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POSITIONING AND 3D SCENE MODELLING
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ABSTRACT

This work concerns the incorporation of geometric information in camera calibration and 3D modelling. Using geometric constraints
enables stabler results and allows to perform tasks with fewer images. Our approach is interactive; the user defines geometric primitives
and constraints between them. It is based on the observation that constraints such as coplanarity, parallelism or orthogonality, are easy
to delineate by a user, and are well adapted to model the main structure of e.g. architectural scenes. We propose methods for camera
calibration, camera position estimation and 3D scene reconstruction, all based on such geometric constraints. Various approaches
exist for calibration and positioning from constraints, often based on vanishing points. We generalize this by considering composite
primitives based on triplets of vanishing points. These are frequent in architectural scenes and considering composites of vanishing
points makes computations more stable. They are defined by depicting in the images points belonging to parallelepipedic structures
(e.g. appropriate points on two connected walls). Constraints on angles or length ratios on these structures can then be easily imposed.
A method is proposed that “collects” all these data for all considered images, and computes simultaneously the calibration and pose of
all cameras via matrix factorization. 3D scene reconstruction is then performed using many more geometric constraints, i.e. not only
those encapsulated by parallelepipedic structures. A method is proposed that reconstructs the whole scene in iterations, solving a linear
equation system at each iteration, and which includes an analysis of the parts of the scene that can/cannot be reconstructed at the current
stage. The complete approach is validated by various experimental results, for cases where a single or several views are available.

1 INTRODUCTION

Efficient 3D modeling from images is one of the most challenging
issues in computer vision. The tremendous research effort made
to develop feasible methods has proven that recovering 3D struc-
tures from 2D images is a difficult and often under-constrained
problem. Several reasons account for that, including the fact that
without any prior information on cameras, or on the scene to re-
cover, a euclidean reconstruction is not possible at all (Faugeras,
1992). This is why knowledge on the acquisition process, or on
the scene, is required. A number of approaches have been pro-
posed to exploit prior information, both on camera and scene pa-
rameters. Such prior information does not only solve the projec-
tive ambiguity in the reconstruction but do also usually stabilize
the reconstruction process. Furthermore, it often leads to simple
and direct solutions for the estimation of both camera and scene
parameters, which may eventually be adjusted non-linearly for
higher accuracy. The method proposed in this paper is based on
the observation that constraints such as coplanarity, parallelism or
orthogonality, are often embedded intuitively in parallelepipeds.
Moreover, parallelepipeds are easy to delineate by a user, and
are well adapted to model the main structure of e.g. architec-
tural scenes. Using parallelepipeds to constrain the calibration
and reconstruction process enables modeling from small sets of
images, in particular from single images, thus making possible re-
constructions from images not originally taken for that purpose,
like archival images or images from the Internet for instance.

An exhaustive review of literature on using prior information for
self-calibration and euclidean reconstruction is beyond the scope
of this paper. We will concentrate on works which have somehow
inspired the method we propose, especially direct approaches giv-
ing a good first estimate of camera and scene parameters. There
is a large variety of information which can be incorporated into a
3D modeling process. This can be simple knowledge on camera
intrinsic parameters or pose (stationarity, pure translation, etc.) or
on global 3D scene structure (calibration patterns); it can also be
information on scene elements such as points, lines and planes,
as well as on high-level primitives like cubes, prisms, cylinders,

etc. Nonetheless, whatever the information is, it can be used at
any stage of the 3D modeling process, including the initial cal-
ibration, pose estimation, model reconstruction or an additional
non-linear adjustment of the initial estimate at each step.

Approaches based on calibration patterns. Classical calibra-
tion approaches are based on known positions of points in 3D
space, or known calibration patterns (Tsai, 1986). Unfortunately,
such information relies on specific acquisition systems and is thus
seldom available in general situations. The use of prior knowl-
edge on some intrinsic parameters, i.e. self-calibration, offers the
opportunity to build more flexible systems.

Self-calibration. In standard self-calibration algorithms (May-
bank, 1992; Triggs, 1997; Hartley, 1993; Pollefeys, 1997), 3D
reconstruction is done in 3 steps, recovering, in order, the pro-
jective, affine and euclidean strata, the projective–affine step be-
ing considered as the most non-linear and thus most difficult step.
One of the main problems are critical motion sequences, for which
self-calibration does not have a unique solution (Sturm, 1997).
This problem has been dealt with by restraining the camera mo-
tions (Hartley, 1997; de Agapito, 1999; Armstrong, 1994) or by
incorporating prior knowledge on the camera (Zisserman, 1998)
or on the scene. But to get stable results for self-calibration, a
large number of images is usually necessary.

Structure and motion. The basic constraint is that backprojec-
tion lines (planes) associated with corresponding image points
(lines) intersect in a single space point (line). This observation
allows to formulate the matching tensors, which compactly de-
scribe two, three and four view geometry. When more views
are accessible, it is necessary to combine results computed from
small subsets of images, which decreases the accuracy of results.
An overview of tensor-based structure&motion methods can be
found in (Hartley, 2000).

Another category of approaches allows the simultaneous recov-
ery of cameras and 3D models via the factorization of a measure-
ment matrix of image points (Tomasi, 1992; Sturm, 1996), lines
(Triggs, 1996; Martinec, 2002) or similar methods using planes
in the scene (Rother, 2002; Sturm, 2000). Factorization methods



suffer from missing data, i.e. when a primitive is not seen in all
images, although some ways of dealing with this problem have
been proposed (Tomasi, 1992; Martinec, 2002). Using only the
above backprojection constraints, it is only possible to recover
the scene up to a projective or affine transformation.

Incorporating euclidean scene constraints. A variety of geo-
metric constraints can disambiguate the projective reconstruction
to a euclidean one, and allow to decrease the number of images
required to obtain a satisfying reconstruction. Many of them can
easily be incorporated into a self-calibration framework. A com-
mon constraint is given by vanishing points of mutually orthog-
onal directions, as defined by known cubical structures (Caprile,
1990; Cipolla, 1998; Chen, 1999) or by dominating scene di-
rections (Kosecka, 2002). Also, knowing the euclidean structure
of scene planes is useful in this context, through rectified planes
(Liebowitz, 1999), maps (Bondyfalat, 2001) or known plane-to-
image homographies (Sturm, 1999a; Zhang, 1999). It is also pos-
sible to use multiple images of unknown planes, but more images
in general position are needed here (Triggs, 1998; Malis, 2002).

When cameras are calibrated, it is relatively easy to reconstruct
3D structure. However, and as mentioned previously, using ge-
ometric constraints may improve dramatically the reconstruction
quality, especially when a single or only few images are consid-
ered (Boufama, 1993). Even simple constraints can be very ef-
ficient, e.g. in (Criminisi, 2000; Sturm, 1999b), vanishing lines
of planes and coplanarity constraints are used for single image
reconstruction. However, in general, dealing with different types
of scene objects and constraints is a complicated problem. Some
authors prefer to model the scene by simple primitives like points,
lines and planes and constraints between them such as incidence,
parallelism, orthogonality, etc. Some direct approaches using the
bilinear character of many useful constraints were proposed in
(Shum, 1998; Grossman, 2002; Wilczkowiak, 2003a). The re-
sults can be improved using non-linear methods applying penalty
terms corresponding to the constraints (McGlone, 1995), con-
strained optimization techniques (Szeliski, 1998; McLauchlan,
2000; Grossmann, 2000), or a minimal scene parameterization
(Bondyfalat, 1998; Wilczkowiak, 2003b). Yet a different ap-
proach consists in high-level scene descriptions using complex
primitives like cubes, prisms, cylinders, etc. (Debevec, 1996; Je-
linek, 2000). Recently, some effort has been devoted to the auto-
matic detection of such primitives (Dick, 2001). All these meth-
ods ensure, by the strong inherent geometric constraints, that the
final models are visually correct.

The proposed approach. In this paper, we address the intrinsic
and extrinsic calibration (pose/motion estimation) as well as 3D
reconstruction, using geometric constraints. As for calibration,
we study the use of a specific calibration primitive: the paral-
lelepipeds. Parallelepipeds are frequently present in man-made
environments and they naturally encode the scene’s affine struc-
ture. Any information about their euclidean structure (angles
or ratios of edge lengths), possibly combined with information
about camera parameters, may allow to recover the entire scene’s
euclidean structure. We propose an elegant formalism to incor-
porate such information, in which camera parameters are dual to
parallelepiped parameters, i.e. any knowledge about one entity
provides constraints on the parameters of the others. Hence, the
image of a known parallelepiped defines the camera parameters,
and reciprocally, a calibrated image of a parallelepiped defines its
euclidean shape (up to size). In this paper, we synthesize previ-
ous work on parallelepipeds (Wilczkowiak, 2001; Wilczkowiak,
2002) and propose more elegant and efficient approaches.

Camera and parallelepiped parameters are recovered in two steps.
First, a factorization-based approach is used to compute their in-
trinsic and orientation (rotation) parameters. The usual problems

of factorization methods – missing data and unknown scale fac-
tors – are dealt with rather easily. Then, position and size pa-
rameters are recovered simultaneously using linear least squares.
The use of well-constrained calibration primitives allows to ob-
tain good calibration results even from as little as one image.

Our calibration approach is conceptually close to self-calibration,
especially to methods that upgrade an affine structure to euclidean
(Hartley, 1993; Pollefeys, 1997) or methods considering special
camera motions (Hartley, 1997; de Agapito, 1999; Armstrong,
1994). The way euclidean information on a parallelepiped is used
is also similar to vanishing point based methods (Caprile, 1990;
Cipolla, 1998; Chen, 1999; Kosecka, 2002). Some properties
of our algorithm are also common with plane-based approaches
(Sturm, 1999a; Zhang, 1999; Triggs, 1998; Malis, 2002; Rother,
2002; Sturm, 2000). While more flexible than standard calibra-
tion techniques, plane-based approaches still require either eu-
clidean information or, for self-calibration, many images in gen-
eral position (Triggs, 1998), or at least one plane visible in all
images (Rother, 2002). In this sense, our approach is a gen-
eralization of plane-based methods with euclidean information,
to three-dimensional parallelepipedic patterns. Finally, our ap-
proach can be compared to methods using complex primitives for
scene representation. However, unlike most such methods, we
use the parallelepiped parameters directly to solve the calibration
problem, without requiring non-linear optimization.

After discussing calibration, we show that the proposed method
can be easily combined with an approach for enhancing recon-
structions with primitives other than parallelepipeds (Wilczko-
wiak, 2003a). The complete system allows for both calibration
and 3D model acquisition from a small number of images with a
reasonable amount of user interaction.

2 PRELIMINARIES

2.1 Camera parameterization

We represent cameras using the pinhole model. The projection
of a 3D point

�
to a 2D image point is expressed by ����� � ,

where � is a ���
	 projection matrix, which can be decomposed
as �������� ��� . The ����	 matrix ��� ��� encapsulates the
camera’s pose (extrinsic parameters) in the world coordinate sys-
tem: the rotation matrix � represents its orientation and the vector� ����� its position. The ����� calibration matrix  or, equivalently,� �� � � !��" represents the camera’s intrinsic parameters:

#� $%'&)( * +�,- &).0/ ,- - 1 23
� �� � �  ��" � $% 1 - � +�,- 4�5 � 4�5 /6,� +7, � 475 /8, 4�5 & 5.:9 + 5, 9 4�5 / 5, 23 (1)

where
&)(

and
& .

stand for the focal length, expressed in hori-
zontal and vertical pixel dimensions,

*
is a skew parameter con-

sidered as equal to zero in the following, ; +<,6=�/6,�> are the pixel
coordinates of the principal point and

4 �@?BA?BC is the camera’s
aspect ratio. � represents the IAC (image of the absolute conic)
and is commonly used to express constraints on the intrinsic pa-
rameters. In the following, the term camera axes will be used
for the axes of the camera coordinate system, i.e. the coordinate
system attached to the camera’s optical center, two of them being
parallel to pixel edges and the third one being orthogonal to the
image plane (the optical axis).

2.2 Parallelepiped parameterization

A parallelepiped is defined by twelve parameters: six extrinsic
parameters describing its orientation and position, and six intrin-
sic parameters describing its euclidean shape: three dimension
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Figure 1: Parameterization of a parallelepiped: D6EGF are the edge
lengths; H F I are the angles between non-parallel edges.

parameters (edge lengths EKJ = E 5 and EML ) and three angles between
edges ;NH J 5 = H 5 L = H JOL > . These intrinsic parameters are illustrated in
figure 1. The parallelepiped may be represented compactly by a	P�
	 matrix Q :RTSVUXW YZ6[]\�^ _````acbMdebgfih�dOf bgjih�dOj kk b fmlndOf b jpo fKjrq o dOj o dNfs dNf kk k btj�u s f dOf q o f dNj s f dOf qwv o fxjrq o dOj o dOfzy fs f dOf kk k k \

{x||||}~ �O� �� �
where � is a rotation matrix and � a vector, representing the par-
allelepiped’s pose (extrinsic parameters). The 	���	 matrix ��
represents the parallelepiped’s shape (intrinsic parameters) with:� F I����z�8��H�F I , * F I���������H�F I , H�F I���� -��!� , EMF)� -

.

The matrix �� represents the affine transformation between a cano-
nic cube and a parallelepiped with the given shape. Concretely,
a vertex ;O� 1 = � 1 = � 1 = 1 > � of the canonic cube is mapped, by �� ,
to a vertex of our parallelepiped’s intrinsic shape. Then, the pose
part of Q maps the vertices into the world coordinate system.

Analogous to a camera’s IAC � is the matrix � , defined by:

��� � � � � $% E 5 J E J E 5 �z�6��H J 5 E J E L �z�8��H JOLE J E 5 �m�8�7H J 5 E 55 E 5 E L �z�8��H 5 LE J E L �m�8�7H JOL E 5 E L �z�6��H 5 L E 5L
23

(2)

where
�

is the upper left �P��� matrix of �� .
Hence, there is a symmetry between the intrinsic parameters of
cameras and parallelepipeds (expressions (1) and (2)). The only
difference is that in some cases, the size of a parallelepiped mat-
ters, as will be explained in the following. As for cameras, the
fact that   L�L � 1

allows to fix the scale factor in the relation� �¡ � �  �<" , and thus to extract  uniquely from the IAC � ,
e.g. using Cholesky decomposition. As for parallelepipeds how-
ever, we have no such constraint on its “calibration matrix”

�
,

so the relation �¢� � � � gives us a parallelepiped’s euclidean
shape, but not its (absolute) size. This does not matter in gen-
eral, since we are usually only interested in reconstructing a scene
up to some scale. However, when reconstructing several paral-
lelepipeds, one needs to recover at least their relative sizes.

There are many possibilities to define the size of a parallelepiped.
We choose the following definition, motivated by the equations
underlying our calibration and reconstruction algorithms below:
the size of a parallelepiped is defined as

* �£;N¤p¥m¦ � > JK§�L . This
definition is actually directly linked to the parallelepiped’s vol-
ume:

* L �¨¤c¥m¦ � � Vol ©rª (the factor ª arises since our canonic
cube has an edge length of D ).

3 PROJECTIONS OF PARALLELEPIPEDS

3.1 One Parallelepiped in A Single View

In this section, we introduce the concept of duality between the
intrinsic parameters of cameras and parallelepipeds. Consider
the projection of a parallelepiped’s vertices into a camera. Let

camera

(R, t)

K L

(S, v)

X~[KRSL | KRv+Kt]
~

observed parallelepiped virtual canonical cube

Figure 2: The projection of the canonic parallelepiped (cube) into
the image. Matrices  ,

�
correspond to intrinsic parameters of

camera and parallelepiped and ; � = � > , ;N� = � > correspond to ex-
trinsic parameters of camera and parallelepiped, respectively.« F¬zF®p¯ J�° ° ±³² be the homogeneous coordinates of the canonic cube’s
vertices. Using results from section 2.2, the projection of the cor-
responding vertex in the image is:� F ��� � F �¨ � � � �µ´ � �¶ � 1�· ��¸ ¹iº »¼½ « F (3)

The matrix �¾ will be called the canonic projection matrix. It
represents a perspective projection that maps the vertices of the
canonic cube onto the image points of the parallelepiped’s ver-
tices. This is illustrated in figure 2. Given image points for at
least six vertices, the canonic projection matrix can be computed
(Tsai, 1986), even without prior knowledge on intrinsic or extrin-
sic parameters. Our calibration and pose algorithms are based on
the link between the canonic projection matrix �¾ (which we sup-
pose given from now on) and the camera’s and parallelepiped’s
intrinsic and extrinsic parameters.

Let us consider this in more detail. First, we may identify the rel-
ative pose between camera and parallelepiped in (3), represented
by the following �P��	 matrix:� � � ��´ � �¶ � 1 · � � � � � � 9 � �
Second, let us consider the leading ����� sub-matrix

¾
of the

canonic projection matrix �¾ , which is given by:
¾ ��¿; � � > � .

Due to the orthogonality of the rotation matrices � and � , it is
simple to derive the following relation between the camera’s IAC� and the corresponding entity � of the parallelepiped:¾ � � ¾ ���ÁÀ (4)

This equation establishes an interesting duality between the in-
trinsic parameters of a camera and those of a parallelepiped. It
shows (unsurprisingly) that knowing the parallelepiped’s shape� allows to calibrate the camera. Conversely, knowing the cam-
era’s intrinsic parameters allows to compute the parallelepiped’s
euclidean shape, also from a single image. Moreover, even partial
information about one set of intrinsic parameters allows to form
equations on the other set (Wilczkowiak, 2001).

In the next sections, we generalize the use of this duality for cali-
bration and pose estimation to the case of multiple parallelepipeds
seen in multiple cameras and to the use of partial knowledge
about the camera’s or parallelepiped’s intrinsic parameters. Be-
fore doing so, let us describe a few interesting links between our
and other (self-) calibration scenarios.

Classical self-calibration proceeds usually in two main steps: first,
a projective reconstruction of the scene is obtained from image
correspondences. Then, this is upgraded to a euclidean recon-
struction using the available prior knowledge on intrinsic param-
eters. Sometimes an intermediate upgrade to an affine reconstruc-
tion is performed.

In our scenario, we have a 3D reconstruction of the scene al-
ready from a single rather than multiple images, which is further-
more of affine rather than projective nature: we know that the ob-



served parallelepiped’s shape is that of a cube, up to some affine
transformation. Analogously, our canonic projection matrix is
equal to the true one up to an affine transformation. Hence, self-
calibration in our scenario does not need to recover the plane at
infinity, which is known to be the hardest part of self-calibration.
Indeed, our calibration method is somewhat similar to the affine-
to-euclidean upgrade of stratified self-calibration approaches, e.g.
(Hartley, 1993; Pollefeys, 1997).

Similarities also exist with (self-) calibration approaches based
on special camera motions: calibrating a rotating camera (Hart-
ley, 1997; de Agapito, 1999) is more or less equivalent to self-
calibrating a camera in general motion once affine structure is
known. Other approaches recover the affine structure by first per-
forming pure translations and then general motions (Armstrong,
1994; Pollefeys, 1996).

Our approach is similar to all these. In the following sections we
show how it allows to efficiently combine the usual self-calibration
constraints with constraints on scene structure. This enables to
perform calibration (and 3D reconstruction) from very few im-
ages; one image may actually be sufficient.

3.2 Â Parallelepipeds in Ã Views

Let us now consider the general case where Â parallelepipeds are
seen by Ã cameras. Let �¾ FgÄ be the canonic projection matrix
associated with the projection of the Å th parallelepiped in the Æ th
camera and Ç FgÄ a scale factor such that equation (3) can be written
as a component-wise equality:Ç7FgÄÈ�¾ FgÄT�� F � � F � F ��´ � Ä � Ä¶ � 1É· �� Ä (5)

We may gather these equations for all Ã cameras and Â paral-
lelepipeds, into the following single matrix equation:ÊËÌ ÇÈJ�JB�¾ J�J ÍzÍmÍ ÇÈJOÎ �¾ JOÎ

...
. . .

...Ç7ÏXJ �¾ ÏXJÐÍzÍmÍÑÇ7Ï�Î �¾ Ï�Î
Ò ÓÔ¸ ¹iº »Õ jKÖ�×8Ø³Ù
�

ÊËÌ  J �n� J � J �
...ÚÏ � � Ï � Ï �

Ò ÓÔ¸ ¹nº »Û jKÖ�×8Ø
Ü ´ � J � J¶ � 1 · �� JÝÍzÍzÍ ´ � Î � Î¶ � 1 · �� ÎcÞ¸ ¹iº »ß Ø�×8Ø³Ù

(6)
This equation naturally leads to the idea of a factorization-based
calibration algorithm, which will be developed in section 4. It is
based on the following observation. The matrix à contains all in-
formation that can be recovered from the parallelepipeds’ image
points alone (below, we discuss the issue of computing the scale
factors Ç FgÄ ). In analogy with (Tomasi, 1992), we call it measure-
ment matrix. Since the measurement matrix is the product of a
“motion matrix” á of 4 columns, with a “shape matrix” â of 4
rows, its rank can be 4 at most (in the absence of noise).

We might aim at extracting intrinsic and extrinsic parameters di-
rectly from a rank-4-factorization of à . One step of factorization-
based methods for structure and motion recovery is to disam-
biguate the factorization’s result: in general, for a rank- ã -factori-
zation, motion and shape are recovered up to a transformation
represented by an ãÈ� ã matrix (here, this would be a 3D projective
transformation). The ambiguity can be reduced using e.g. con-
straints on intrinsic camera parameters (see details in section 4).
In our case, we observe that the 	���	 sub-blocks of the shape
matrix â are affine transformations. We would have to include
this constraint into the disambiguation, but nevertheless, the re-
sult would not in general exactly satisfy the affine form for these
blocks. We thus cut the problem in two steps, which allows to

guarantee that the sub-blocks of the shape matrix be affine trans-
formations. In the first step (sections 4.1–4.5), we consider a
“reduced measurement matrix” consisting of the leading ���ä�
sub-matrices of the �¾ FMÄ . We extract intrinsic and orientation
parameters of our cameras and parallelepipeds based on a rank-
3-factorization and a disambiguation stage using calibration and
scene constraints. In the second step (section 4.6), we then esti-
mate the position of cameras and parallelepipeds, as well as the
parallelepipeds’ size.

4 CALIBRATION AND POSITIONING

4.1 Problem Formulation

Up to section 4.5, we concentrate on the computation of the cam-
eras’ and parallelepipeds’ intrinsic parameters and orientation (ro-
tation), based on equation (6) and the observations concerning it,
cf. the previous section. As mentioned, we first restrict our atten-
tion to the leading �!�X� submatrices of the �¾ FMÄ , like in section 3.1
for the establishment of the duality between intrinsic parameters
of cameras and parallelepipeds. We thus deal with the following
subpart of equation (6):åæç)è dxd³é7dxd ênê�ê è dOÙëé7dOÙ.

.

.
. . .

.

.

.è Öìd³épÖìdíênê�ê è ÖÁÙ�épÖ Ù
î ïð~ �O� �ñ'òjxÖ�×�jxÙ
S åæç ó dnôëd.

.

.ó Ö�ô8Ö
î ïð~ �O� �õ òjKÖ�×�j
ö W di÷zd ê�ênê W Ùp÷iÙ8ø~ �N� �ù òjz×�jxÙ

(7)

In the following, we describe the different steps of our factoriza-
tion-based method. We first deal with the problem of missing
data. Then we describe how to compute the scale factors Ç FgÄ ,
needed to construct the measurement matrix àûú . The factoriza-
tion itself is described in section 4.4, followed by the most im-
portant aspect: disambiguating the factorization’s result in order
to extract intrinsic and orientation parameters.

In section 4.6, we then describe the subsequent computation of
position parameters and parallelepiped size The complete cali-
bration and positioning algorithm is summarized in section 4.7.

4.2 Missing Data

As is usual with factorization approaches, our method might suf-
fer from the problem of missing data, i.e. missing

¾ FMÄ . Indeed,
in practice, the condition that all parallelepipeds are seen in all
views is usually not satisfied. However, each missing matrix

¾ FMÄ
can be deduced from others if there is one camera ü and one par-
allelepiped E such that

¾ Iný , ¾ ImÄ and
¾ Ftý are known. The missing

matrix can be computed using:¾ FgÄ � ¾ Ftý ; ¾ Iiý > ��" ¾ ImÄ À (8)

Several equations of this type can be used simultaneously to in-
crease the accuracy. Care has to be taken since (8) is defined
up to scale only. This problem can be circumvented very simply
though, by normalizing all

¾ FgÄ to unit determinant.

These observations motivate a simple recursive method (Sturm,
2000) to compute missing matrices

¾ FgÄ : at each iteration, we
compute the one for which most equations of type (8) are avail-
able. Previously computed matrices

¾ FgÄ can be involved at every
successive iteration of this procedure.

4.3 Recovery of Scale Factors

The reduced measurement matrix à ú in (7) is, in the absence of
noise, of rank 3, being the product of a matrix of 3 columns and
a matrix of 3 rows. This however only holds if a correct set of
scale factors Ç FgÄ is used. For other problems, these are often non
trivial to compute, see e.g. (Malis, 2002; Sturm, 1996). In our
case however, this turns out to be rather simple.

Let us first write þ F �ÿ F � F and � Ä � � Ä � Ä . What we know is
that (in the absence of noise), there exist matrices þìF = Æ�� 1 ÀtÀ Ã



and � Ä = Å�� 1 ÀtÀ Â such that: ��Æ = Å�� ¾ FgÄ � þ F�� Ä . Since this
equation is valid up to scale only, we also have: ��Æ = Å�� ¾ FMÄ �;��pFþ F > ;�� Ä � Ä > for any non-zero scale factors �wF = Æ�� 1 À�À Ã and��Ä = Å�� 1 À�À Â . Consequently, this is also true for the scale factors�pF and � Ä that satisfy:¤p¥m¦�;�� F þ F > �V¤c¥m¦È;�� Ä � Ä > � 1 À
Note that we do not need to know these scale factors; it is suffi-
cient to know they exist!

Hence, there exist scale factors �pF and � Ä with:��Æ = Å	� ¾ FMÄT�
� F ��Ä�þ F �ÈÄ (9)��Æ = Å	�ë¤p¥i¦Ú;��cF�� Ä þ F�� Ä > � ¤p¥m¦È;��cFNþ F > ¤c¥m¦Ú;�� Ä � Ä > � 1
(10)

As for the sought for scale factors Ç FgÄ , we use those that give¤p¥m¦È;OÇ FMÄ ¾ FMÄ > � 1
. They are computed as:Ç FgÄ �¨;N¤p¥m¦ ¾ FMÄ > � JK§�L

Due to (9), we have Ç FgÄ ¾ FgÄ ��cF�� Ä þ F�� Ä and since the determi-
nants of both sides of this equation are equal (they are both equal
to 1, cf. the definition of Ç FMÄ and (10)), the equation not only
holds up to scale, but component-wise (two non-singular �
�#�
matrices that are equal up to scale and whose determinants are
equal, are also equal component-wise):�7Æ = Å��ëÇ FgÄ ¾ FgÄ �¨;�� F þ F > ;�� Ä � Ä >
This means that the measurement matrix in (7), with the scale
factors Ç FMÄ as described here, is of rank 3: it is the product of one
matrix of 3 columns (the � F þ F stacked on top of each other) and
one of 3 rows (the � Ä � Ä side-by-side).

In the following, we assume that the
¾ FgÄ are already scaled to

unit determinant, i.e. that Ç FMÄ � 1
. Equation (7) becomes:åæç é7dxd ê�ê�ê é7dOÙ.

.

.
. . .

.

.

.épÖ!dÝê�ê�ê épÖÁÙ
î ïð~ �O� �ñ'òjxÖ�×�jxÙ
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.

.� Ö ó Ö�ô8Ö
î ïð~ �N� �õ òjxÖ�×�j
ö � d W dn÷zd ê�ênê � Ù W Ùp÷iÙ�ø~ �N� �ù òjz×�jxÙ

(11)

The scale factors �pF and � Ä do not matter for now; all that counts
is that they exist and that the measurement matrix à ú containing
the normalized

¾ FgÄ , is of rank 3 at most, and can thus be factor-
ized as shown below.

4.4 Factorization

As usual, we use the SVD (Singular Value Decomposition) to
obtain the low-rank factorization of the measurement matrix. Let
the SVD of à ú be given as:à ú L�Ï��pL�Î¿���ÚL�Ï��cL�Î���L�Î��cL�Î�� �L�Î��cL�Î
The diagonal matrix � contains the singular values of à ú : ��J��� 5 � ÍmÍzÍ�� � L�Î . In the absence of noise, à ú is of rank 3 at most
and ��!��¢ÍzÍzÍ7�"�7L�Î�� -

. If noise is present, à ú is of full rank
in general. Setting all singular values to zero, besides the three
largest ones, leads to the best rank-3 approximation of à ú (in the
sense of the Frobenius norm).

In the following, we consider the rank-3 approximation of à ú (for
ease of notation, we denote this also as à ú ):à ú �"�ÚL�Ï��cL�Î diag ;���J = � 5 = ��L = - = ÀzÀzÀ = - > � �L�Î��cL�Î
In the matrix product on the right, only columns of � and rows of� � corresponding to non-zero �cI contribute. Hence:à ú �"� ú L�Ï��cL diag ;��ÈJ = � 5 = �7L >$# � ú �&% L'�cL�Î
where � ú (resp. � ú ) consists of the first three columns of � (resp.� ). Let us define � ú ú �(� ú diag ;*) � J = ) � 5 = ) � L > and � ú ú �� ú diag ;*) �ÈJ = ) � 5 = ) ��L > . Thus we have: à ú �+� ú ú � ú ú � . This
represents a decomposition of the measurement matrix à ú into a
product of a matrix of 3 columns ( �Úú ú ) with a matrix of 3 rows

( �ìú ú � ). Note however, that this decomposition is not unique. For
any non-singular ��� � matrix , , the following is also a valid
decomposition: à ú � # � ú ú , �<" % # ,-� ú ú �.%
Making the link with equation (11), we obtain:ÊËÌ � J  J � J

...�pÏ�ÚÏ � Ï
Ò ÓÔ�/ � J � J � J ÍzÍzÍ0� Î � Î � Î&1 � # � ú ú , ��" % # ,-� ú ú �&%

(12)

Let us decompose matrices � ú ú and � ú ú in ��� � submatrices:��ú ú � � � � � J ÍmÍzÍ2� � Ï � and �!ú ú � � � � � J ÍzÍzÍ3� �Î � . Equation (12) thus
becomes:ÊËÌ ��J� J � J

...�pÏ�ÚÏ � Ï
Ò ÓÔ / � J � J � J ÍzÍzÍ�� Î � Î � Î 1 � ÊËÌ � J4, ��"

...�ÚÏ5,:�<"
Ò ÓÔ / ,-� � J ÍzÍzÍ�,6� �Î 1

(13)

How to estimate , is explained in section 4.5. Once a correct es-
timate is given, we can directly extract the matrices þ F �
� F  F � F
and � Ä �7� Ä � Ä � Ä , from which in turn the individual rotation
and calibration matrices can be recovered by Cholesky or QR-
decompositions. The Cholesky decomposition of þ!Fþ � F e.g., re-
sults in an upper triangular matrix � F �8� F  F . Based on the
requirement  ûFN¬ L�L�� 1

, we can compute the unknown scale fac-
tor � F as � F �:9 F¬ L�L . The calibration matrix is finally obtained
as ÚF)� J;2< � F . Note that in overconstrained situations, the com-
puted calibration matrices will not in general exactly satisfy the
constraints used for their computation; the best way of dealing
with this may be a constrained non-linear optimization.

As for parallelepipeds, there is no constraint similar to   FN¬ L�L � 1
on the entries of their calibration matrices

� Ä . Hence, we can
compute them only up to the unknown scale factors � Ä . This
means that we can compute the shape of each parallelepiped, but
not (yet) their size (or, volume). In section 4.6, we explain how
to compute their (relative) size.

We now briefly discuss the structure and geometric signification
of matrix , . Note that , actually represents the non-translational
part of a 3D affine transformation (its upper left �:�µ� submatrix).
This is just another expression of the previously mentioned fact
that due to the observation of parallelepipeds, we directly have an
affine reconstruction (of scene and cameras).

The matrix , can only be computed up to an arbitrary rotation
and scale: for any rotation matrix � and scale factor

*
, , ú � * � ,

can not be distinguished from , in the factorization since we
have: , ú �<" , ú ��, ��" , . This ambiguity is natural and expresses
the fact that the global euclidean reference frame for the recon-
struction of parallelepipeds and cameras can be chosen arbitrar-
ily. Without loss of generality, we thus assume that , is upper
triangular. This highlights the fact that our estimation problem
has only 5 degrees of freedom (6 parameters for an upper trian-
gular �:�µ� matrix minus one for the free scale) which can also be
explained in more geometric terms: as explained above, our prob-
lem is somewhat equivalent to self-calibration with known affine
structure. The 5 degrees of the problem can thus be interpreted as
the coefficients of the absolute conic on the plane at infinity.

4.5 Disambiguating the Factorization

We now deal with the estimation of the unknown transformation, appearing in equation (13). As will be seen below, and as is
often the case in self-calibration problems, it is simpler to not di-
rectly estimate , , but the symmetric and positive definite �����
matrix = defined as: =��>,Á�	, . (We may observe that = rep-
resents the absolute conic on the plane at infinity.) Once = is



estimated, , may be extracted from it using Cholesky decompo-
sition. As described above, , is defined up to a rotation and scale,
so the upper triangular Cholesky factor of = can directly be used
as the estimate for , .

The matrix = (and thus , ), can be estimated in various ways, us-
ing any information about the cameras or the parallelepipeds, e.g.
prior knowledge on relative positioning of some entities. Here,
we concentrate on exploiting prior information on intrinsic pa-
rameters of cameras and parallelepipeds. In the following, we
consider two types of information, first for cameras and then for
parallelepipeds:?

knowledge of the actual value of some intrinsic parameter
for some camera or parallelepiped.?
knowledge that two or more cameras (or parallelepipeds)
have the same value for some intrinsic parameter. We also
sometimes speak of “constant” intrinsic parameters.

4.5.1 Using Information on Camera Intrinsics. From equa-
tion (13), we have: � F  F � F �:� F , ��" . Due to the orthogonality
of � F , we get: � 5F ÚF� � F¸ ¹iº »@ q�A< �B�ÚFC, �<" , � �¸ ¹iº »D q�A � � F . Neglecting the un-

known scale factor �pF and taking the inverse of both sides of the
equation, we obtain (note that the �)F are not orthogonal in gen-
eral): � FÈ�"� � �F =6� ��"F À (14)

We are now ready to formulate constraints on = based on infor-
mation on the cameras’ intrinsics.

Known values of camera intrinsics Knowing the aspect ratio
and principal point coordinates of a camera Æ and substituting � F
according to (14) and (1), the following linear constraints on =
can be written:4 5F # � � �F =6� ��"F % J�J � # � � �F =6� ��"F % 5�5 � -+ F¬ , # � � �F =6� ��"F % J�J 9 # � � �F =6� ��"F % JOL � -/ F¬ , # � � �F =6� ��"F % 5�5 9 # � � �F =6� ��"F % 5 L � -
A known value of the focal length

&Á.
can only be used to for-

mulate linear equations if all the other intrinsics are also known.
In such a fully calibrated case, other algorithms (Sturm, 1999a)
might be better suited, so we neglect that case in the following.

Constant camera intrinsics In the case when two cameras Æ
and ü are known to have the same, yet unknown value for one
intrinsic parameter, we in general obtain quadratic equations on= . For example, the assumption of equal aspect ratios leads to the
quadratic equation:EGF q [<IH F q�A<KJ dKd EGF q [L H F q�AL J fxf S EMF q [L H F q�AL J dxd EGF q [<IH F q�A<NJ fKfPO
The situation is different if all intrinsic parameters of two (or
more) views are known to be identical. In that case, we can obtain
linear equations instead of quadratic ones, as shown in (Hartley,
1997): the matrices � F are first scaled such as to have unit deter-
minant. Then we can write the following component-wise matrix
equality between any pair ;Æ = ü > of views:� � �F =6� ��"F � � � �I =-� �<"I �IQ8L'�pL
This represents R linear equations on = for each pair of views,
among which 	 are independent.

4.5.2 Information on Parallelepipeds. From equation (13),
we have: ��Ä6�wÄ � Ä��$,-�!�Ä . Due to the orthogonality of �7Ä , we
get: � 5Ä � � Ä � Ä¸ ¹iº »SUT �V� Ä , � ,¸ ¹nº »D � �Ä . Neglecting the unknown factor � Ä :� Ä �V� Ä =�� � Ä À

Knowledge on parallelepiped intrinsics can be used in analogous
ways as for camera parameters. For example suppose we know
the length ratio of two parallelepiped edges ã ( . � ý Aý C . Referring
to (2), we get the following linear equation on = :ã 5Ä�¬ ( . ��Är¬ .i. � �ÚÄ�¬ (6( ��ã 5Är¬ ( . # �ìÄC=�� � Ä % .m. � # �ìÄW=�� � Ä % (6( � - À
Similarly, the assumption that H ( . is a right angle ( �m�8��H ( . � -

)
gives also a linear equation:��Är¬ ( . � # �ìÄC=�� �Ä % ( . � - À
A known angle H ( . that is not a right angle does not lead to a
linear, but a bilinear equation (Wilczkowiak, 2001).

Like for cameras, quadratic equations may be derived from as-
sumptions about two or more parallelepiped having the same, yet
unknown value for some intrinsic parameter. Also, two paral-
lelepipeds having the same shape give a set of linear equations
on = , even if the parallelepipeds are of different size. Equal size
of parallelepipeds gives an additional linear equation, but which
constrains relative pose rather than intrinsic parameters.

Currently, we only exploit constraints on individual parallelepi-
peds (right angles and length ratios), since they are easier to pro-
vide for the user.

4.6 Estimating position and size

In this section we propose an algorithm for estimating the (rela-
tive) positions of the cameras and parallelepipeds, as well as the
(relative) sizes of the parallelepipeds. Consider equation (5):Ç FgÄ �¾ FgÄ �¨ F �n� F � F �µ´ � Ä � Ä¶ � 1 · �� Ä
The leading �P�
� sub-part of the two sides of the equation were
used above to compute the intrinsic camera parameters )F and
the rotation matrices � F and � Ä . The parallelepipeds’ intrinsic
parameters

� Ä were computed up to scale only, i.e. up to the
“size” of the parallelepipeds.

Let us consider this in detail. In the following, we suppose that
the matrices �¾ FgÄ are already scaled such that the sub-matrices¾ FMÄ have unit determinant, as in section 4.3, i.e. Ç FMÄ � 1

. Let X�F
and X� Ä be the calibration matrices scaled to unit determinant. We
know all matrices in the following equation:

¾ FgÄ �$X�F � FN� Ä X � Ä .
What we don’t know is the size

* Ä of the parallelepipeds. Let us
observe the following:�� Ä � ´ * Ä X� Ä ¶¶ � 1r· � ´ X � Ä ¶¶ � 1 © * Ä ·
We may now rewrite equation (5):�¾ FMÄT�YX F ��� F � F � ´ � Ä � Ä¶ � 1É· ´ X� Ä ¶¶ � 1 © * Ä ·
Let Z FMÄ be the fourth column of �¾ FgÄ . We have:

Z FMÄ � X F � � F � F ��´ � Ä � Ä¶ � 1É· ´ ¶1 © * Ä · � 1* Ä X F ; � F � Ä 9 � F >
From this, we get an equation that is linear in all unknowns (

* Ä ,� F and � Ä ): * Ä[ZÈFMÄ � X F � F �ÚÄ � X F � F � ¶
(15)

The unknowns can be computed via linear least squares: mini-
mizing the sum of the squared \ 5 norms of the vectors on the
left hand side of (15), over all camera–parallelepiped pairs. The
estimates for the

* Ä , � F and � Ä are of course defined up to a sin-
gle global scale. At this stage, missing data are not an issue any
more, contrary to the computations in sections 4.2 and 4.4.



4.7 Complete Algorithm

1. Estimate the canonical projection matrices �¾ FgÄ .
2. Compute missing

¾ FgÄ .
3. Normalize the

¾ FMÄ to unit determinant.

4. Construct the measurement matrix and compute its SVD.

5. From the SVD, extract the matrices �)F and � Ä .
6. Establish a linear equation system on = based on prior knowl-

edge of intrinsic parameters of cameras and parallelepipeds
and solve it to least squares.

7. If = is positive definite extract , from = using Cholesky
decomposition.

8. Extract the ÚF = � F = � Ä = � Ä from the �ÚF�,:�<" and the ,-� � Ä us-
ing e.g. QR-decomposition. Note that at this stage the

� Ä
can only be recovered up to scale, i.e. the parallelepipeds’
(relative) sizes remain undetermined.

9. Let X�F��¡ÚF with ¤p¥i¦ XÚF�� 1
, and Z FMÄ the fourth column

of �¾ FgÄ . Solve via linear least squares for the
* Ä , �ÚÄ and � F ,

over all available equations of type (15).

This algorithm allows to calibrate a set of cameras using very
little prior knowledge (see (Wilczkowiak, 2004) for examples of
minimal cases). Indeed, as mentioned in this section, all con-
straints provided by knowledge on cameras and parallelepipeds
can be expressed in terms of the ] independent parameters of the
matrix = . Thus, to calibrate the whole system it is in general suf-
ficient to know values of a total of only five intrinsic parameters
of cameras or parallelepipeds. That is why in practice, we only
use the associated linear equations. In most cases they are suffi-
cient to find a unique solution. In some minimal cases, when the
available linear constraints are insufficient, quadratic equations
might be used to find a unique solution or a finite set of solutions.

There exist singular configurations, i.e. relative positions be-
tween cameras and parallelepipeds, for which calibration fails.
These depend on the type of available constraints; singularities
for the cases of one parallelepiped seen in one or many views, are
described exhaustively in (Wilczkowiak, 2004).

5 3D RECONSTRUCTION

The calibration approach presented in section 4 is well adapted
to interactive 3D modeling from a few images. It has a major
advantage over other methods: simplicity. Indeed, only a small
amount of user interaction is needed for both calibration and re-
construction: a few points must be picked in the image to define
the primitives’ image positions. It thus seems to be an efficient
and intuitive way to build models from images of any type, in
particular from images taken from the Internet for which no in-
formation about the camera is known.

To reconstruct scene elements not belonging to parallelepipeds,
but being constrained by bilinear relations such as collinearity,
coplanarity or parallelism, we have implemented a multi-linear
reconstruction method (Wilczkowiak, 2003a). The reconstruc-
tion step is independent from the calibration method, although it
uses the same input in the first step. Interestingly, it allows 3D
models to be computed from non-overlapping photographs (see
e.g. figure 6).

In this section we summarize our reconstruction method. First,
we propose a method for extraction of uniquely defined variables
in linear systems, which is the basis of the reconstruction method.
Then we describe shortly the algorithm and certain related prac-
tical issues. Results are presented in the next section.

5.1 Extraction of Uniquely Defined Variables in Linear Sys-
tems

Consider the following linear equation system:þ Ï��cÎ�^ Î �I_ Ï = (16)

and assume that the solution for ^ is not unique. We then want
to determine if there exists a subset of coefficients of ^ which
can nevertheless be unambiguously estimated. This proves to be
very useful in many approaches based on linear constraints, such
as intrinsic and extrinsic camera calibration or 3D reconstruction,
as described below.

Our approach is based on the analysis of the nullspace of matrixþ . Using Singular Value Decomposition (Golub, 1989), matrix þ
can be decomposed as follows:þ Ï��cÎ¿�"��Ï��pÎ.` Î��pÎ&� �Î��pÎ =
where the matrices � and � are column-orthogonal and ` is di-
agonal, with the singular values a F of A on its diagonal, in de-
creasing order. Let ^ , be some vector satisfying the equation
system. Then, any vector ^ satisfying (16) must be of the form:

^ � ^cb 9 ÎdFfehgGiÚJ Ç7FN� F = Ç7FÁ�kj�À (17)

where vectors � F are the columns of � corresponding to zero sin-
gular values a F , constituting the nullspace of þ and Ç�F are arbi-
trary scalar factors, and ã state for rank of matrix þ .

The solution for a coefficient of ^ , say ^ ;NÅ > , is unique, if

�'Ç7F-� ^ ;NÅ > � ^cb ;NÅ >i=
which implies that

�'Ç F � ÎdFfelg�iÚJ Ç F � F ;NÅ > � -
and is equivalent to:

��ÆÁ�Nm�ã 9 1 = ÀzÀzÀ = Âon���� F ;NÅ > � - À (18)

Hence, all variables p'Ä � ^ ;NÅ > corresponding to rows q8Ä of
matrix � � 1 ÀmÀzÀ�Â = ã 9 1 ÀzÀmÀ�Â�� , such that rGq Ä rP� -

, have unique
values p Ä � ^ , ;NÅ > . Geometrically, this means that the axis
represented by vector s Î Ä of the solution space j Î corresponding
to such a sufficiently constrained variable is orthogonal to the
nullspace of matrix þ .

Choice of thresholds. Using equation (18), it is in principle
straightforward to split the unknowns of the system into well-
defined and ambiguous ones. Note that this requires deciding if
certain numerical values (singular values and coefficients � F ;NÅ > )
are equal to zero. It is well known that due to noise and round-off
errors, the numerically computed singular values of a matrix are
never exactly zero. We thus use the approach proposed in (Press,
1988; Golub, 1989; Bjorck, 1996) where singular values a F are
set to

-
when they satisfy the following condition: a�Futvwa�J > ,

for a threshold v . Similarly, the detection of the well-constrained
set of variables is based on the comparison of elements � F ;NÅ >
with a threshold v J . Of course, the results of the method de-
pend on the choice of the thresholds v and v�J , which may depend
themselves on the underlying application (in our experiments, the
choice for v�J was not found to be critical). If thresholds are too
large, then there is a possibility that some variables which are suf-
ficiently constrained, will be classified as underconstrained. On
the other hand, if they are too small, some underconstrained vari-
ables will be classified as having been well estimated, negatively
influencing the overall results of an underlying algorithm.



Applications and extensions. The application domain of the
proposed approach covers all computer vision algorithms based
on linear algebra. In particular, it can be useful in any calibration
algorithm based on linear equations (see (Wilczkowiak, 2003a)
for an example for plane-based calibration), as well as for recon-
struction methods, as explained in the next section.

A main advantage of the proposed approach is simplicity. The
test for underconstrained variables needs very small additional
computation effort. Indeed, the SVD of the constraint matrix, is
usually computed anyway to solve the linear problems. A main
drawback is the reliance of the approach on the predefined thresh-
olds. It would be advantageous to incorporate to the method a
statistical analysis and uncertainty propagation of the data.

5.2 Multi-linear Reconstruction System

In this section we propose an approach for interactive scene mod-
elling. First, in section 5.2.1 a brief overview of available objects
and constraints is given, followed by a general study of how thay
can be exploited in the system. Then in section 5.2.2 the algo-
rithm implemented in our system is detailed. Finally, an approach
for incorporation of soft and hard constraints into the system is
given in section 5.2.3.

5.2.1 Overview. The scene is modelled using points, lines and
planes. Three general types of constraints between objects are
considered:

Projections. Every known projection of a point or a line gives
linear constraints on the 3D coordinates of the correspond-
ing object. Reciprocally, known 3D points or lines give lin-
ear constraints on the camera projection matrices. More-
over, geometrical constraints or known plane homographies
allow to constrain directly the intrinsic camera parameters.

Bilinear constraints. Incidence, parallelism and orthogonality
between two objects ^ , x can be expressed as bilinear
forms y7; ^ = x > � -

(Heuel, 2001; Poulin, 1998; Hartley,
2000). Thus, knowing coordinates of one of the objects in-
duces linear constraints on the other one.

Affine point configurations. Relations like points lying on a par-
allelogram or symmetry are useful in practice and are linear
in terms of all the involved objects.

The scene is represented by a graph whose nodes are objects and
whose edges are constraints. For example, four coplanar points
will be represented by five nodes (4 points and 1 plane) and 4
incidence constraints (each point with the plane). Except for the
affine point configurations, all the geometrical relations incorpo-
rated into the system involve two objects of different types and
can be used to constrain any of the related objects. These relations
are bilinear with respect to coordinates of the two related objects.
Thus, they can be used in a linear framework only when at least
coordinates of one of the involved objects are known. For exam-
ple, known 3D positions of points can be used simultaneously to
constrain the camera projection matrices (Tsai, 1986) as well as
calibrated cameras alone or together with some prior scene infor-
mation can be used simultaneously to compute 3D points posi-
tions (Hartley, 2000; Shum, 1998; Robertson, 2000; Grossmann,
2002). However, if a method proceeds in a single step, it is possi-
ble that not all the accessible data is used. For example, it is not
possible to impose the orthogonality of two scene directions and
use them in the same step to constrain the 3D scene points. Sim-
ilarly, when a 3D line direction is not known, it is not possible to
use the collinearity constraint on the associated points.

There are two reasons why the extraction of the sufficiently con-
strained variables in the system defined above is crucial for the
efficiency of the algorithm. Firstly, at each iteration undercon-
strained variables may exist. Especially at initial iterations, only

few constraints are active: the coordinates of 3D lines and planes
are still unknown, thus only the projection and symmetry/paralle-
logram constraints are active. Also, even when the reconstruction
process is in an advanced stage, it is common that some objects
are underconstrained due to missing or redundant data. By redun-
dant data we mean that the result is very sensitive to noise (e.g. 2
projections available for a 3D point, but for 2 views with a very
small baseline; or, a 3D point defined to be the intersection of a
line and a plane, but when these two are near parallel).

Secondly, and contrary to existing approaches, our system al-
lows constraints influencing several objects at once, which means
that equation systems to be solved may contain simultaneously
well constrained and underconstrained unknowns. Without se-
lecting the solvable subset of unknowns, one would either prop-
agate wrong values to subsequent iterations, or would have to
stop the whole algorithm. In the following, we give details on
the implementation of our algorithm and explain, how the intro-
duced geometrical dependencies can be treated as soft or hard
constraints. The experimental evaluation of the method can be
found in (Wilczkowiak, 2003a; Wilczkowiak, 2004). All models
illustrating our calibration approach as well as initial values used
for the reconstruction approach, were computed using the above
method.

5.2.2 Algorithm. In the previous section, we have detailed
the constraints used in the system and sketched how they can be
exploined for the reconstruction. Let us now consider some prac-
tical issues concerning the algorithm’s implementation. First, we
use precalibrated cameras and do not update their parameters dur-
ing the reconstruction process, but as suggested in the last section,
it is easy to add a re-calibration step to the system. Second, due
to the fact that any of the linear constraints used in the system do
not involve both points and lines or planes at the same time, point
features and line and plane features are computed in two separate
steps. Computing line and plane features together allows, if de-
sired, to represent parallel line and plane normal directions by a
single vector and use the constraints on lines and planes simulta-
neously. Finally, we propose this reconstruction algorithm:

Algorithm 1: Iterative Reconstruction Algorithm

1: while !stop condition do
2: for objects=points,lines+planes: do
3: N:= z ÎFfe)J nb of coordinates(objects[ Æ ])
4: initialize an empty linear equation systemþ , ��{u|}{u�<J ��� , �<J
5: compute the indexing function (bijection)y~� idx � ;Æ = ü >G� idx � � 1 ÀzÀzÀ N � = where idx is the

index in | of the ü -th coordinate of the Æ -th object.
6: for all constraint � � ÅB� : do
7: compute ;þ ÄÏ T ��{ =4� ÄÏ T �<J > � �

equations ; � � ÅB� .type
= � � Åë� .objects

>
8: add equations to the system:þ � � Ü þþ Ä Þ � Ä � � Ü �� Ä Þ
9: end for

10: solve þ | ���
11: for idx=

1 ÀzÀzÀ�� : do
12: if variable computed(idx) then
13: set ;Æ = ü > � �"y7; idx

>
14: set objects[ Æ ].coords[ü ]:=X(idx)
15: end if
16: end for
17: end for
18: end while



5.2.3 Soft and Hard Constraints. While defining the geo-
metric constraints, the user might wish to enforce some “highly
reliable” constraints in an exact manner, instead of incorporat-
ing them in a least squares computation. This of course is only
possible if these constraints do not contradict one another.

Let us consider a system with Ã equations, where ã of them are to
be respected exactly. Without loss of generality, we can permute
the rows of A and the coefficients of B and write:þ Ï��pÎ¿� Ü þw�cg[�pÎþ ú � Ï � g��3�cÎ Þ � �'Ï��pÎ¿� Ü �l�	g[�pÎ� ú � Ï � g��3�cÎ Þ (19)

where þ�� and �l� correspond to equations to be respected exactly
and þ ú � ú to equations whose residuals are to be minimised (sub-
ject to the exact constraints), i.e.:

find the vector X minimizing the function� ; ^ > �"rnþ ú ^ � _ ú r
and satisfying the linear constraints þ�� ^ �I_�� .

The solution to this problem can be found using constrained op-
timization techniques, e.g. Langrange multipliers (see e.g. (Gill,
1989)). (Shum, 1998) proposes to use the properties of QR fac-
torisation to solve this problem. We propose another method,
based on the SVD (see also (Hartley, 2000), Appendix 5).

Let us consider the system þ ��^ ��_ � . As mentioned above, the
set of solutions can be expressed using the SVD of þ�� :

^�� � ^ , � 9 z Î Ä�ehg�i)J Ç Ä � Ä � Ç Ä ��j �^ , � ��þ i� _�� � (20)

All vectors ^ � respect the equations
1 ÀzÀ�À³ã exactly. Now the res-

olution of the system þ ^ ��_ is reduced to finding coefficientsÇ Ä such that ^ � is satisfying the equation þ ú�^ ���(_ ú in the
optimal way (usually, least squares).

Using equation (20) we can reformulate the problem:þ ú ^�� � _ ú� þ ú þ i� _ � 9 þ ú ; ÎdÄ�elg�iÚJ Ç Ä � Ä > � _ ú
� � ò òº »n¸ ¹þ ú / � g�iÚJ ÍmÍzÍe� Î 1 ÊËËËÌ Ç�gGiÚJÇ gGi 5

...Ç7Î
Ò ÓÓÓÔ � � ò òº »n¸ ¹_ ú ��� ú þ i� _��

This is again a linear minimisation problem wich can be solved
using the SVD decomposition. The undetermined values can be
detected like described in the last section. The advantage over
using e.g. Lagrange multipliers, is that here, the equation system
is of smaller size.

6 EXPERIMENTAL RESULTS

Experiments with synthetic data are presented in (Wilczkowiak,
2004). Their main goal was to study performance of the calibra-
tion algorithm in the proximity of singular configurations. In this
paper, due to lack of space, we only report on experiments with
real images, for indoor and outdoor scenes. These examples cor-
respond to situations where automatic methods are bound to fail:
small sets of images are used and occlusions are frequent. Each
reconstruction was performed in two steps: first, one or more par-
allelepipeds were used to calibrate the intrinsic and extrinsic cam-
era parameters; second, scene points and geometric constraints
were used for the reconstruction (cf. section 5). Results from
single as well as multiple images are shown.

Kio towers. Reconstruction was based on � images and D cali-
bration primitives. One of the images used for the reconstruction
is shown in figure 3 (left). Information used for calibration were:D right angles in each tower, zero camera skew, unit aspect ra-
tio and centered principal point. The reconstructed cameras and
primitives are shown in figure 3.

Figure 3: Kio towers in Madrid: original image and reconstructed
model and camera poses.

Notre-Dame square: Reconstruction from one image. The
image and the calibration parallelepiped are shown in figure 4
(left). Prior information used for calibration were: right par-
allelepiped angles, zero camera skew and principal point in the
image center. The final model is composed of 42 points, 3 par-
allelepipeds, 4 parallelograms and 4 lines and planes. Rendered
views of the model are shown in figure 4.

Figure 4: Notre-Dame square scene in Grenoble, France: the sin-
gle original image (radial image distortion was corrected off-line)
and screen-shots of the 3D model.

Notre-Dame square: Reconstruction from multiple images.
The sequence used for the reconstruction is composed of

1 ] im-
ages whose sizes vary from �[R8ª � 1�- Dr	 to �WR - � 1 D6ª - pix-
els. Calibration was based on � parallelepipeds (shown in fig-
ures 5(a) to 5(d)). Prior information used were: right angles for
parallelepipeds

1
and D , zero camera skew, unit aspect ratios and

centered principal points for all images. Parallelepiped � is rela-
tively small in those images where both parallelepipeds D and �
appear. Consequently, the estimation of its vertices is unstable,
and thus information about its intrinsic parameters was not used
for calibration. Calibration was performed in two steps. First,
the proposed linear factorization approach was applied. Second,
the parameters of cameras and parallelepipeds obtained from the



(a) (b) (c) (d)

(e) (f) (g)

(h) (i) (j)

Figure 5: Notre-Dame square scene: (a)–(d) 	 images from the
1 ] used for the reconstruction. Parallelepipeds used for the reconstruc-

tion are marked in white; (e) cameras and parallelepipeds as estimated by the proposed linear factorization method; (f) camera and
parallelepiped parameters after non-linear optimization; (g) cameras and

1 �r	 model points optimized by an unconstrained non-linear
method; (h)–(j) synthetic viewpoints of the textured model.

previous step were non-linearly optimized, by minimizing the re-
projection error of vertices in a bundle adjustment.

Then, scene elements were added and reconstructed so that the
final model is composed of

1 �6	 points,
1 � planes and DU] lines.

The mean reprojection error over all the model points was aboutª pixels (only linear methods were used for reconstruction). As
expected, the largest errors occurred in images calibrated using
parallelepiped � .
For comparison, an unconstrained bundle adjustment, using the
Levenberg-Marquardt optimization method, was performed over
all the model points and the camera focal lengths. This reduced
the reprojection error to D pixels. It did not reduce, however, the
small artifacts occurring in the final model.

The calibration primitives and cameras reconstructed using the
factorization method, the parallelepiped-based non-liner optimiza-
tion and the point-based non-linear optimization are shown, re-
spectively, in figures 5(e)–5(g). Rendered views of the model re-
constructed using the parallelepiped-based calibration are shown
in images 5(h)–5(j).

Opposite viewpoints scene. Figure 6 shows the reconstruction
of a modern building from D images taken from completely oppo-
site viewpoints. The parallelepiped used for calibration is shown
in figure 6 (top). In the first image, intersections of lines were
computed to obtain the six points required to define a parallelepi-
ped. The parallelepiped and the cameras reconstructed by the fac-
torization algorithm are shown in figure 6 (middle). New view-

points of the whole model, composed of 32 points, 13 parallelo-
grams and 6 planes are shown in figure 6 (middle and bottom).

Castle. Figure 7 shows input and results of the reconstruction
of a castle. The 7 input images were calibrated using mixed ap-
proaches (Sturm, 1999a; Wilczkowiak, 2001). This scene raises
several difficulties: (i) the images overlap only slightly, decreas-
ing the quality of the camera calibration; (ii) some of the model
points are either not visible in any image or visible only in image
regions where the camera distortion, which is not taken into ac-
count, is important; (iii) the geometrical constraints that can im-
prove the reconstruction are not numerous: vertical edges of the
castle are slightly pointing to the center, and its faces are not par-
allel (see Fig. 7–(b)). Thus geometric constraints are rather used
to reconstruct castle elements which are occluded in images.

Fig. 7–(b) shows a map of the castle with the reprojected model
points. Points marked with circles are those reconstructed from
geometrical constraints only. Experiments were also conducted
using a ground plane map of the castle as an additional image for
the reconstruction. However it did not significantly change the
results. The reconstructed model is shown in Fig. 7–(c).

The second row in Fig. 7 shows results for the first three iter-
ations of the reconstruction. Again, at each iteration the model
is enriched by new objects computed using the previously recon-
structed set and the newly defined constraints.



Figure 6: Opposite viewpoints scene: (top) the original images
used for the reconstruction; (middle) the reconstruction scenario
with the computed model and the cameras’ positions; (bottom)
new viewpoints of the model.

(a) (b)

(c) (d)

(e) (f)

Figure 7: (a) One of the seven images used for the reconstruction;
(b) The castle plan; (c) The textured 3D model; (d)-(f) Screen-
shots of the model at different steps of the reconstruction process.

7 CONCLUSION

We have presented an approach for calibration, pose estimation
and 3D model acquisition from several uncalibrated images based
on user-provided geometric constraints on the scene. Useful con-
straints such as parallelism, coplanarity and right angles, can of-
ten be nicely modeled via parallelepipeds. Especially, this allows
to couple together constraints between several neighboring scene

primitives (points, lines, planes), which potentially brings about
a higher stability than only using constraints between pairs of
primitives. The projections of parallelepipeds already encode the
affine structure of the scene. Metric information (length ratios
and angles) is then combined with prior information on camera
parameters in a self-calibration type approach, performing com-
plete calibration and pose estimation. This is formulated in a fac-
torization framework. The usual problems of missing data and
unknown scale factors are dealt with relatively easily, and a satis-
fying solution can be obtained with already a small number of im-
ages and correspondences (starting from 	 correspondences per
image pair or R per image and parallelepiped). A detailed study
on singular cases of this approach is provided in (Wilczkowiak,
2004).

Experiments with real images show that our calibration approach
gives excellent initial results for general 3D model reconstruction
methods. We believe that an approach such as the one presented
here, is a useful tool for easily calibrating cameras using images
of unknown though constrained scenes. Also, it allows to effi-
ciently obtain models of the global structure of scenes (including
camera pose), which are good starting points for more automatic
reconstruction methods.

In (Wilczkowiak, 2003b; Wilczkowiak, 2004), we present an ap-
proach for obtaining a minimal parameterization of scenes and
cameras, i.e. a parameterization that satisfies all constraints (if
this exists). With such a parameterization, initial scene and cam-
era parameters, obtained with the methods presented in this arti-
cle, can then be optimized via unconstrained bundle adjustment
over fewer parameters.
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