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Motion planning in quantum control via intersection of eigenvalues

Ugo Boscain, Francesca C. Chittaro, Paolo Mason, Rémi Pacqueau and Mario Sigalotti

Abstract— In this paper we consider the problem of inducing
a transition in a controlled quantum mechanical system whose
spectrum loses simplicity for some values of the control. We
study the situation in which the Hamiltonian of the system
is real, and we are in presence of two controls. In this
case, eigenvalue crossings are generically conical. Adiabatic
approximation is used to decouple a finite dimensional sub-
system from the original one (usually infinite dimensional).

The main advantage of this method is that as a byproduct of
the controllability result it permits to get an explicit expression
of the controls. Moreover it may be used in the case in which the
dependence of the Hamiltonian from the controls is non-linear,
for which at the moment, no other method works.

In this paper we study the basic block of this controllability
method, that is a two by two system whose spectrum presents
a conical intersection. We show how to control exactly this
system with a control strategy that can be slowed down. The
possibility of slowing down the control law is essential to obtain
an adiabatic decoupling from the rest of the system with an
arbitrary precision.1

Keywords: Quantum control, Adiabatic approximation.

I. INTRODUCTION

In the simplest case, the problem of controlling a quantum

mechanical system consists in controlling an equation of the

form

iψ̇ =

(

H0 +

m
∑

i=1

uiHi

)

ψ, (1)

where ψ belongs to the unit sphere in a Hilbert space H,

the self-adjoint operator H0 describes the free evolution of

the system, Hi, i = 1, . . . ,m are self-adjoint operators

describing the coupling between the controls and the system,

and ui : [0, T ] → R are the controls, usually representing an

electric field, a magnetic field or a laser pulse.

Nowadays quantum control is of crucial importance in

Nuclear Magnetic Resonance (NMR), in photochemistry and
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for the design of quantum gates in quantum computing (see

[17], [23] [21], and references therein).

Many results are available when the Hilbert space has

finite dimension (see for instance [2], [3], [4], [9], [8],

[7], [12], [14], [15], [18], [22], and the monograph [13]).

On the other hand in the infinite dimensional case positive

controllability results are extremely difficult to obtain. For

exact controllability results for a one-dimensional well of

potential see [5]. For approximate controllability results for

discrete spectrum, via Galerkin approximations, see [10]. For

approximate controllability results via Lyapunov methods,

see [20], [19]. Notice that except for the results given in [10],

most of the controllability results are obtained for systems

in the form

i∂tψ(t, x) =

(

−∆+ V0(x) +

m
∑

i=1

uiVi(x)

)

ψ(t, x) (2)

where x ∈ Ω ⊂ R
n, ∆ is the Laplacian (with Dirichlet

boundary conditions, when Ω is bounded), V0 is the potential

in absence of controls, and Vi are suitable control potentials.

For infinite dimensional systems, the need of generating an

infinite number of new directions requires highly oscillating

controls, and usually the techniques mentioned above do not

lead to explicit control strategies.

Another approach could be to design a slow control path

that passes through eigenvalues intersections in the space

of controls allowing exchanges of probability between the

intersecting levels (in this case, we say that the wave function

climbs the spectrum). This idea was presented for the first

time in [1] for a couple of specific systems. To prove that

such a path indeed produces a transition, one should: i) take

advantage of the adiabatic decoupling far from eigenvalues

crossing in the space of controls; ii) use another non-

adiabatic decoupling (that we call conical decoupling) close

to eigenvalues intersections that permits to prove that, while

passing through eigenvalue intersections, the system makes

a transition from a level to another.

The first step is quite standard in quantum mechanics (see

for instance [24]), while the second one will be explained in

full details below. The main feature that makes this method

work is the fact that, as a consequence of the self-adjointness

of the operators H0 and Hi, i = 1 . . .m, the codimension of

the eigenvalues intersections is bigger than one. For instance

in the case in which the Hamiltonian is real, the codimension

of eigenvalues intersections is two and hence, in the presence

of two controls, generically they occur at isolated points

in the space of controls. Since climbing of levels can be

realized only at eigenvalue crossings, thanks to the fact that



the intersections have codimension two we can construct

closed paths that pass through each crossing only once, and

therefore realize the climbing; see the red path in Figure 1.

Transversal eigenvalue crossings of a real Hamiltonian in

the presence of two controls are called conical intersections

(see [11]). A non-real Hamiltonian can have eigenvalue

intersections which are stable under small perturbations of

the Hamiltonian and are transversal at isolated points only if

it depends on at least three controls.

Fig. 1. Climbing path u.

This approach has already been explored in [16], [25] for

the STIRAP process. From the controllability point of view,

this approach has been applied in [1] to a class of models

generalizing the Eberly and Law system [6].

This method has two advantages. First it provides explicit

expressions of controls (motion planning); second it may

be applied without difficulties also in the case in which the

dependence on controls is nonlinear. The drawback is that

the method works only when one can produce eigenvalue

crossings via the external fields.

Let u = (u1, . . . , um) and σ(u) be the spectrum of H(u).
In the following we do not need that the dependence on

u is affine as in (1). Let σ∗(u) ⊂ σ(u) be a band that

is uniformly separated from the rest of the spectrum in a

connected domain U in the space of controls (see Figure 2)

and P ∗(u) the corresponding orthogonal projector. Roughly

speaking, the Adiabatic Theorem (see [24] and references

therein) states that if u : [0, T ] → R
m is a smooth control and

ψε
u is a trajectory of system (1), corresponding to the control

[0, T/ε] ∋ t 7→ u(εt) and such that ψε
u(0) = ψ0 ∈ P ∗(u)H,

then as ε gets small, ψε
u on [0, T/ε] belongs approximately

to P ∗(u)H and its evolution is not influenced by the rest of

the spectrum. The quality of the approximation depends on

the “gap” C between σ∗(u) and the rest of the spectrum.

Roughly speaking the error is proportional to 1/C.

Fig. 2. Spectrum in function of u.

When P ∗(u)H is finite dimensional, the adiabatic theory

permits also to build a finite dimensional Hamiltonian Heff,

describing the approximate evolution inside P ∗(u)H. The

precise construction of Heff as function of u will be presented

in a forthcoming paper, and is based on general adiabatic

theory ([24]).

In this paper we are interested in controllability problems

inside the finite dimensional space P ∗(u)H, for a system

governed by an Hamiltonian Heff(u). We are then looking

for control strategies that can be slowed down (in order to

guarantee the adiabatic decoupling with arbitrary precision

from the rest of the spectrum). Notice that we are not

interested in controlling relative phases, since the adiabatic

approximation loses any information about them.

II. SLOW CONTROLLABILITY IN FINITE DIMENSION

We are ready to state our definition of controllability inside

the space P ∗(u)H ≃ C
N .

Definition 1: Consider a Schrödinger equation in C
N of

the type

iψ̇ = H(u)ψ

where ψ(t) ∈ C
N , u : [0, T ] → U ⊂ R

m, and H(u)
is a self-adjoint operator on C

N , which is smooth as a



function of u. We say that the system is slowly controllable

between probabilities (SCBP for short) in Ū ⊂ U if for

every c, d ∈ [0, 1]N such that
∑

j cj = 1,
∑

j dj = 1,

and for every ū ∈ Ū , there exists a control function

u(t) = (u1(t), . . . , um(t)) : [0, T ] → Ū , continuous and

piecewise smooth with u(0) = u(T ) = ū, such that the

following holds: for every ψ0 such that (|ψ0
1 |

2, . . . , |ψ0
N |2) =

c there exists a sequence of continuous, piecewise smooth

monotone functions µi : [0, Ti] → [0, T ], T = µi(Ti), with

limi→∞ ‖µ̇i(t)‖∞ = 0 such that for every i ∈ N the control

[0, Ti] ∋ t 7→ u(µi(t)) steers ψ0 to some vector ψ(Ti) with

(|ψ1
1 |

2, . . . , |ψ1
N |2) = d.

Remark 1: In the previous definition, µi(t) are

reparametrizations of the time. For i → ∞ the intervals

[0, Ti] become larger and larger. In our construction the

rescalings can be taken piecewise-affine (although in general

not linear).

If the selected spectrum σ∗(u) ⊂ σ(u) is discrete and

non-degenerate, then SCBP never holds unless we are in the

trivial case N = 1. Indeed an application of the adiabatic

theorem inside P ∗(u)H does not permit any probability

transfer.

We then consider the case in which there are eigenvalue in-

tersections in the space U : as we will show, every intersection

allows transfers of probability between the corresponding

two energy levels. That is why we focus on a neighborhood

of a conical eigenvalue crossing: the basic block of the

algorithm consists in studying the controllability of a two-

level system driven by two controls (see Figure 1).

We prove that, close to a conical intersection, a two level

system is SCBP with explicit computations, without any

adiabatic approximation.

The general model for such a system with two controls is

iψ̇ = H(u1(t), u2(t))ψ (3)

where ψ = (ψ1, ψ2) : [0, T ] → C
2 with |ψ1|

2 + |ψ2|
2 = 1,

u1, u2 : [0, T ] → R and H(u1, u2) is a real-valued matrix of

the form

H(u1, u2) =

(

f1(u1, u2) f2(u1, u2)
f2(u1, u2) −f1(u1, u2)

)

. (4)

In the following we assume that f1 and f2 are smooth.

Remark 2: In formula (4) we have assumed that the trace

is zero. This is not restrictive, since a nonvanishing trace

gives rise only to a common factor of phase.

The eigenvalues of the matrix H(u1, u2) are

λ± = ±
√

f1(u1, u2)2 + f2(u1, u2)2. (5)

Hence a degeneration occurs at (ū1, ū2) if and only if

f1(ū1, ū2) = f2(ū1, ū2) = 0.

Notice that for a generic choice of f1 and f2, the points

at which the eigenvalues lose simplicity are isolated in the

plane (u1, u2).

Fig. 3. The path in the plane (v1, v2).

Theorem 1: Consider a two-level quantum system

iψ̇ = H(u1(t), u2(t))ψ (6)

where ψ = (ψ1, ψ2) : [0, T ] → C
2 with |ψ1|

2 + |ψ2|
2 = 1,

u1, u2 : [0, T ] → U ⊂ R and H(u1, u2) is a real-valued

matrix of the form (4). Assume that det(H(ū1, ū2)) =
0 and that the differential of the function (u1, u2) 7→
(f1(u1, u2), f2(u1, u2)) is invertible at (ū1, ū2). Then the

system is SCBP in a neighborhood of (ū1, ū2).

Here we sketch the explicit strategy we intend to use. We

perform the change of coordinates

(v1, v2) = F (u1, u2) := ρ (f1(u1, u2), f2(u1, u2)), (7)

ρ > 0, from a neighborhood of (ū1, ū2) to an open set

containing the unit ball; we then construct a closed oriented

path in the space of controls (v1, v2) that is piecewise smooth

and passes through the conical intersection (the origin in

these coordinates); we choose a path that possesses the graph

shown in Figure 3: we go straight from the starting point

(−1, 0) to the singularity, then we make an angle α and

continue with another segment, and finally we come back to

the starting point with an arc of circle. Assuming without

loss of generality that ρ = 1 (this corresponds to a simple

time reparametrization), this path can be realized as the graph

of the following function:

(v1, v2) : t 7→











( t
L
− 1, 0) t ∈ [0, L]

(cosα, sinα)( t
L
− 1) t ∈ [L, 2L]

(cos(θ(t)), sin(θ(t))) t ∈ [2L, T ],

(8)

where

L =
T

2 + π − α
, θ(t) = α+

t− 2L

L
.

This function is indeed continuous and piecewise smooth,

and satisfies the condition (v1(0), v2(0)) = (v1(T ), v2(T )).
We will prove that the controls (u1(t), u2(t)) =

F−1(v1(t), v2(t)) guarantee SCBP, in the following sense:



for every c, d probabilistic weights there is an α ∈ [0, π]
(depending only on c, d) such that for any ψ0 = (ψ0

1 , ψ
0
2)

with (|ψ0
1 |

2, |ψ0
2 |

2) = (c1, c2) we can find a sequence of time

rescalings µα
i that satisfy the conditions in the definition

of SCBP and such that the control (v1(µ
α
i (t)), v2(µ

α
i (t)))

defined on the interval [0, Ti] steers ψ0 to a state ψ1 =
(ψ1

1 , ψ
1
2) such that (|ψ1

1 |
2, |ψ1

2 |
2) = (d1, d2).

Fig. 4. Paths in the space of controls.

The angle α can be explicitly computed (see (10)); for

instance, if ψ0 = eiφ(1, 0), then we have the following values

(see Figure 4):

(|ψ1
1 |

2, |ψ1
2 |

2) = (1, 0) ⇒ α = π

(|ψ1
1 |

2, |ψ1
2 |

2) = (0, 1) ⇒ α = 0

(|ψ1
1 |

2, |ψ1
2 |

2) =

(

1

2
,
1

2

)

⇒ α =
π

2
.

The above control satisfies u(0) = u(T ) = ū :=
F−1(−1, 0). Control strategies for different ū can be ob-

tained from the one above, applying a rotation and a dilation

in the plane (v1, v2).

III. SKETCH OF THE PROOF

A. Normal form at an eigenvalue intersection

Assume that f1(ū1, ū2) = f2(ū1, ū2) = 0 and that the dif-

ferential of the function (u1, u2) 7→ (f1(u1, u2), f2(u1, u2))
is invertible at (ū1, ū2). Then, locally near (ū1, ū2) we

can perform the change of variables (7); up to a simple

reparametrization of time, from now on we assume that

ρ = 1. We thus obtain the normal form

iψ̇ =

(

v1 v2
v2 −v1

)

ψ, (9)

whose eigenvalues are

λ± = ±
√

v21 + v22 .

B. The control procedure

In this subsection we solve explicitly the differential

system (9) associated with the control (8) in the case in which

the initial condition is an eigenvector of the Hamiltonian; we

show how the choice of the angle α and of the (α-dependent)

time reparametrization µα
k let us control the probability

weights of the wave function at the final time (µα
k )

−1(T ).
The choice of such an initial condition gives rise to a family

of reparametrizations µα
k that is particularly simple (multi-

plication by a constant factor); for initial conditions that are

nontrivial combinations of the two eigenvectors, to obtain

SCBP one may still apply controls of the form (8), up to a

suitable, possibly piecewise-linear, time reparametrization.

Let us now analyze the evolution of the system (9). We

assume then that our initial state is ψ0 = (eiφ, 0) (i.e. c =
(1, 0)) and that we are given a pair (d1, d2) ∈ [0, 1]2, d1 +
d2 = 1. We choose

α = 2arcsin(
√

d1). (10)

First segment: Putting ψ = (ψ1, ψ2), the system (9)

evolves accordingly to the differential equation

ψ̇1(t) = −i (t/L− 1)ψ1(t), ψ̇2(t) = i (t/L− 1)ψ2(t),

therefore the solution at the time t is

ψ(t) =

(

e
−i

(

t
2

2L
−t

)

ψ1(0), e
i
(

t
2

2L
−t

)

ψ2(0)

)

.

If ψ(0) = ψ0, we get ψ(L) = (eiφ1 , 0), φ1 = φ+L/2. This

means that the evolution only adds a (relative) phase factor,

but does not change the probabilities.

Second segment: In this case we have to solve the

Schrödinger equation

i
d

dt

(

ψ1

ψ2

)

=

(

cos(α)(t/L− 1) sin(α)(t/L− 1)
sin(α)(t/L− 1) − cos(α)(t/L− 1)

)(

ψ1

ψ2

)

t ∈ [L, 2L], with initial condition ψ(L) = (eiφ1 , 0). The

solution of the Cauchy problem is
(

ψ1(t)
ψ2(t)

)

= eiφ1

(

cos(φ2(t))− i sin(φ2(t)) cos(α)
−i sin(φ2(t)) sin(α)

)

,



where φ2(t) is the dynamical phase φ2(t) =
t2

2L − t+ L
2 .

In particular, we notice that for (v1, v2) =
(cos(α), sin(α)), the eigenvectors of the Hamiltonian

are

ϕ+ = (cos(α/2), sin(α/2)),

ϕ− = (− sin(α/2), cos(α/2)),

respectively associated with the eigenvalues λ = +1 and −1.

Therefore, we can write the wave function at the time t = 2L
as

ψ(2L) = eiφ1

(

e−iφ2(2L) cos(α/2)ϕ+ + eiφ2(2L) sin(α/2)ϕ−

)

.

We notice that the probability of being in an eigenstate

relative to the eigenvalue λ = +1 is (cos(α/2))2; in other

words, we spread the probability weights between the two

eigenstates.

Arc of circumference: The last part of the path comes back

to the initial point (v1, v2) = (−1, 0). The final state is then

the solution at the time T of the equation

i
d

dt

(

ψ1

ψ2

)

=

(

cos(θ(t)) sin(θ(t))
sin(θ(t)) − cos(θ(t))

)(

ψ1

ψ2

)

, (11)

with initial condition ψ(2L) = eiφ+ cos(α/2)ϕ+ +
eiφ− sin(α/2)ϕ−.

We claim that there is a suitable choice of time rescalings

µα
k such that the controls (v1(µ

α
k (t)), v2(µ

α
k (t)) defined on

[0, (µα
k )

−1(T )] steer the initial vector (eiφ, 0) to the vector

of the form

ψ1 = eiβ+ sin(α/2)

(

1
0

)

+ eiβ− cos(α/2)

(

0
1

)

, (12)

for suitable phases β±.

In order to do that, we study the system

i
d

dt

(

x1
x2

)

=

(

cos(α+ t/τ) sin(α+ t/τ)
sin(α+ t/τ) − cos(α+ t/τ)

)(

x1
x2

)

,

for t ∈ [0, (π−α)τ ], where τ is a free parameter, with initial

condition x(0) = (x1(0), x2(0)) = ϕ+. We notice that this

system is completely analogous to (11), up to an affine time

transformation.

We evaluate |xi(t)|
2, i = 1, 2, at the final time t = (π −

α)τ , as a function of τ ; explicit computations lead to

|x2(t)|
2 =

1

4τ2 + 1

[

4τ2 + cos

(

π − α

2

√

4τ2 + 1

)2
]

.

Therefore there is a sequence of times ταk , going to infinity,

such that for τ = ταk and tαk = (π − α)ταk , we have

|x2(t
α
k )|

2 = 1. Hence, from the unitarity of the evolution,

|x1(t
α
k )|

2 = 0; analogously, for the initial condition x(0) =
ϕ− we have |x2(t

α
k )|

2 = 0 and |x1(t
α
k )|

2 = 1.

For α ∈ [0, π) the explicit form of ταk is

ταk =

√

(

π

π − α

)2

k2 −
1

4
,

while for α = π the equation is satisfied for any value of

ταk .

This means that after an evolution of time tαk the

eigenvector of the Hamiltonian evaluated at (v1, v2) =
(cos(α), sin(α)) relative to the eigenvalue λ = +1 has

moved to the vector ψ = (0, 1), which is in fact the

eigenvector of the Hamiltonian at (v1, v2) = (−1, 0) relative

to the same eigenvalue. Analogously, at the final time ϕ−

has moved to ψ = (1, 0).

Coming back to the initial system, we have proved that if

we choose the constant time rescaling

µα
k : t 7→

L

ταk
t, t ∈

[

0,
ταk
L
T

]

,

then the chosen control (v1(µ
α
k (t)), v2(µ

α
k (t))), defined on

[0, (µα
k )

−1
(T )], steers the initial state ψ0 = (eiφ, 0) to the

final state (12), which means that we steered the vector with

probabilities (|ψ0
1 |

2, |ψ0
2 |

2) = (1, 0) to a vector ψ1 with

probabilities (|ψ1
1 |

2, |ψ1
2 |

2) = (sin2(α/2), cos2(α/2)).
By our choice of the angle α (10), we have

(|ψ1
1 |

2, |ψ1
2 |

2) = (d1, d2).

Remark 3: Notice that the above procedure also includes

the special cases α = 0, π. If α = 0 the control goes

straight from (−1, 0) to (1, 0), and then comes back with

a semicircle; the wave function at the final time (τ0k/L)T
is ψ = (0, 1) (modulo a phase factor), which means that

the state has completely flipped to the eigenstate relative

to λ = +1, in accord with the adiabatic theory. On the

contrary, if α = π then the path reduces to the segment

connecting (−1, 0) to the origin followed by the segment

that comes back to the initial point. In this case, the final

state is ψ = (1, 0) (with a phase factor), that is the trajectory

comes back to the original state. Notice that in this case any

reparametrization µπ leads to the same result.

With our choice of the initial condition the time

reparametrization of the control functions involved in the

definition of SCBP takes a particularly simple form. How-

ever, if the initial condition ψ0 is a superposition of states, we

can prove that the control functions of the form (8), suitably

rescaled in time, still provide an explicit strategy for SCBP.

The explicit computations are cumbersome, and we therefore

postpone them to a forthcoming paper.

IV. CONCLUSION

In this paper, we provided a control strategy that permits to

steer exactly a two level quantum system presenting a conical

singularity to a final state with given probabilities. This

strategy can be arbitrarily slowed down, which is important

in order to reduce an infinite dimensional quantum system to

a two level system as the one considered in this paper, that

is then decoupled from the other levels. The tool permitting

such a decoupling is the adiabatic theory. The aim of the

further research in this direction is to get an approximate

controllability result for the general system.



The main advantages of the proposed strategy are that it

does not require the Hamiltonian to depend linearly on the

controls, and that it provides an explicit expression of the

controls.
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[16] S. Guérin and H. R. Jauslin. Control of quantum dynamics by laser
pulses: Adiabatic floquet theory. Advances in Chemical Physics, 125,
2003.
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