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Abstract. We introduce a generic structure-from-motion approach based
on a previously introduced, highly general imaging model, where cameras
are modeled as possibly unconstrained sets of projection rays. This allows
to describe most existing camera types (at least for those operating in the
visible domain), including pinhole cameras, sensors with radial or more
general distortions, catadioptric cameras (central or non-central), etc.
We introduce a structure-from-motion approach for this general imaging
model, that allows to reconstruct scenes from calibrated images, possibly
taken by cameras of different types (cross-camera scenarios). Structure-
from-motion is naturally handled via camera independent ray intersec-
tion problems, solved via linear or simple polynomial equations. We also
propose two approaches for obtaining optimal solutions using bundle ad-
justment, where camera motion, calibration and 3D point coordinates
are refined simultaneously. One is relatively straightforward, minimizing
distances between 3D points and projection rays. The other minimizes
reprojection error; the general imaging model does not provide analyti-
cal expressions for the reprojection error and its derivatives, which are
desirable for efficient optimization. To achieve this, we propose to ap-
proximate the set of projection rays of a general non-central camera by
several clusters of central rays, allowing us to formulate an analytical cost
function. We present results for two cross-camera scenarios — a pinhole
used together with an omnidirectional camera and a stereo system used
with an omnidirectional camera. Using ground-truth and 3D reconstruc-
tion results from classical techniques, we show that our generic algorithm
is simple, general and accurate for extensions to various cross-camera and
multi-camera scenarios.

1 Introduction and Motivation

Many different types of cameras including pinhole, stereo, catadioptric, omni-
directional and non-central cameras have been used in computer vision. Some
of these cameras, especially the omnidirectional class, provide more stable ego-
motion estimation and larger fields of view [2,21,18]. Naturally, larger fields of
view allow to reconstruct 3D scenes using fewer images, although the spatial
resolution is lower, e.g. pinhole cameras can provide more useful texture maps.
Non-central cameras, a review of which is present in [3], eliminate the scale am-
biguity in motion estimation and thereby we do not need ground control points



for scale computation. Thus using a variety of cameras will facilitate and en-
hance the 3D reconstruction in both geometry and texture. For example, we
can build a surveillance system with one static omnidirectional camera (which
detects moving objects) and several narrow-field-of-view pan-tilt-zoom cameras
that can be used to take closeup pictures of objects. Also while reconstructing
complete environments, it is helpful to have a combination of omnidirectional
and traditional images: the traditional ones (narrow field of view, i.e. high spa-
tial resolution) give good accuracy locally, whereas the omnidirectional images
would be good for registering images scattered throughout the environment to a
single reference frame. Inspite of these advantages, a general, unified, structure-
from-motion approach for handling different camera systems, does not exist yet.

This statement holds also for camera calibration: most existing calibration
methods are parametric and camera dependent [12, 7]. For example, in the pin-
hole camera we use a 3 x 3 matrix, called intrinsic matrix, to store the internal
parameters of a camera. This matrix along with the camera pose provide the nec-
essary calibration information. Similarly, calibration of optical distortions and of
central or non-central catadioptric systems or other omnidirectional cameras, has
been done using various specific parametric camera models. A non-parametric
model and approach to camera calibration, referred to as the generic imaging
model, was recently introduced by Grossberg and Nayar [9]: camera calibration
is formulated as computing a 3D projection ray for every image pixel. Their
method requires several images of calibration objects, with known relative mo-
tions between image acquisitions. We have recently introduced a more general
calibration approach, that does not need a specific experimental setup; it only
requires taking images of calibration objects, from completely unknown view-
points [24,25]. This technique is used for calibrating the systems used in our
experiments. Section 3.1 provides a brief overview of the calibration algorithm.

Besides proposing algorithms, we want to stress, in this paper, that most
basic structure-from-motion problems can be formulated in a unified, camera
independent manner, typically as ray intersection type problems. This is shown
for pose and motion estimation and triangulation, in Sections 3.2 to 3.4.

The main contribution of this paper is the description of an approach for 3D
scene reconstruction from images acquired by any camera or system of cameras
following the general imaging model. Its building blocks are motion estimation,
triangulation and bundle adjustment algorithms, which are all basically for-
mulated as ray intersection problems. Classical motion estimation (for pinhole
cameras) and its algebraic centerpiece, the essential matrix [14], are generalized
in Section 3.2, following [22]. As for triangulation, various algorithms have been
proposed for pinhole cameras in [11]. In this work, we use the mid-point ap-
proach because of its simplicity, see Section 3.3. Initial estimates of motion and
structure estimates, obtained using these algorithms, are refined using bundle
adjustment [12,27], i.e. (non-linear in general) optimization of all unknowns.
This is described in Section 4. Bundle adjustment needs a good initial solution,
and also depending on the cost functions the convergence rate and the optimal-
ity of the final solutions vary [11,27]. In this work we utilize two different cost
functions to design and implement two different bundle adjustment algorithms.
The first cost function is based on minimizing the distance between 3D points



and associated projection rays, which we refer to as the ray-point method. The
main reason for using this cost function is that it was straightforward to extend
to non-parametric cross-camera scenarios. The second cost function is, as usually
desired, based on the reprojection error, i.e. the distance between re-projected
3D points and originally measured image points (possibly weighted using un-
certainty measures on extracted image point coordinates). The main reason for
using this cost function is its statistical foundation [11].

There is a major challenge in extending the existing parametric bundle-
adjustment algorithms (reprojection based) to a non-parametric scenario, i.e.
the general imaging model. This is due to the fact that no analytical projection
equation exists, and thus no analytical expression for the re-projection error
based cost function and its derivatives. In order to address this challenge, we ap-
proximate the n rays from a given camera, central or non-central, by & clusters
of central rays, i.e. rays that intersect in a single point. For example we have
k = 1 for central cameras (e.g. pinhole), k = 2 for stereo cameras, k = n for
oblique cameras [20], etc. Each such cluster of rays, therefore, corresponds to a
single central camera. Given any 3D point we find the corresponding cluster of
rays to which it belongs. The bunch of rays in every central cluster is intersected
by a plane to synthesize a perspective image. This allows us to formulate a para-
metric function that maps the 3D point to a 2D pixel on the synthesized image,
and thus to drive bundle adjustment. Details are discussed in Section 4.2.

Experimental results with two cross-camera scenarios are given in Section 5.

2 Previous Work and Background

We briefly explain previous efforts in 3D reconstruction using various cameras.
Pinhole cameras have a long history of being employed for 3D reconstruction
[12]. In the last decade or so, omnidirectional cameras and non-central cameras
have also been used for 3D reconstruction [3,2,5,13]. Recently, Micusik et al.
extended the multiple view metric 3D reconstruction to central fish-eye cam-
eras [17]. Central catadioptric cameras such as para-catadioptric systems (or-
thographic camera facing a parabolic mirror) were calibrated and utilized in 3D
reconstruction by Geyer and Daniilidis [8]. Omni-directional images, with known
camera motion, obtained from a GPS or a robot, have also been used in 3D recon-
struction [16,4]. All these efforts have utilized parametric calibration techniques
and camera dependent structure-from-motion algorithms. In contrast, in this
work we utilize a generic camera calibration technique and a generic structure-
from-motion algorithm that applies equally well to all types of cameras — pinhole,
stereo, omnidirectional etc.

The importance of using cross-camera networks for 3D reconstruction and
video surveillance has been observed by few researchers as yet. One of the first
steps in this direction is the process of proposing unifying models and multi-
view relations for different cameras. Geyer and Daniilidis [6] developed a unified
theory that encompasses all central catadioptric systems, observed by Baker
and Nayar in [1]. Sturm developed multi-view relations for any mixture of para-
catadioptric, perspective or affine cameras [23]. Our work is complementary to
these efforts in enhancing and promoting the use of cross-camera scenarios for
practical applications.



3 Generic Structure-from-Motion

Figure 1 describes the pipeline for the generic structure-from-motion algorithm.

Cam-1 Camera-1 Image Bundle Adjustment
Calibration Images ofaliine (Ray point distance)
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> Generic Motion Structure Bundle Adjustment 5| Performance
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Ground Truth

O . . for some scenes . .
Fig. 1. The overall pipeline of the cross-camera structure-from-motion algorithm.

3.1 Generic Camera Calibration

We use a generic calibration approach developed in [25], an extension of [9], to
calibrate the different camera systems. For the sake of completeness, we briefly
explain the algorithm. Calibration consists in determining, for every pixel, the
3D projection ray associated with it. In [9], this is done as follows: two images
of a calibration object with known structure are taken. We suppose that for
every pixel, we can determine the point on the calibration object, that is seen
by that pixel. For each image and each pixel, we thus obtain two 3D points.
Their coordinates are usually only known in a coordinate frame attached to the
calibration object; however, if one knows the motion between the two object
positions, one can align the coordinate frames. Then, every pixel’s projection
ray can be computed by simply joining the two observed 3D points.

In [25], we propose a more general approach, that does not require knowledge
of the calibration object’s displacement. In that case, three images need to be
taken at least. The fact that all 3D points observed by a pixel in different views,
are on a line in 3D, gives a constraint that allows to recover both the motion and
the camera’s calibration. The constraint is formulated via a set of trifocal tensors,
that can be estimated linearly, and from which motion, and then calibration, can
be extracted (details are given in [24]).

3.2 Motion Estimation

We describe how to estimate ego-motion, or, more generally, relative position and
orientation of two calibrated general cameras. This is done via a generalization of
the classical motion estimation problem for pinhole cameras and its associated
centerpiece, the essential matrix [14]. We briefly summarize how the classical
problem is usually solved [12]. Let R be the rotation matrix and T the translation
vector describing the motion. The essential matrix is defined as E = [T|xR. It
can be estimated using point correspondences (x,z') across two views, using the
epipolar constraint z’ TEz = 0. This can be done linearly using 8 correspondences
or more. In the minimal case of 5 correspondences, an efficient non-linear minimal
algorithm, which gives exactly the theoretical maximum of 10 feasible solutions,
was only recently introduced [19]. Once the essential matrix is estimated, the
motion parameters R and T can be extracted relatively straightforwardly [19].
In the case of our general imaging model, motion estimation is performed
similarly, using pixel correspondences (z,z'). Using the calibration information,



the associated projection rays can be computed. Let them be represented by their
Pliicker coordinates, i.e. 6-vectors X and X’. The epipolar constraint extends
naturally to rays, and manifests itself by a 6 x 6 essential matrix, defined as:

R-FE
=(07)

The epipolar constraint then writes: X''€X = 0 [22]. Once & is estimated,
motion can again be extracted straightforwardly (e.g., R can simply be read off
£). Linear estimation of £ requires 17 correspondences.

There is an important difference between motion estimation for central and
non-central cameras: with central cameras, the translation component can only
be recovered up to scale. Non-central cameras however, allow to determine even
the translation’s scale. This is because a single calibrated non-central camera al-
ready carries scale information (via the distance between mutually skew projec-
tion rays). One consequence is that the theoretical minimum number of required
correspondences is 6 instead of 5. It might be possible, though very involved, to
derive a minimal 6-point method along the lines of [19]. More details on motion
estimation are omitted due to lack of space.

3.3 Structure Recovery/Triangulation

We now describe an algorithm for 3D reconstruction from two or more calibrated
images with known relative position. Let P = (X, Y, Z)" be a 3D point that is to
be reconstructed, based on its projections in n images. Using calibration infor-
mation, we can compute the n associated projection rays. Here, we represent the
ith ray using a starting point A; and the direction, represented by a unit vector
B;. We apply the mid-point method [11,22], i.e. determine P that is closest in
average to the n rays. Let us represent generic points on rays using position
parameters );. Then, P is determined by minimizing the following expression
over X, Y, Z and the /\Z Z?:l ||Az + )\sz — ID”2

This is a linear least squares problem, which can be solved e.g. via the Pseudo-
Inverse, leading to the following explicit equation (derivations omitted):
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where I3 is the identity matrix of size 3 x 3. Due to its sparse structure, the
inversion of the matrix M in this equation, can be performed very efficiently, as
typically done in bundle adjustment [27]. Overall, the triangulation of a 3D point
using n rays, can by carried out very efficiently, using only matrix multiplications
and the inversion of a symmetric 3 x 3 matrix (details omitted).

3.4 Pose Estimation

Pose estimation is the problem of computing the relative position and orientation
between an object of known structure, and a calibrated camera. We don’t use it



in this work, but describe it for the sake of completeness. A literature review on
algorithms for pinhole cameras is given in [10]. Here, we briefly show how the
minimal case can be solved for general cameras. For pinhole cameras, pose can
be estimated, up to a finite number of solutions, from 3 point correspondences
(3D-2D) already. The same holds for general cameras. Consider 3 image points
and the associated projection rays, computed using the calibration information.
We parameterize generic points on the rays as in the previous section: A; + \; B;.

We know the structure of the observed object, meaning that we know the
mutual distances d;; between the 3D points. We can thus write equations on the
unknowns J);, that parameterize the object’s pose:

|4i + XiBi — A; = A\ Bj|” = d3;  for (i,5) = (1,2),(1,3),(2,3)

This gives a total of 3 equations that are quadratic in 3 unknowns. Many meth-
ods exist for solving this problem, e.g. symbolic computation packages such as
MAPLE allow to compute a resultant polynomial of degree 8 in a single unknown,
that can be numerically solved using any root finding method.

Like for pinhole cameras, there are up to 8 theoretical solutions. For pinhole
cameras, at least 4 of them can be eliminated because they would correspond
to points lying behind the camera [10]. As for general cameras, determining the
maximum number of feasible solutions requires further investigation. In any case,
a unique solution can be obtained using one or two additional points [10].

4 Bundle Adjustment
4.1 Ray-point bundle adjustment

This technique minimizes the distance between projection rays and 3D points.
We briefly describe our cost function. As in the previous section, A; + A; B; is
used to represent generic points on a ray. The distance between this ray, in a
coordinate system represented with (R,T'), and a 3D point (X;,Y}, Z;) is given
below:

X;

ei=[4i+T+XNRBi— | Y; |||
Zj

The parameter ); is computed in closed form using least squares. In a general
scenario having n 3D points, each point may be associated with two or more
rays coming from different camera views. We add all the ray-point distances (for
every point with all the rays linked to it) to compute the overall cost function,
which will be used in bundle adjustment to simultaneously refine the camera mo-
tion, possibly calibration, and 3D structure. The most important feature of this
approach is that it is directly applicable to non-central and generically calibrated
cameras.

4.2 Re-projection based bundle adjustment

We now describe the challenges in using re-projection based bundle adjustment
for generically calibrated cameras and our approaches to overcome these chal-
lenges. In generic calibration, there is no mathematical function to relate the



pixel and a ray. The calibration result is a lookup, which maps every pixel to
a ray. Non-linear optimization functions like Levenberg-Marquardt algorithms,
which are used in bundle adjustment, use the derivatives of error functions.
Computation of these derivatives poses the main problem in our scenario. For
computing derivatives we need the ray associated to sub-pixel image coordi-
nates. While this is easily possible in parametrically calibrated cameras, it is
not straightforward in non-central cameras. One could try to use some kind
of interpolation followed by numerical approaches for differentiation. However in
noncentral and other non-perspective scenarios it is difficult to use interpolation.

We consider any camera as a cluster of central cameras. Therefore, given a
set of rays belonging to a non-central camera, one can cluster the rays into &
buckets. For example & = 2 for a stereo camera. An interesting future area of
research is to find the number of clusters and to design clustering algorithm.
Once the rays corresponding to each central cluster is determined we synthesize
a perspective image for each one of them. Perspective image for a cluster of rays
belonging to a central camera can be easily computed by intersecting the rays
with some plane. If the non-central camera has k central cameras, we generate
k perspective images. Each of these perspective images can be parameterized
based on the central rays and the intersecting plane, that allows us to create a
parametric association from 3D points to 2D sub-pixels. In bundle adjustment
we compute the reprojection error on all these synthesized images.

An important question is what criterion to use in choosing the plane of inter-
section while generating synthesized perspective images. We propose to minimize
the “uncertainty” in the intersection points when the plane intersects the bunch
of central rays: ideally the rays have to be perpendicular to the plane. Therefore
we find an orientation which minimizes the sum M of all acute angles between
the plane and intersecting rays. That cost function M, and the required normal
to the plane (mq,ma,m3) are given as:

M = 1 1 ] L _ _J _
2l mabit i) =\ S G )
where (I%,1%,1%) refers to the direction of the 4y, ray. It is useful to discuss what
happens to our algorithm in extreme cases. The first case is when we have only
one ray in a cluster. In that case we consider a plane perpendicular to that ray
and the center will be kept at infinity. The next interesting case is that of a
highly non-central camera, where the number of clusters is very large. We will
have to generate many perspective images and if we use the above optimization
criterion for computing the normal for the intersecting plane, then this algorithm
tends to become a ray-point distance based bundle adjustment. For example in
a completely non-central camera, which is referred to as an oblique camera [20],
where each ray belongs to a separate central cluster, our reprojection based
algorithm will be exactly the same as a ray-point approach. On the contrary if
the camera has just one cluster it becomes the conventional re-projection based
algorithm, if the image coordinates in the synthesized perspective image match
with that of the original image.
A possible improvement to the above approach is to identify a plane and
generate a perspective view where the image coordinates are close to the original

j=1,2,3



image coordinates, which would better preserve the noise model in the image.
Preliminary results with this approach are promising.

5 Results and Analysis

We consider three indoor scenarios:

— A house scene captured by omnidirectional and stereo system.

— A house scene captured by omnidirectional and pinhole camera.

— An objects scene, which consists of a set of objects placed in random positions
as shown in Figure 3b, captured by an omnidirectional and a pinhole camera.

5.1 Calibration

We calibrate three types of cameras in this work. They are pinhole, stereo, and
omni-directional systems. Pinhole Camera: Figure 2a shows the calibration of
a pinhole camera using the single center assumption [25]. Stereo camera: Here
we calibrate the left and right cameras separately as two individual pinhole
cameras. In the second step we capture an image of a same scene from left
and right cameras and compute the motion between them using the technique
described in section 3.2. Finally using the computed motion we obtain both
the rays of left camera and the right camera in the same coordinate system,
which essentially provides the required calibration information. Omni-directional
camera: Our omni-directional camera is a Nikon Coolpix-5400 camera with E-8
Fish-Eye lens. Its field of view is 360 x 183. In theory, this is just another pinhole
camera with large distortions. The calibration results are shown in Figure 2.
Note that we have calibrated only part of the image because three images are
insufficient to capture the whole image in an omnidirectional camera. By using
more than three boards it is possible to cover the whole image.

-
Center

(a) (b) (c)
Fig. 2. a) Pinhole b) Stereo ¢) Omni-directional. The shading shows the calibrated
region and the 3D rays on the right correspond to marked image pixels.

5.2 Motion and Structure Recovery

Pinhole and Omni-directional: Pinhole and omni-directional cameras are both
central. Since the omni-directional camera has a very large field of view and
consequently lower resolution compared to pinhole camera, the images taken
from close viewpoints from these two cameras have different resolutions as shown
in Figure 3. This poses a problem in finding correspondences between keypoints.
Operators like SIFT [15], which are scale invariant, are not camera invariant.
Direct application of SIFT failed to provide good results in our scenario. Thus
we had to manually give the correspondences. One interesting research direction
would be to work on the automatic matching of feature points in these images.



g 28 #H

g

]

Fig. 3. a) stereo and omni-directional b) pinhole and omni-directional. We intersect
the rays corresponding to the matching pixels in the image to compute the 3D points.

Stereo system and Omni-directional: A stereo system can be considered as a non-
central camera with two centers. The image of a stereo system is a concatenated
version of left and right camera images. Therefore the same scene point appears
more than once in the image. While finding image correspondences one keypoint
in omni-directional image may correspond to 2 keypoints in stereo image as
shown in Figure 3a. Therefore in the ray-intersection we intersect three rays to
find one 3D point.

5.3 Bundle Adjustment Statistics

We discuss the convergence rate, error criteria and performance of the two bun-
dle adjustment algorithms. Convergence rate is measured by the number of it-
erations. We consider all possible pairwise distances between reconstructed 3D
points. To this purpose we normalize the 3D data to make the sum of squared
distances from the centroid equal to unity. We have used ground-truth and para-
metric 3D reconstruction using classical techniques, to compare the performance
of bundle adjustment. Parametric 3D reconstruction is obtained by parametric
calibration of a pinhole camera, capturing of pinhole images, reconstruction by
least-squares method and finally refinement of 3D scenes using parametric re-
projection based bundle adjustment [12].

For the house scene, ground-truth is available. We compute the percentage
error of a distance pair joining iy, and jy, points using method A as follows.

d(lJJ)A - d(iaj)gt
d(iaj)gt

where d(i, j) 4 and d(i, j)4: refer to the pairwise distance between the s, and jgp,
points obtained using method A and ground-truth respectively. We then use the

PE(i,j) =
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absolute percentage errors of all the pairs to compute mean absolute percentage
error. The statistics are presented in Table 1. We show the histograms of the
pairs binned according to the percentage errors in Figures 4 and 5. We observe
that the reprojection method converges faster than the ray-point method. The
two bundle adjustments reduces the error of the initial 3D estimate. For the
house scene constructed using a stereo and an omni-directional camera, the mean
absolute percentage error of the reprojection method is smaller than that of
the ray-point. On the contrary in the case of house scene constructed using
a pinhole and an omnidirectional camera, ray-point method is slightly better
than the reprojection method. We also observe that both the ray-point and the
reprojection methods outperform the parametric approach in the house scene
using stereo and omnidirectional cameras. However the parametric approach
does better when using a pinhole and an omni-directional camera.

No of Parametric Ray-Point Reprojection
Scene |Cam-1|Cam-2 Pts | (Iters, Error) (Iters, Error) (Iters, Error)
House |[stereo |omni |[8 (8,0.0288) (26,0.0233) (7,0.0154)
House |pinholejomni (8 (8,0.0288) (18,0.0305) (5,0.0413)

Table 1. Statistics for the house scene which has the ground-truth. Iters refer to the
number of iterations and Error refers to the mean absolute percentage error.
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Fig. 4. Histogram of the house scene constructed using a stereo and an omnidirectional
image. Please note that the number of pairs along y-axis across different diagrams are

1 Parametric 30 initial estimate Ray-point Reprojection

ol ! il il

0 0
D4 02 0 02 4 02 0 02 04 04 02 0 02 04 4 02 o 02 04
Percentage errors Percentage errars Percentage erors Percentage erors

@

B

4

No of pairs
-
N of pairs
No of pairs
60 = N w &

No of pairs

r

o = N W & »

o
=

Fig. 5. Histogram for the house scene constructed using a pinhole and omnidirectional
camera. Please note that the number of pairs along y-axis across different diagrams are
not same.

For the objects scene, we also reconstruct 3D scenes by using a pinhole camera,
and parametric calibration. However as observed earlier, there is no guarantee
that parametric reconstruction will be more accurate than ray-point and re-
projection methods. In the absence of ground-truth we use difference measures
between different methods to analyze the performance. Difference measures be-
tween method A and method B can be obtained for a pair containing i;, and
Jtn points as given below:

d(i,j) s
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where d(i,j)a and d(i,j)p are pairwise distances obtained by using methods
A and B respectively. Figure 6 shows the histogram binning the pairs accord-
ing to the difference measures. The statistics are presented in Table 2. In this
case, as well, reprojection method converges faster than the ray-point method.
We observe that the refinements produced by both the bundle adjustments are
comparable to each other. We also show the cross-camera 3D reconstruction of
an outdoor scene having 121 3D points in Figure 7.

Scene |Cam-1 |Cam-2 No of |Param | Ray-Pt|Reproj mean absolute

Pts Iters Itery Iters| difference measure
|Ray-Pt - Param|=0.0496
Objectgpinholelomni |31 7 25 5 |Reproj - Param|=0.0544

|Reproj -Ray-Pt|=0.0069

Table 2. Statistics for the objects scene which do not have the ground-truth. Here
Tters refer to the number of iterations.
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Fig. 6. Histograms for the difference errors in the objects scene. Please note that the
bin sizes along x-axis and the number of pairs along y-axis across different diagrams
are not same.

(a) (b) (c) (d) (e)

Fig. 7. a) pinhole image b) omnidirectional image c) Texture-mapped model d) Mesh
representation e) Top view of the points. We reconstruct 121 3D points, which lie on
three walls shown in the images.

6 Conclusions and Future Work

We have designed and developed a generic algorithm to mix different cameras
in the SfM problem, including the extension of bundle adjustment for generic
scenarios. We have obtained promising results for two cross-camera scenarios —
pinhole with omnidirecitonal and stereo with omnidirectional. Using simulations
and real data, we are interested in investigating our approach and the cluster-
ing issues in more exotic catadioptric cameras and multi-camera configurations.
Acknowledgements. This work was partially supported by the NSF grant
ACI-0222900 and by the Multidisciplinary Research Initiative (MURI) grant by
Army Research Office under contract DAA19-00-1-0352. We also like to thank
the anonymous reviewers for their valuable suggestions for future work.
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