method
from [CPT04] on motion patches. In practice the mask is
enlarged before doing the inpainting so that the possibly
erroneous flow vectors at the boundary are also inpainted.

We respectively denote by wb(t) and w f (t) the backward
(between t and t −1) and forward (between t and t +1) dense
motion fields w(x, t) = [u(x, t),v(x, t)]. Using these fields for
the whole sequence we can now define trajectories. Let p(t0)
be a point of the mask Ωt0 , its position at next frame is:
p(t1) = p(t0)+w f (p, t0). Doing so recursively, we can extract
the whole trajectory of the point in the video. The trajectory
ends when the point leaves the masks (i.e. when p(t) /∈ Ωt ) or
when the last frame of the sequence is reached. In practice, a
bilinear interpolation is used to compute w(p, t) (in case the
point p(t) does not belong to the grid of pixels).

With such a process, not all the pixels of all the masks Ωt

are processed. Some new trajectories are therefore created
for all pixel x ∈ Ωt , t > t0 which have not been previously
crossed by a trajectory. As mentioned before, we consider
that a pixel has been crossed if a trajectory passes within
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its 8-neighborhood. In order to improve the results for these
new trajectories, we also compute the backward trajectory
using the inpainted backward motion from image I(t) to im-
age I(t −1). Here again, the trajectory is stopped when leav-
ing a mask or when reaching the first frame of the video.

4. Dealing with textures and illumination changes

In this section, we will explain how the observation model H

and the observation noise Rt are defined. If using directly the
independently inpainted images, the results obtained with
the Kalman smoothing are often too blurred. This is not sur-
prising as the Kalman filtering consists in doing a weighted
mean between the prediction and the observation. Therefore,
imagine that an observed pixel is white while the prediction
is black, the resulting color will be gray. In such a case be-
fore taking into account the observation, one should ensure
that it is correct by comparing it to the first and last colors
of the trajectory: if the first color is white and the last one
is black, getting a gray pixel seems more coherent. We then
give more importance to an observation that is close to the
linear interpolation from Z(p, t p

0 ) to Z(p, t p
f ). To do so let us

define the value:

ri(p, t) = exp

(

−D2

σ2

)

,

with,

D =

∥

∥

∥

∥

∥

Z(p, t)−

[

t
p
f − t

t
p
f − t

p
0

Z(p, t p
0 )+

t − t
p
0

t
p
f − t

p
0

Z(p, t p
f )

]∥

∥

∥

∥

∥

,

where ‖.‖ defines euclidean norm (computed for the three
channels for color images), σ is a parameter monitoring the
deviation to the expected color and set by hand (σ = 5). The
covariance of the observation noise is now defined as:

Ri(p, t,c,c′) =

{

ρt ri(p, t), if c = c′

0 otherwise,
(8)

ρt being a parameter giving more or less importance to the
observations with respect to the dynamic, and c refering to
the color channel. One can verify that if the observation is far
from the expected color, then ri and R are big, which leads to
not trusting the observation. Abrupt changes of colors (such
as an impulse function) are then discarded.

However, it may happen that such an observation far from
the linear interpolation should be taken into account. For ex-
ample one could think of a rectangular function, in which
case it is better to consider the observations (see figure 2).
Equation (8) must then not be used if an observation is close
to its temporal neighbors but far from the mean value of the
observations along the trajectory. Let mT and σT be the mean
and standard deviation of the observation computed on the
whole trajectory of the point, and mt and σt the mean and
standard deviation computed on a temporal window centered
at time t. The covariance now reads:

R(p, t) =

{

Ri(p, t) if ‖Z(p, t)−mT‖ > 2σT ,‖Z(p, t)−mt‖ < 2σt

ρ otherwise,
(9)

which allows robustness to illumination changes and bad ob-
servations. In practice, the size of the temporal window is 5.

impulse function rectangular function

Observations
Expected result

Figure 2: The first step is an isolated change of color which

should not be taken into account in the smoothing process.

The second one is as a rectangular function for which the

resulting color should be close to the observations.

Finally, as mentioned in section 2, we consider patches
of observations to reduce the blur in the results. The pseudo
observation and pseudo-covariance are computed combin-
ing equations (7) (5) and (9). These patches being treated as
multiple observations. Remark that instead of using patches,
one could also use different 2D inpainting (texture synthe-
sis [CPT04] or diffusion [Tsc06]) for still images in order to
get different kind of information on textures and structures.

5. Experiments

In this section, after explaining parameters settings, we will
describe the experiments on four sequences.

5.1. Setting the parameters

The parameters of the Kalman smoothing process are the co-
variance matrix Qt , the observation influence ρt and the co-
variance B0 of the initial condition. The covariance matrices
Qt and B0 are diagonal matrices (3× 3 for color sequences),
such that Qt = qt Id and B0 = ρ0Id. Therefore, there are two
parameters to set for each trajectory and at each time: qt and
ρt . In all our experiments, as we have no knowledge on the
sequences, we set ρt = 1 and qt = 1, ∀t ∈]t p

0 ; t p
f [ and ∀p. That

way, we do not favour neither the predictions nor the obser-
vations. However, in order to define the value of the noise for
the first and last times of a trajectory, we distinguish the fol-
lowing cases. If the trajectory starts and ends when it leaves
the mask, we can be very confident on the observations for
these two times. This is done by setting ρt

p
f
= 0 and ρt

p
0
= 0.

If the trajectories starts at the first frame or end at the last
frame, we either set ρt = 0 or ρt = 1 depending on whether or
not we expect the algorithm to modify the reconstructions of
the first and last frames.

The other parameters of the whole process are the ones
for the image inpainting algorithm and for the optical flow
estimation. For each experiment, we precise which method
and parameters were used but note that similar results could
be obtained with other choices.
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5.2. Results

The first result (figure 3) presents a sequence of a skier in
which the objective is to remove the watermarking logo. The
observations were obtained with [Tsc06] and the following
parameters: p1 = 0.001, p2 = 100,σ = 4,dt = 50 and 100 it-
erations. For this result, we corrected the inpainting of the
first (t = 1) and last (t = 35) frames by hand and set ρt

p
0
= 0

and ρt
p
f
= 0. We were able to correctly reconstruct the snow

and the rocks and to discard the errors within the observa-
tions. By simply predicting the first reconstruction with op-
tical flow (by setting qt = 0 all along), good results can also
be obtained. Nevertheless, adding the observations enables
to correct the errors at the boundaries (figure 4).

The constant mask used for all the frames of the sequence

Original images Observations Filtered results

Figure 3: Results on the ski sequence for frames 1, 5, 20, 35.

Prediction (i.e. q=0) Smoothing (with q=r)

Figure 4: Comparison between the smoothing result and the

prediction on one frame (t = 22) of the ski sequence.

Figures 5 and 6 demonstrate how our method handles the

reconstruction of dynamic textures. For these two sequences,
we set ρt

p
0
= 0 and ρt

p
f
= 0, and obtained the observations us-

ing the algorithm from [CPT04] with 9×9 patches. On figure
5, it is interesting to remark how our process adds temporal
consistency compared to independent inpainting (obviously
the temporal consistency is better visible by watching the
videos associated to these results). In particular, the white
dandelion highlighted with the red circle is correctly recon-
structed in each frame. As can be noticed on figure 6, our
method may produce blur within the reconstructed texture
despite the use of the textures handler (section 4). This is
due both to the color reconstruction scheme and definition
of the observation noise (section 4). Some more intensive
work should therefore be dedicated to this problem.

The constant mask used for all the frames of the sequence

Original images Observations Filtered results

Figure 5: Result on the grass sequence for frames 1, 6, 16,

31.

The last result, presented on figure 7, is on a highly dy-
namic sequence in which we aim at removing the wake-
boarder. In particular, the sequence presents motion blur
and a dynamic and deformable background. The observa-
tions were obtained with the algorithm from [CPT04] with
11× 11 patches. Contrary to previous experiments, we here
do not completely trust the reconstructions of the first and
last frames and then set ρt

p
0
= 1 and ρt

p
f
= 1. The result ob-

tained is encouraging as the method is able to correctly re-
construct both the trees and the water, and to extend the
wave inside the mask. To prove the validity of our method,
we compared the results with the ones obtained using the
technique from [WSI04], with 100 iterations, 3 scales and
5× 5× 3 patches. This approach produces highly blurred re-
sults, mainly because pixels are synthesized by a weighted
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Original images Masks Filtered results Results of [WSI04]

Figure 7: Result on the wake-boarder sequence for frames 1, 10, 15, 20, 30.

average of the best candidates in the video. Note that we
tested several patches size, all leading to blurred results.

The computational time for the complete video process
depends on the method used to get the observations and on
the optical flow computation. Indeed steps (iii) and (iv) of
Algorithm 1, that only concern Kalman smoothing are very
fast and could probably be processed in real time with an
optimized implementation.

6. Conclusion

In this paper we have proposed a simple framework for in-
painting the background in video sequences. The technique
is based on Kalman smoothing along points trajectories us-
ing independent image inpaintings as observations. The tra-
jectories are the results of dense motion estimation and in-
painting with a non-parametric approach. Results of the pro-
posed process are very promising and open to several fu-
ture works. First, a more extensive study should be done
on textures handling to avoid having blurred reconstruction.
Furthermore, as mentioned at the end of section 4, we are

planning to test the method using jointly observations ob-
tained from different image inpainting methods. Obviously,
the whole process could be added to the method that mainly
aims at inpainting foreground moving objects. Finally, its ex-
tension to stereo video inpainting could be also considered.
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