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ABSTRACT

Workflows systems are considered here to suppaogeia
scale multiphysics simulations. Because the usdarge

distributed and parallel multi-core infrastructurés prone

to software and hardware failures, the paper addessthe
need for error recovery procedures. A new mechaiiaged
on asymmetric checkpointing is presented. A rulseta
implementation for a distributed workflow platforns

detailed.

KEYWORDS: Fault-tolerant computing;
scientific computing; parallelization of simulatioworkflow
systems.

1. INTRODUCTION

During the last decade, the e-science sector hagrsta
growing interest in workflows [1, 4, 14, 16]. It $a
extensively used a dataflow approach for the pingsof
large numeric data sets [5, 6, 7, 17].

Large-scale multiphysics applications, e.g., aftcfight

dynamics simulation that takes into account aeradyos
and structural loads, are considered today fundtahday
aircraft manufacturers in order to gain leadingifims on

highly competitive innovative markets world-widehe same
goes for mobile phones manufacturers.

Not only are organizational problems put forwaregduse of
the risk-sharing partnerships that are often impleted, but
technological and scientific challenges are adéc&®cause
verification and validation of humeric models amecessary
in order for virtual prototypes to allow drasticdtestion in

time-to-market design [2, 8].

Multiphysics approaches are considered here tetett
combine and synchronize the intricate relationships

Large-scale

between the various disciplines that contributethe
integration of complex new products, e.g., acosstic
electromagnetics and fluid dynamics in aircraftigie$7,
5].

High-performance computing also opens new
perspectives for complex products definition, desagd
tuning to market needs [9]. However, high-perforogn
computing platforms also raise new challenges to
computer scientists to fulfill the design bureaus
requirements, e.g., the management of petascalenes!

of data, the management of distributed teams
collaborating on large and complex virtual protayp
using various remote computerized tools and daeshas
etc [1, 11].

This paper focuses on the design of distributed
workflows systems that are used to define, deploy,
configure, execute and monitor complex simulatiod a
optimization applications. It emphasizes the need f
resilient workflows. It does not consider hardwared
system-level fault-tolerance. In a way similar @, [it
focuses on a generic approach to handle application
level failures, namely the implementation of resiti
workflows. In that sense, it copes with the byzamti
application processes as described elsewhere in the
literature [6].

Section 2 deals with dynamic workflows. Section 3
presents resiliency for workflows, including fault-
tolerance, resiliency, and checkpointing issueso tw
approaches are described, namely bracketing
checkpoints and asymmetric cascading checkpoints.
Section 4 deals with implementation issues in cotioe

with an ongoing project on distributed multidisaiel
optimization platforms. Section 5 is a conclusion.

2. RESILIENT WORKFLOWS

Multiphysics design includes several disciplinesd an
various tools that pertain to each particular etiper



involved. This includes CAD tools, meshers, solyers
analyzers and optimizers, which in turn are used to
modify the meshes in iterative and incrementally
optimized design processes (Figure 1).

Pause, resume, abort facilities are required itribiged
workflow systems to update input parameters for the
simulation and optimization processes.

This calls for dynamic logging mechanisms, interth
checkpoints management, distributed pause, resuche a
abort mechanisms. They can be used also as building
blocks to support resiliency.
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Figure 1. Optimization Workflow.

Past research in distributed systems tells us that
distributed recovery algorithms are implementechgisi
partial order among checkpoints.

This guarantees that the executing application cde

be paused and resumed after dynamic parameteragpdat
by the users. It also guarantees that the executing
applications can be restored after system or agujmic
failures. The whole workflow systems, including the
running applications, are then qualified heesilient
workflows This departs from fault-tolerance, which is
restricted here only to hardware, system and
communication failures. In this case, it concefaslt-
tolerant workflows

In case of erratic application behavior, it is atdear
that the users can invoke these services to abem &s
well as pause and later update the execution paeasne
to restart the simulation processes.

The infrastructure required to implement these isesv
can benefit from the appropriate functionalities
developed in existing grid middleware, e.g., Glgbus
UNICORE, gLite [12, 13]. Also, high-performance
visualization tools like parallel display walls cde
interfaced with the workflow systems, e.g., CUDA
programming tools on GPU-clusters, to compare wario
design alternatives in real-time.

2.1. Fault-T olerant Workflows

Because distributed systems are potentially facagld w
unexpected hardware and software failures, adequate
mechanisms have been devised to handle recovery of
running systems, software and applications.

Checkpoint and restart mechanisms are usually
implemented using the local ordering of the running
processes. This implies that the safe executicalldhe
running processes is not guaranteed, i.e., thame isay

a randomly aborted distributed process can be regbto
in a consistent state and resume correctly. Thatisal
would be to use a global synchronization and clock,
which is practically unfeasible and very constnagni

Design, simulation and optimization applicationsabe
specificities that require less stringent mechasisian
transaction systems. Design is a stepwise prodess t
does not require global synchronizing, except wiaerdl,
only when, dynamic update propagation is requifdus
can be executed during limited time periods ands au
impair the usual stepwise approach.

The same goes for simulation and optimization, eher
long duration processes are executed, which cavkév
many composite components. These components may be
invoked by sub-workflows. They bear a similar natur
global synchronization is not required, only
synchronization for composite sub-workflows witteith
running components. Even so, asynchronous exesution
using pipelining of intermediate results can beiskl.

For example, the wing optimization workflow depitte

in Figure 2 can use the following checkpoints:

*C0O and C1 to save the paraOMD2meters and the
optimization results

*C2 and C3 to save the individual
(alternatively, C'3 can save the results)

* C4 and C5 to save the individual solutions geometry
variants (the forms)

* C6 and C7 to save the various flight regimes result
(C'7 if the database is saved)

* C8 and C9 to save the results of the various selver
executions (and C’9 to save the database)

They are called heréracketing checkpointgSection
3.3).

solutions

Should some random hardware and software failure
occur, it is easy to see that each optimized swiuti
(called here “Individual”) computed so far is sayved
corresponding to every geometry (called here “Fgrm”
every flight “Regime” and every “Solver” computatics



saved. This minimizes the process of resuming the
optimization workflow when aborted due to some
external cause. This is an implementation of fault-
tolerance.

For example, the checkpoint C6 supports the resgimin
of the composite and parallel sub-workflow “Regitnes
The latter can be restarted entirely or partidlisome of

its component “Solvers” resumed correctly. Thegutes
are checkpointed by C9 and alternatively C'9 ifytlage
stored in the database DB_Perf (Figure 2).

2.2. Resiliency

Resiliency differs from fault-tolerance becauseist
related to the ability of the applications to suevito
unpredictable behavior.

In contrast with fault-tolerant workflows which can
survive hardware and system failures, using ad-hoc
bracketing by checkpointing mechanisms (Section, 3.3
resilient workflows need to be aware of the appica
structure to implement automated survival proceslure
These procedures can use the bracketing of sub-
workflows also, but in addition, they need specific
logging of the workflow component operations and
parameters to restore incrementally previous statels
resume patrtially their operations (Figure 3).

2.3. Bracketing Checkpoints

Thus, checkpoints must be inserted in the workflow
composite hierarchy. They can bracket critical patt

the hierarchy, e.g., the most demanding CPU
components (unsteady flow calculations over a 3Bgwi
model, for example) and the following optimization
components which might be less CPU demanding, but
are fundamental to the application because theywdthr

the comparison of various optimized solutions. This
scheme is calledracketing checkpoints

Further, parallel branches of the workflow thatlefdi
need later to be re-synchronized with the branthat
resumed correctly. This requires that the resultthe
successful branches are stored for further proogssi
with the failed branches results, if they resumeaxly
later. Otherwise, these results are discardedkeiffaiied
branches never succeed. Because there is no assrene
of the successful branches on the possible failofes
parallel branches in the workflow, time-out and
synchronization signals must be exchanged on daegu

basis to notify each branch of the current statehef
others: alive or not responding.

2.4. Resiliency Procedure

An iterative process is implemented that chooses a
particular checkpoint and executes several stapgafd.

If the application does again behave erraticaltyjsi
supposed to be stopped by the user. The checkpiats
then chosen further backward in time in the wonkflo
execution and the application is then again péytial
resumed with updated parameters or pre-specified us
operations (Figure 3). This resiliency mechanisraiies
until the workflow resumes correctly or is aborted.

For example, if the “Regimes” component workflow
fails for some unpredictable reason, the resiliency
process will restore the workflow state at chechp@6
(Figure 3). This means that all solvers calculatidor

the current individual solution will be restarteNote
that some particular solver computations that reslm
correctly so far for the current individual solut®are
already saved at checkpoint C9.

Should this process fail again for some reason, the
resiliency mechanism will step backwards to cheakipo
C4. This means that the whole geometry calculations
the current individual solution will be restarteNote

that the computations already finished for other
individuals are not affected and have been saved at
checkpoints C9, C7, C5 or C3 if no synchronization
barriers have been defined.

Should again the whole “Regime” component workflow
fail, the resiliency mechanism will step backwaadmin

to checkpoint C2, which means that the whole geomet
regimes and solvers computations will be restafted
the current individual solution being processed.

2.5. Asymmetric Checkpoints

Because bracketing checkpoints might also incargel
overhead when used in composite workflows, their
occurrence must be fine-tuned to each particular
application workflow.

For example, the checkpoints C0O, C2, C4 and C6twhic
store the state and data relevant to the component
workflows “Optimize”, “Individuals”, “Forms” and
“Regimes” in Figure 3 are redundant with the
checkpoints C1, C3, C5 and C7.



Indeed, should a failure occur in a component wovkf
e.g. “Regime”, the preceding checkpoint C6 willused
to restore the application in a safe state. Itherdfore
redundant to insert the checkpoint C8, except & th
“Configuration” and “Read_DB" tasks are critical.

An appropriate placement mechanism must therefere b
implemented to optimize the recovery procedure and
minimize the checkpoints overhead for running
applications.

An asymmetric scheme has been designed to hardle th
problem. Opening checkpoints, e.g., checkpoints
inserted prior to critical tasks (e.g., C2, C4, G8¥
paired with closing checkpoints of component wakf
that are not immediate children of the parent camepo
workflow. This avoids redundant checkpoints.
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Figure 3. Resilient Workflow: Iterative Recovery.

This scheme is callealsymmetric cascading checkpoints
It is particularly useful when multiple instance$ o
component workflows are defined, e.g., in the eXemp
above, the “Regime” task is defined as a multiple
instance composite component. This means that there
may exist several instance of the “Regime” compbnen
workflow executing at the same time in parallel for
specific Form instance of workflow (and for a sfiieci
“Individual” solution). In the example above, thesks
“Forms”, Individuals are also multiple instance
composite components.

2.6. Heuristic Rules

We assume in the following that “join” operation® a
those that require several input datastreams touese
Similarly, we assume that “fork” operations are stho
that output their results on several datastreanhey T
model generic tasks that execute application codés.
also consider “remote” and “local” operations. We d
not distinguish between parallel and sequential
implementations of the operations.

Further, we consider in the following that the “sified”
operations are those operations or workflow tabled t
are marked by the application designers or thesuasr
requiring a specific treatment in the following histic
procedure.

The specific characterization of the marked tasks i
implemented by raising an exception that invokes a
specific treatment that departs from the standard
heuristic rules. An example of such exception is th
backup of a particular intermediate result after
processing by a large CPU intensive task or thé lbiac

of the result of a task producing petascale voluwfes
data. Workflow management systems usually provide
powerful exception handling functionalities thandae
used to implement this kind of “specified” operato
management, e.g., YAWL [14].

This enables the designers and users to adapt the
execution of the workflow depending on their specif
knowledge and expertise. This is a prerequisitettier
effective implementation of the workflows based on
previous runs and casestudies involving petaflopd a
petabytes of data. Some automated learning proeedur
could eventually be designed to support this kirfid o
feedback.

The recovery procedure implements a heuristic aaro
based on the following rules:

- R1: no output backup for specified join operasion

- R2: only one output backup for fork operations

- R3: no intermediate result backup for user- djsti
sequences of operations

- R4: no backup for user-specified local operations

- R5: systematic backup for remote inputs

To improve performance, these rules can be tundtidoy
application designers to fit their specific requients.
This includes specified operations that are dee@rd
intensive and data transfer intensive.

They can also be altered or ignored by load-batenci
strategies if appropriately authorized by the dwesig



and users, and if global and local policies make th
mandatory, e.g., preemptive local strategies.

Based on these rules, the example illustrates the
asymmetric cascading checkpoints on an unfolded
workflow (Figure 4). Two remote execution sites are
considered: Site a (white colored tasks) and Sifect
colored tasks).

Figure 4. Asymmetric Checkpoints.

When it is not modified and tuned by the designths,
result of the asymmetric cascading checkpoints
procedure results in seven unnecessary checkpoints
which are deleted, thus leaving five remaining
checkpoints: S0, S2, S4, S9 and LO.

3. IMPLEMENTATION

The approach implemented here uses the YAWL
workflow management system. It is one of the few
workflow systems to be defined with a sound formal
semantics [18]. It is designed to combine grid and
distributed computing through a middleware with
scientific computing using a mathematical problem
solving environment. It thus provides an e-Science
infrastructure as a high-performance platform fangé-
scale distributed data and CPU intensive applinatio
Validation of the platform is through industriakteases
concerning car aerodynamics and engine valves and
pipes optimization.

The approach wraps the existing applications coelgs,
optimizers and solvers, with Web services that are
invoked for remote execution when required. When
software components are local, they are invokeolutin
shell scripts that in turn trigger the appropristdtware.
This script invocations are natively implementedthie
YAWL workflow system for automated execution of
application tasks. Parameters passing to the saftwa
invoked are defined by standard YAWL protocols.
Results are similarly transferred back to YAWL et
application software through scripts callbacks Iater

use by other tasks in the workflow. Dynamic intéits
through user-definable forms are also standardAWVY,
which support parameter initializations, dynamic
interactions with the executing applications anehad
execution features, e.g., dynamic introduction efvn
exceptions, flow control, etc .

This is extended to the checkpointing and resililenc
procedures which are defined by standard YAWL
workflow tasks. They are inserted appropriatelythie
workflow definition, in compliance with the spedifi
scheme adopted, i.e., bracketing scheme or asyimetr
cascading scheme (Section 2).

The invocations of the various tasks in the workflow by
other tasks are specific YAWL invocations througlels
scripts if the tasks are local. They are invokedWgb
Services if the tasks are remote. Data and task
parameters and descriptions are uniformly exchamsged
XML schemas.

A platform supporting these features is developedtfe
OMD?2 project [21] by a consortium that includes lvee
academic and industry partners, including a major

international car manufacturer leading the project.
OMD?2 is an acronym for Distributed Multi-Discipline
Optimization.
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Figure 5. OM D2 Distributed Optimization Platform.

The goal is to develop a high-performance distatut
environment for simulation and multidiscipline
optimization in complex design projects. The disited
platform uses the ProActive middleware for resource
allocation and scheduling of tasks [19]. The taskske
software codes that collaborate and include Matlab,
Python and Scilab scripts [20], the OpenFOAM
software for solver components and mesh generétien,



ParaView software for data visualization and to run dynamic application re-configurations. This
manipulation, optimization software developed bg th requires resilient workflow systems.

project partners, as well as commercial CAD toels,,

CATIA v5 and STAR-CCM+ (Figure 6). This implies applications roll-back to appropriate
YAWL is used for defining incrementally composite checkpoints, and the implementation of survivapilit
workflows, as well as the sharing and reuse of theprocedures, including fault-tolerance to exterralufes
various software that form the applications. Theaa and resiliency to unexpected application behavior.
interact with the users through sophisticated etkeep  Asymmetric cascading checkpoints are presented tioere
handling mechanisms and interact with each othimgus effectively support the resiliency procedure. lmanr to
Web services (Figure 5). This is also used for minimize the overhead incurred by the checkpointnd
implementing the resilience and fault-tolerancetfiess logging of the workflow operations, a heuristic is
described in the previous sections (Section 2). presented that uses tunable rules to adapt thkenesi
Because the workflow engine supports natively dyioa  procedure to the application requirements and taptp
interactions with software through Web Services and with the computing infrastructures.

shell scripts, it communicates with the ProActiveyiee Oen issues are currently under investigation: ttyaict of
using specific services for distributed resourdecaltion the rule ordering on the resilience performancease of
and scheduling. Similarly, interactions with Ope¥hQ application restart, the impact of user definedesul
ParaView, Python, the Matlab and Scilab numeric inserted in the default rule set, the impact ofliaption
computation software are based on shell script characteristics (CPU and data intensive) on theeeteg
invocations for the execution of all local applioat resilience overhead/application performance ratio.
codes and YAWL users.
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Distributed infrastructures exhibit potential haimato the
executing processes, due to unexpected hardware an
software failures. This is endangered by the use of
distributed high-performance environments that udel
very large clusters of multi-processors nodes. This
requires fault-tolerant workflows systems. Furtharatic
application behavior requires dynamic user intetioes,
to adapt execution parameters for the executingsaad
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Figure 6. Workflow Interactionsfor OM D2 Testcase.



