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Abstract

We propose a group membership service for dynamic ad hoc networks. It maintains as long as
possible the existing groups and ensures that each group diameter is always smaller than a constant,
fixed according to the application using the groups. The proposed protocol is self-stabilizing and
works in dynamic distributed systems. Moreover, it ensures a kind of continuity in the service offer
to the application while the system is converging, except if too strong topology changes happen.
Such a best effort behavior allows applications to rely on the groups while the stabilization has
not been reached, which is very useful in dynamic ad hoc networks.

Keywords: Group maintenance, Best effort, Stabilization, Dynamic network.

1 Introduction

Self-stabilization in dynamic networks A dynamic network can be seen as an (a priori infinite)
sequence of networks over time. In this paper, we focus on dynamic mobile networks. Examples of
such networks are Mobile Ad hoc networks (MANETs) or Vehicular Ad hoc networks (VANETs).

Designing applications on top of such networks require dealing with the lack of infrastructure [22,
15]. One idea consists in building virtual structures such as clusters, backbones, or spanning trees.
However, when the nodes are moving, the maintenance of such structures may require more control.
The dynamic of the network increases the control overhead. Thus, distributed algorithms should
require less overall organization of the system in order to remain useful in dynamic networks.

Another paradigm for building distributed protocols in mobile ad hoc networks consists in de-
signing self-stabilizing algorithms [4]. These algorithms have the ability to recover by themselves
(i.e., automatically) from an inconsistent state caused by transient failures that may affect a memory
or a message. In this context, the topology changes can be considered as transient failures because
they lead to an inconsistency in some memories. Indeed, when a node appears or disappears in the
network, all its neighbors should update their neighborhood knowledge.

Self-stabilizing algorithms have been intensively studied the two last decades for their ability to
tolerate transient faults [9]. However, it is important to notice that such algorithms do not ensure all
the time the desirable behavior of the distributed system, especially when faults occur and during a
certain period of time following them. In dynamic systems, it becomes illusory to expect an application
that continuously ensures the service for which it has been designed. In other words, what we can only
expect from the distributed algorithms is to behave as “the best” as possible, the result depending
on the dynamic of the network.

∗Supported by Région Picardie, proj. APREDY.
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In this paper, we propose a new approach in the design of distributed solutions for dynamic envi-
ronments. We borrow the term “best-effort” from the networking community to qualify the algorithms
resulting of our approach. Roughly speaking, a best-effort algorithm is a self-stabilizing algorithm
that also maintains an extra property, called continuity, conditioned by the topology changes.

Continuity aims to improve the output of the distributed protocol during the convergence phase
of the algorithm, provided that a topological property is preserved. This means that there is a
progression in the successive outputs of the distributed protocols, except if the network dynamic
is too high. This is important in a distributed system where the dynamic (that is, the frequent
topology changes) can prevent the system to converge to the desirable behavior. Since the output of
the protocol will certainly be used before the stabilization, the continuity ensures that third party
applications can rely on it instead of waiting. The output will certainly be modified in the future,
but without challenging previous ones.

In some aspects, our approach is close to the ones introduced in [17] and in [10]. In [17], the
authors introduce the notion of safe-convergence which guarantees that the system quickly converges
to a safe configuration, and then, it gracefully moves to an optimal configuration without breaking
safety. However, the solution in [17] works on a static network. In [10], the authors use the notion of
passage predicate to define a superstabilizing system, i.e., a system which is stabilizing and when it is
started from a legitimate state and a single topology change occurs, the passage predicate holds and
continues to hold until the protocol reaches a legitimate state. By contrast, the continuity property
is intended to be satisfied before a legitimate configuration has been reached. It must be satisfied
during the stabilization phase, and between two consecutive stabilization phases (convergence phase
followed by stability phase).

We illustrate our approach by specifying a new problem, called Dynamic Group Service inspired
from vehicular ad hoc networks (VANET), an emblematic case of dynamic ad hoc networks. We
then design a best effort distributed protocol called GRP for solving this problem: we prove that it
is self-stabilizing and fulfills a continuity property, allowing applications to use the groups while the
convergence may be delayed because of the dynamic of the network.

Dynamic group service Vehicular ad hoc networks currently attract a lot of attention [3]. Many
VANET applications require cooperation among close vehicles during a given period: collaborative
driving, distributed perception, chats and other infotainment applications. Vehicles that collaborate
form a group. A group is intended to grow until a limit depending on the application. For instance,
the distributed perception should not involve too far vehicles, a chat should be responsive enough,
that limits the number of hops, etc. When the group diameter is larger than the bound given by the
application, it should be split into several smaller groups. However, a group should not be split if this
is not mandatory by the diameter constraint in order to ensure the best duration of service to the
application relying on it. Even if another partitioning of the network would have been better (e.g.,
less groups, no isolated vehicle), it is preferable to maintain the composition of existing groups. It is
expected that, thanks to the mobility of the nodes, small groups will eventually succeed in merging.
It is then more important to maintain existing groups as long as possible.

Best-effort GRP algorithm To solve the Dynamic Group Service, we propose a best-effort dis-
tributed algorithm called GRP (for GRouP) designed for unreliable message passing systems. This
algorithm stabilizes the views (the local knowledge of the group to which belongs the node) in such a
way that all the members of a group will eventually share the same view (in which only the members
appear). The groups’ diameters are smaller than a fixed applicative constant Dmax and neighbor
groups merge while the diameter constraint is fulfilled. Moreover, our algorithm admits the following
continuity property: no node disappears from a group except if a topology change leads to the vio-
lation of the diameter constraint. This allows to the applications requiring the groups (e.g., chat) to
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run before the convergence of GRP, that may be delayed because of the dynamic of the network.
To the best of our knowledge, only a few number of papers address the problem of group mem-

bership maintenance in the context of self-stabilization. Recently, in [6], the authors propose a self-
stabilizing k-clustering algorithm for static networks. In [11], the authors propose a self-stabilizing
group communication protocol. It relies on a mobile agent that collects and distributes information
during a random walk. This protocol does not allow building groups that strech over at most k hops.

Group communication structures have been proposed in the literature to achieve fault-tolerance in
distributed systems [2], by providing for instance replication, virtual synchrony, reliable broadcast, or
atomic broadcast (e.g., [21, 14]). Other works deal with the k-clustering or k-dominating set problem,
e.g., [1, 5, 8, 16, 17, 18, 20], where nodes in a group are at most at distance k from a cluster-head
or dominant node. The aim of these algorithms is to optimize the partitioning of the network. The
group service we propose in this paper is different in the sense that its aim is neither to optimize any
partitioning nor to build group centered to some nodes. Instead, it tries to maintain existing groups
as long as possible while satisfying a constraint on the diameter, without relying on a specific node
(that may move or leave).

Organization In Section 2, we describe the distributed system we consider in this paper. We also
state what it means for a protocol to be self-stabilizing and best effort regarding a continuity property
conditioned by topology changes. Next, in Section 3, we specify the Dynamic Group Service problem
and in Section 4, we describe our GRP algorithm solving it1. The proofs are given in Section 5. Finally,
we make some concluding remarks in Section 6. By lack of place, some proofs are in appendix.

2 Model

We define the distributed system S as follows.

System Let V be the set of nodes, spread out in an Euclidean space. The total number of nodes
in V is finite but unknown. Each node is equipped with a processor unit (including local memory)
and a communication device. A node can move in the Euclidean space. It is either active or inactive.
When it is active, it can compute, send and receive messages by executing a local algorithm. The
distributed protocol P is composed of all the local algorithms.

We define the vicinity of a node v as the part of the Euclidean space from where a node u can
send a message that can be received by v (the vicinity depends on the communication devices, the
obstacles, etc.). A node v can receive a message from u if (i) both u and v are active, (ii) u is in the
vicinity of v, (iii) u is sending a message, (iv) no other node in the vicinity of v is currently sending
a message, and (v) v is not sending a message itself (any active node that is not sending is able to
receive).

We assume that on each node the message sending is driven by a timer. We admit the following
fair channel hypothesis: there exists two time constants τ1 and τ2 with τ1 ≥ τ2 such that, starting
from a date t, any node v is able to receive before the date t + τ1 a message from each node u,
providing that u is in the vicinity of v between t and t + τ1 and attempts to send a message every
τ2 units of time. At any time instant t, there is a communication link from u to v if both u and v
have the state active (at t), and if u is into the vicinity of v (at t). A communication link is oriented
because u could be in the vicinity of v while the converse is false.

1. Note that the algorithm has been successfully implemented using the Airplug software suite. The detailed
algorithm used for the implementation is available on our website (as long as the software):
http://www.hds.utc.fr/∼ducourth/airplug/doku.php?id=en:dwl:grp:accueil. Some screenshot movies are also
available here:
http://www.hds.utc.fr/∼ducourth/airplug/doku.php?id=en:doc
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We assume the following hypotheses, close to the IEEE 802.11 protocol. (i) The communication
channel contains at most one message—one-message channel. (ii) If a node u keeps continuously
sending a message m, then u eventually sends m—fair sending. (iii) If a node u keeps continuously
receiving a message, then u eventually receives a message—fair reception. (iv) If a node u has
continuously an action a to execute, then u executes a in finite time—fair activation.

A configuration c of S is the union of states of memories of all the processors and the contents
of all the communication links. An empty communication link is denoted in the configuration by a
link that contains an empty set of messages. By the way, there is a single topology per configuration.
Let C be the set of configurations. An execution of a distributed protocol P over S is a sequence of
configurations c0, c1, . . . of S so that ∀i ≤ 0, ci moves to ci+1 by changing the memory of at least one
process, including its message buffers (i.e., by sending or receiving messages).

We denote by Gci the topology of S during the configuration ci. In a static system S, we have
Gci = Gc0 in every execution c0, c1, c2, . . .. Otherwise, the system S is said to be dynamic.

Self-Stabilization Let X be a set. Then x ⊢ Π means that an element x ∈ X satisfies the predicate
Π defined on the set X and X ⊢ Π with X ⊂ X means that any x ∈ X satisfies x ⊢ Π. We define a
special predicate true as follows: ∀x ∈ X , x ⊢ true. Let Π1 and Π2 be two predicates defined on the
set of configurations C of the system S. Π2 is an attractor for Π1 if and only if the following condition
is true: for any configuration c1 ⊢ Π1 and for any execution e = c1, c2, . . ., there exists i ≥ 1 such that
for any j ≥ i, cj ⊢ Π2.

Define a specification of a task as the predicate Π on the set C of configurations of system S. A
protocol P is self-stabilizing for Π if and only if there exists a predicate LP (called the legitimacy
predicate) defined on C such that the following conditions hold:
1. For any configuration c1 ⊢ LP , and for any execution e = c1, c2, . . ., we have e ⊢ Π (correctness).
2. Π is an attractor for true (closure and convergence).

Best effort requirement We denote by ΠT a topological predicate defined on the pairs of suc-
cessive configurations in an execution. Such a predicate is intended to be false when an “important
topology” change happens. We denote by ΠC a continuity predicate defined on the pairs of succes-
sive configurations in an execution. Such a predicate is intended to be false when the quality of the
outputs produced by protocol P in the two successive configurations decreases.

The protocol P offers a best effort continuity of services if ΠT ⇒ ΠC .

3 Dynamic Group Service Problem

The Dynamic Group Service protocol is inspired from applications requirements in Vehicular Ad Hoc
networks (VANET), such as collaborative perception or infotainment applications.

Informal specification On each node v, a variable viewv gives the composition of the group to
which v belongs. This will be used by the applications. The agreement property says that all nodes
in group of v agree on the composition of the group. The safety property says that the diameter of
each group is smaller than a constant Dmax. The maximality property says that small groups merge
to form larger groups.

To deal with the dynamic of the network, the algorithm should be able to satisfy these three
properties in finite time after the last failure or topology change (self-stabilization). To allow the
applications to run while the convergence has not been reached, the algorithm should ensure a best
effort requirement: if the distance between the members of a group remains smaller than Dmax (topo-
logical property), then no node will leave the group (continuity property). This is important because
the convergence may be delayed because of the dynamic of the network.
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Formal specification Let G(V,E) be a graph. Let d(u, v) be the distance between u and v (length
of the shortest path from u to v in G). A subgraph H(VH , EH) is defined as follows: VH ⊆ V and
∀(u, v) ∈ E, (u ∈ VH and v ∈ VH) ⇒ (u, v) ∈ EH . Two subgraphs H1(V1, E1) and H2(V2, E2) of a
graph G are said distinct if V1 ∩ V2 = ∅. Let X ⊆ V be a set of nodes. We denote by dX(u, v) the
distance between u and v in the subgraph H(X,EH), that is, the length of the shortest path from u
to v with only edges of EH . If such a path does not exists, then dX(u, v) = +∞.

Given a graph G, the problem considered in this paper consists in designing a distributed protocol
that provides a partition of G into disjoint subgraphs called groups that satisfies constraints described
below. Denote by viewcv the knowledge of v about its group in configuration c (output on node v).

Let ΠA be the predicate defined on the configurations and called agreement property : ΠA(c) holds
if and only if there exists a partition of disjoint subgraphs H1(V1, E1), H2(V2, E2) , . . . , Hi(Vi, Ei), . . .
of G(V,E) such that for every nodes u, v ∈ V , (u ∈ Vi and v ∈ Vi) ⇔ viewcu = viewcv = Vi.

Let Ωc
v be the group of v in configuration c, defined by: (i) Ωc

v = viewcv if v ∈ viewcv and
∀u ∈ viewcv, view

c
v = viewcu, (ii) Ωc

v = {v} otherwise. Note that given any configuration c, if ΠA(c)
holds, {Ωc

v, v ∈ V } defines a partition of G into disjoint subgraphs of G, i.e., there exists a partition
of disjoint subgraphs H1(V1, E1), H2(V2, E2), . . ., Hi(Vi, Ei), . . . such that ∀v ∈ Vi, Ωc

v = Vi for every
subgraph Hi.

Let Dmax be an integer representing the maximal admissible distance between two nodes belonging
to the same group. Let ΠS be the predicate defined on the configurations and called safety property :
ΠS(c) holds if each group is connected and its diameter is smaller than Dmax. More formally ΠS(c) ≡
∀v ∈ V , maxx,y∈Ωc

v
dΩc

v
(x, y) ≤ Dmax.

Let ΠM be the predicate defined on the configurations and called maximality property : ΠM (c)
holds if by merging two existing groups, we cannot obtain a partition satisfying the safety property.
More formally ΠM (c) ≡ ∀u, v ∈ V with Ωc

u 6= Ωc
v, ∃x, y ∈ Ωc

u ∪ Ωc
v, dΩc

u
∪Ωc

v
(x, y) > Dmax.

The problem considered in this paper is to design a self-stabilizing protocol regarding predicates
ΠA ∧ΠS ∧ ΠM : after the last failure or topology change, the algorithm converges in finite time to a
behavior where ΠA, ΠS , and ΠM are fulfilled.

Note that the above requirement is suitable for fixed topologies only. The following predicate
deals with dynamic system, i.e., with topological changes. Let Gc(V c, Ec) be the graph modeling
the topology of the system at configuration c. We introduce the following notation: dc refers to the
distance in the graph Gc, and dcX(u, v) denotes the distance between u and v in Gc by considering only
edges of the subgraph H(X,EH) of Gc. Define the topological property as the predicate ΠT defined on
any couple of two successive configurations ci, ci+1 of an execution e as follows: ΠT (ci, ci+1) holds if,
for any pair of nodes belonging to the same group in ci, the distance between them will still be smaller
than Dmax in ci+1. In other words, if a topology change occurred between ci and ci+1, it has preserved
the maximal distance condition. More formally, ΠT (ci, ci+1) ≡ ∀v ∈ V , maxx,y∈Ωci

v
d
ci+1

Ω
ci
v

(x, y) ≤ Dmax.

Finally, we are looking for protocols attempting to preserve a group partition when a topology
change occurs. Let ΠC be the predicate defined on the couples of successive configurations and
called continuity property : ΠC(ci, ci+1) holds if in any group, no node disappears. In other words, an
application can work with the given view because it defines a group in which no node will disappear.
More formally, ΠC(ci, ci+1) ≡ ∀v ∈ V , Ωci

v ⊂ Ω
ci+1
v . Obviously, if the dynamic of the network is too

large, such a property cannot be satisfied. We then introduce the best effort requirement: ΠT ⇒ ΠC .

4 GRP distributed protocol

The GRP distributed protocol is designed for solving the Distributed Group Service problem in an
unreliable message passing system.
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4.1 Principle of the GRP distributed protocol

For each node v, the candidates to form a group are neighbors up to distance Dmax. Each node v
periodically echanges messages with its neighbors and maintains a list of nodes being at distance at
most Dmax. Each sent message sent by v contains the list of v. The list of v contains nodes at distance
at most Dmax that are in the group or candidates to join the group.

Our mechenism needs to take in account symmetric links only, i.e., links between pairs of nodes u
and v so that if v is considered by u as a neighbor, then u (resp. v) is considered as a neighbor by v.
In order to implement this, we use marks. Each node proceeds as follows: if v receives a list from u
that does not contain itself, then it adds u in its list (which will be sent to the neighbors at the next
timer expiration). To the converse, when v receives a list from u that contains either v or v, then it
adds u in its list. Marked nodes are not propagated farther than the neighborhood.

Malformed lists are rejected (such as lists larger than Dmax). Moreover, when a node v receives a
list from u which is too long compared to its current list, it rejects it to avoid any split of its current
group. In this case, v adds u in its list, meaning that u and v cannot belong to the same group. To
the converse, if the received list is not too long, it is merged with the current list, meaning that u
enters to the group of v. Symmetrically, u will accept v in its group.

Several nodes may be accepted concurrently by distant members of a given group. In some cases,
a too large group may be obtained. Then one of the new members must leave the group (instead of
splitting the existing group). To avoid any inopportune change in the views (which are used by the
applications), a new member enters in the view of a node only after the end of its quarantine period.
This allows guaranteeing that its arrival has been approved by all the members (no conflicts). A node
arrival is propagated to the group’s members in O(Dmax); this defines the quarantine period duration.

When it is necessary to chose which node has to leave the group (to fulfill the diameter constraint),
the choice is done using a priority computed by Function textttpr. Priorities are totally ordered; if
pr(u) < pr(v), then u has the priority. A powerful implementation of priorities is the oldness of nodes
in the groups: the priority of a node is incremented by a logical clock [19], except if it belongs to a
group (of more than one node) in which case the priority remains stable. The last entered nodes in
a group have then less priority than the nodes entered before them.

Priorities on the nodes allow to easily define priorities on the groups by taking the smallest priority
of the members. Priorities on the groups allows to ensure the merging of neighbor groups (and the
maximality property ΠM ) in particular cases (loop of groups willing to merge).

4.2 Building the lists

In the sequel, a node v is an ancestor of node u if a path exists from u to v. The messages sent to
the neighbors contain ordered list of ancestors’ sets. The ordered list of ancestors’ sets of a node v
is defined by:

(

a0v, a1v, . . . , apv) where any node x ∈ aiv satisfies d(x, v) = i (a0v = {v}) and p is the
distance of the farthest ancestor of v.

Computations are done using the r-operator ant [7, 13, 12]. Let S be the set of lists of vertices’
sets. For instance, if a, b, c, d, e are vertices, ({d}, {b}, {a, c}) and ({c}, {a, e}, {b}) belong to S. Let ⊕
be the operator defined on S that merges two lists while deleting needless or repetitive information
(a node appears only one time in a list of ancestors’ sets). For instance:
({d}, {b}, {a, c}) ⊕ ({c}, {a, e}, {b}) =
({d, c}, {b, a, e}, {a, c, b}) = ({d, c}, {b, a, e}).

Finally, let r be the endomorphism of S that inserts an empty set at the beginning of a list. For
instance:
r({d}, {b}, {a, c}) = (∅, {d}, {b}, {a, c}).

We then define the operator ant by: ant(l1, l2) = l1 ⊕ r(l2), where l1 and l2 are lists belonging
to S. This is a strictly idempotent r-operator [12] inducing a partial order relation. It leads to self-
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stabilizing static tasks (building the complete ordered lists of ancestor sets) in the register model [13].
Since our wireless communication model admits bounded links, these results can be extended to this
model. (Refer to the discussion related to r-operators in wireless networks in [7].)

4.3 GRP algorithm

Each node v computes its output (listv, viewv and the priorities) when its timer Tc expires. It
broadcasts its output in the neighborhood when the timer Ts expires (Ts ≤ Tc). All messages received
from the neighborhood are collected on v in msgSetv. If a neighbor sends more than one message
before the timer expiration, only the last received is kept. After computation, the variable msgSetv
is reset in order to detect when a neighbor leaves.

Algorithm GRP, node v

1 Upon reception of a message msg sent by a node u:
2 update message of u in msgSetv

3 Upon Tc timer expiration:
4 compute()
5 reset msgSetv
6 restart timer Tc with duration τ1

7 Upon Ts timer expiration:
8 send( listv with priorities ) to the neighbors

9 restart timer Ts with duration τ2

A computation (in procedure compute, below) consists in building the ordered list of ancestor’
sets as well as the view. The list is sent to the neighbors to be used in their ant computation. The
view is the output of the protocol used by the applications (e.g., chat, collaborative perception...)
which requested the GRP algorithm, and which determined the diameter constraint Dmax (fixed during
all the execution).

First, the incoming lists are checked. Line 3, when the list sent by u and received by v does not
contain v, is malformed or is too long2, it is replaced by (u). When u receives the list of v containing
u, it accepts the list of v and sends a list containing v. Thanks to this triple handshake, the link has
been detected as symmetric (by the way, asymmetric link information are not propagated).

Line 6, if the received list is too long, the sender u is marked as incompatible (u). Roughly
speaking, a list received by a node u from another node v is compatible if, by combining its list with
the one of v, u does not increase the diameter of its group beyond Dmax. In order to reach this goal,
it is enough to test if the sum of the lengths of both lists is less than or equal to Dmax+ 1. But, such
simple test would avoid merging two groups by taking advantage of short cuts between both groups.
In other words, this would ignore the knowledge that nodes of a group have on nodes belonging to
the other group. The technical condition used in Function compatibleList() deals with such an
optimization.

Then a first computation is performed using the ant operator. Thanks to the goodList test, the
sizes of the incoming lists are smaller than Dmax+1. However, the computed list could reach the size
of Dmax+2 while the maximum is Dmax+1 (the ant operation increases by one the list sizes). In this
case, a choice has to be done between either the local node v or the farthest nodes in the received lists.
This choice is done by using priorities, Line 16. If nodes belong to the same group, node priorities
are compared. If nodes are not in the same group, this is a group merging and group priorities are
compared (to avoid loops of groups willing to merge). If the local node v has not the priority on the
too far node w the lists in which w appears are ignored (Line 19). At the opposite side of the group,
node w keeps the list containing v but the end of its ordered list of ancestor’s sets will be truncated

2s(list) returns the number of elements in list; list.i returns the ith element of list, starting from 0.
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(meaning that v and w will not belong to the same group). Indeed, after the too far nodes have been
all examined, the list of ancestors is computed again (Lines 24-27) and is truncated (Line 28) in order
to delete the too far nodes (these remaining too fare nodes have less priority than v).

In order to not include a node in a view while it could be rejected later, a quarantine mechanism
is used. The quarantine period of a node willing to enter in a group is equal to Dmax timers. Each
time a computation is done (and then the new node progresses in the group), its quarantine period
decreases. Since the group diameter is less than or equal to Dmax, any conflict would have been
detected before the new node enters into a view. Moreover, if a member of the group accepts the new
node, then all the members will accept it.

Finally, the priority is updated. When using oldness in the group, the priority is increased if the
node is not in a group. If the node is in a group, the priority remains stable. The group priority is
the smallest priority of its members.

The procedure compute() is given below (a complete implementation with the detailed algorithm
is available on-line, see reference in Footnote 3 page 3).

Procedure compute() on node v
⊲ Checking the received lists

1 for all listu in msgSet do
2 delete marked nodes except v in listu ⊲ Marked nodes are only useful between neighbors.
3 if ¬ goodList(listu) then ⊲ List of u cannot be used;
4 replace listu by (u) in msgSet ⊲ this list is ignored but the sender is kept.
5 end if ⊲ Now, incoming lists cannot be larger than Dmax.
6 if u 6∈ viewv and ¬ compatibleList(listu) then ⊲ u is new, but its list cannot be accepted;
7 replace listu by (u) in msgSet ⊲ u is denoted as an incompatible neighbor
8 end if
9 end for

⊲ Computing the list of ancestors’ sets of v.
10 listv ← (v)
11 for all listu ∈ msgSet do
12 listv ← ant(listv, listu) ⊲ Computation using the ant r-operator.
13 end for

⊲ Removal of incoming lists containing too far nodes (after ant computation, listv cannot be larger than Dmax+1)
14 if s(listv) = Dmax+ 2 then ⊲ The list is too long.
15 for all w at position Dmax+ 1 in listv do ⊲ Scanning too far nodes.
16 if w has the priority compared to v then ⊲ Far node w has the priority.
17 for all listu ∈ msgSet do ⊲ Looking for lists that provided w;
18 if w is at position Dmax then ⊲ they contain w in their last place.
19 replace listu by (u) in msgSet ⊲ The neighbor that provided w is ignored.
20 end if
21 end for
22 end if
23 end for

⊲ Computing listv again, without the incoming lists that contained too far nodes with priority.
24 listv ← (v)
25 for all listu in msgSet do
26 listv ← ant(listv , listu)
27 end for
28 keeping up to Dmax+ 1 first elements in listv ⊲ Deleted too far nodes have not the priority.
29 end if
30 Update quarantines: quarantine of new nodes is Dmax, non null quarantine of others decreases by 1
31 viewv ← non marked nodes in listv with null quarantine
32 Update priorities: priority of nodes increase only when they are not in a group

Function goodList(list)
1 if v or v are in list.1 and s(list) ≤ Dmax+ 1 and ∅ /∈ list then
2 return true
3 else
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4 return false

Function compatibleList(list)
1 if s(listv) + s(list) ≤ Dmax+ 1 or

∃i ∈ {0, . . . , s(listv)}, listv .i ⊆ list.1 ∧min (s(listv) + s(list) + 1− i, s(list) + 1 + i/2) ≤ Dmax

2 return true ⊲ Refer to Proposition 13.
3 else
4 return false

5 Proofs

We first focus on the self-stabilizing property of our algorithm. We show that assuming a fixed
topology, the system converges in finite time to an execution satisfying the statements in Section 3,
i.e., ΠS ∧ΠA ∧ΠM is an attractor. Next, we prove that, assuming topological changes preserving the
maximal distance condition over the groups, then continuity is preserved, i.e., ΠT ⇒ ΠC .

5.1 Stabilization

In this section, we prove that our protocol is self-stabilizing by showing that ΠS and ΠA and ΠM are
attractors—Propositions 8, 7 and 12, respectively.

We begin by showing that eventually lists will become correct (Propositions 1 and 2). We first
prove that any execution cannot remain infinitely with configurations having lists larger than Dmax.
We denote by eDmax the suffix of an execution e such that, for any configuration c ∈ eDmax, for any
node v ∈ V , the size of listv is smaller than or equal to Dmax+ 1.

Proposition 1 (Dmax) On a fixed topology, any execution e reaches in finite time a suffix eDmax.

Proof. Starting from configuration c1, the system will reach in finite time a configuration in which
every node has computed its list after expiration of its timer. After such a computation, the size of
the lists is bounded by Dmax+ 1 (because it is truncated at the Dmax+ 1 position, Line 28). �

Starting from this proposition, we now prove that any execution cannot remain infinitely with
configurations having a non existing node in a list. We denote by eexist the suffix of an execution e
such that, for any configuration c ∈ eexist, for any node v ∈ V , every node u ∈ listcv satisfies u ∈ V .

Proposition 2 (Exist) On a fixed topology, any execution e reaches in finite time a suffix eexist.

Proof. Let c ∈ eDmax be a configuration (Proposition 1). Let u be a node label such that u 6∈ V and
denote by U c

k the set of nodes having u in their list at position k in configuration c. Consider the
function φ(c) defined by φ(c) = min{k ∈ N, U c

k 6= ∅} and φ(c) = ∞ if ∀k ∈ N, U c
k = ∅. We prove that

φ is continuously growing along the execution to be eventually equal to infinity forever.

Consider a node v in U c
φ(c): v contains u at position φ(c) in its computed list and no node in

configuration c contains u at a smaller position in its computed list. Until the next expiration of its
timer, v cannot receive a list containing u in a smaller position than φ(c). Hence, the system will
reach in finite time a configuration in which the node v has computed a new list that does not contain
u at a position smaller than φ(c) + 1. After a timer (fair channel Hypothesis), the system reaches in
finite time a configuration in which the neighbors of v have received this list.

After finite time, any node v ∈ U c
φ(c) will do the same. The system then reaches in finite time after

configuration c a configuration c′ in which U c′

φ(c) is empty, meaning that φ(c) < φ(c′).
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By iteration, φ is growing along the execution. Since the size of the lists is bounded by Dmax + 1
(Proposition 1), there exists a configuration c′′ reached in finite time after c in which φ(c′′) = ∞,
meaning that u does not appear anymore in the computed lists of the nodes forever. �

Next, we establish the connection between marked nodes in the algorithms and subgraphs (Propo-
sitions 3, 4, 5 and 6). We call double-marked edge an edge (u, v) such that either u double-marks v or
v double-marks u (denoted by u in the algorithm). The following proposition is a consequence of the
double-marked edge technique. A node v double-marks its neighbor u only if the list sent by u cannot
be accepted by v (Lines 7 and 19). In this case, node v will ignore the list sent by u. Reciprocally,
if u has been double-marked by v, u will detect an asymmetric link (u does not appear in the list it
received after Line 2) and only the identity of v will be kept by u, the rest of the list of v will be
ignored (Line 4).

Proposition 3 (No Propagation) Let u and v be two vertices of G and suppose that, in any execu-
tion e, there exists a configuration ce from which any path from u to v in G contains a double-marked
edge. Then u will eventually disappear from listcv and v will eventually disappear from listcu.

The following proposition is a consequence of the ant computation (see Section 4.2). It propagates
nodes identities (providing there is no edge-marking technique for limiting it) [13, 7].

Proposition 4 (Propagation) Let u and v be two vertices of G and suppose that, in any execution
e, there exists a configuration ce from which there exists a path from u to v in G without double-marked
edge. Then listcv will eventually contain u and listcu will eventually contain v.

Proposition 5 (Double-marked edge) Suppose that d(u, v) > Dmax. Then any execution admits
a suffix eedge such that, for any configuration c ∈ eedge, there is a double-marked edge on any path
from u to v.

Proof. Let v and w two nodes of G such that d(v,w) = Dmax + 1. Without loss of generality, we
suppose that pr(w) < pr(v). Suppose that there exists a path from v to w that does not contain any
double-marked edge. By Proposition 4, there exists a neighbor u of v such that u sends to v a list
containing w. The size of this list is larger than Dmax. There are two cases:
(i) u 6∈ viewv. In this case, listu is replaced by (u).
(ii) u ∈ viewv. In this case, v computes a list using the one sent by u. Since d(u, v) > Dmax, the
resulting list is too long. Since pr(w) < pr(v), the computation will be done again without the list
provided by u, which will be replaced by (u).

In the two cases, u is double-marked by v. Hence, any path from u to v will eventually contains a
double-marked edge. �

Let denote by Hc
v(VHv

, EHv
) the subgraph of G(V,E) defined in the configuration c by: for any

node u in VHv
, v ∈ listcu. Such a subgraph is composed of vertices containing v in their list. We

prove that eventually Hu and Hv are distinct when d(u, v) > Dmax.

Proposition 6 (Subgraphs) Suppose that d(u, v) > Dmax. Then any execution admits a suffix
esubgraph such that, for any configuration c ∈ esubgraph, Hu and Hv are distinct subgraphs.

Proof. By Proposition 5, there exists a suffix s1 such that any path from u to v contains a double-
marked edge. By Proposition 3, there exists a suffix s2 included in s1 such that for any configuration
c in this suffix, u 6∈ listcv and v 6∈ listcu. Then u 6∈ Hv and v 6∈ Hu.

Let consider a node w such that w ∈ Hv and w ∈ Hu. Then there exists at least one path from u to
v containing w. The length of such a path is larger than Dmax. Then, by Proposition 5, it admits a
double-marked edge, either on the subpath from u to w or from the subpath from w to v.
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Now, let consider all the paths from u to v containing w; they all contain a double-marked edge.
Suppose that for one path P1, this double-marked edge is between w and v and for a second path P2,
it is between u and w. Then, by considering edges of P1 from u to w and edges of P2 from w to v,
we obtain a path from u to v without any double-marked edge, which is a contradiction. Then, all
paths from u to v containing w admit a double-marked edge, and this edge is always between u and
w or always between w and v. Thus, w cannot belong to both Hu and Hv, meaning that there is no
node w such that w ∈ Hu and w ∈ Hv.

Hence, any execution reaches a suffix such that, for any configuration c in this suffix, Hc
u and Hc

v are
distinct. �

The preceding propositions give the Agreement. Consider any execution esubgraphs. Denote by
eagree the suffix of an execution e such that ΠA(c) holds for any configuration c ∈ eagree, that is
VHv

= viewcw for any w ∈ Hv. The following proposition is given by Propositions 6, 4 and 3.

Proposition 7 (Agreement) On a fixed topology, any execution e reaches in finite time a suffix
eagree.

Proof. By Proposition 6, for any execution, there exists a suffix such that, for any nodes u and v in
G, if d(u, v) > Dmax, then the subgraphs Hu and Hv are distinct. Consider now two nodes w and v
such that w belongs to Hv

By Proposition 4, for any execution, there exists a suffix such that, for any configuration c in this
suffix, the identities of Hv will be in listcw.

By Proposition 3, for any execution, there exists a suffix such that, for any configuration c in this
suffix, the listcw contains only vertices of Hv.

After the end of the quarantine period, all the nodes in listw belong to vieww. Then the system
reaches a suffix in which all the nodes of Hv and only these nodes appear in vieww, for any vertex
w ∈ Hv. Hence, view

c
v = viewcw = Ωc

v. This gives ΠA. �

Now we have the agreement, there is a connection between subgraphs and groups. We then prove
the Safety. Consider any execution eagree. Denote by esafe the suffix of an execution e such that
ΠS(c) holds for any configuration c ∈ esafe. The following proposition is a consequence of Prop. 6.

Proposition 8 (Safety) On a fixed topology, any execution e reaches in finite time a suffix esafe.

Proof. By Proposition 6, for any execution and any nodes u and v in G satisfying d(u, v) > Dmax,
the subgraphs Hu and Hv will eventually be distinct. Hence, for any execution, there exists a suffix
esafe such that, for any configuration c ∈ esafe, for any vertex v in G, Diam(Hc

v) ≤ Dmax.

Then, by Proposition 7, we have maxx,y∈Ωc
v
dΩc

v
(x, y) ≤ Dmax. This gives ΠS . �

We consider any execution eagree. In order to prove the maximality property, we introduce the
following definitions. An edge (u, v) is internal in a given configuration c if Ωc

u = Ωc
v. In the converse

case (Ωc
u 6= Ωc

v), it is external. An external edge involves double-marked nodes and it is then not
propagated by the algorithm (marked nodes are deleted, see line 2 in Procedure compute()). We
denote by nee (resp. ndg) the function defined on C that returns the number of external edges in a
given configuration (resp. the number of distinct groups in configuration c: ndg(c) = |{Ωc

v, v ∈ V }|.

Proposition 9 (Nee) If nee is decreasing along a suffix es of an execution e, ndg is also decreasing
along es.

Proof. Let (u, v) be an external edge in a configuration ci and assume that it is an internal edge
in configuration ci+1. This means that Ωci

u 6= Ωci
v and Ω

ci+1
u = Ω

ci+1
v . Hence nee(ci) > nee(ci+1) ⇒

ndg(ci) > ndg(ci+1). �
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We prove that any execution reaches in finite time a suffix in which the function nee does not
increase. We denote by enotincr such a suffix: ∀ci, ci+1 ∈ enotincr, nee(ci+1) ≤ nee(ci).

Proposition 10 (Not incr.) On a fixed topology, any execution e reaches in finite time a suffix
enotincr.

Proof. Let c ∈ eagree be a configuration (Proposition 7). Let (u, v) be an internal edge in configu-
ration c. Then we have Ωc

u = Ωc
v and u is in listcv. In order (u, v) becomes an external edge, one

of its extremity (say v) would have double-marked the other (in Procedure compute()). But this
cannot happen after the goodList test (line 3) because c ∈ esubgraphs. This cannot happen after the
compatibleList test (line 6) because u is in already in viewcv. �

Now, we prove that any execution reaches in finite time a suffix in which the function nee is
decreasing while ΠM is not true. We denote by edecr such a suffix: ∀ci ∈ edecr, ΠM (ci) ∨ ∃cj ∈ edecr,
i < j and nee(ci) > nee(cj).

Proposition 11 (Decreasing) On a fixed topology, any execution e reaches in finite time a suffix
edecr.

Proof. Let c ∈ enotincr be a configuration (Proposition 10). Starting from such a configuration,
the nee function cannot increase. Suppose that ΠM is not true in c. Then, by definition of ΠM ,
there exists two neighbors nodes x and y with different views that could merge their groups without
breaking ΠS . By fair channel hypothesis, a timer later the system reaches a configuration c′ in which
x (resp. y) has received the list sent by y (resp. x).

Without loss of generality, suppose that Ωx has the smallest priority among all the subgraphs that
can merge, and Ωy has the smallest priority among all the groups that can merge with Ωx.

During the compute() Procedure on x and y, the goodList tests are true because c′ ∈ enotincr and
then c′ ∈ esafe. The compatibleList test is true on both x and y because they cannot have change
their list since configuration c. Hence we obtain: x ∈ listy and y ∈ listx.

Since Ωy has the smallest priority among the neighbors of Ωx, no member of Ωx can receive a message
from a group with a smallest priority. Therefore x will never receive and then will never send to y a
list with a too far node with a smallest priority than y one’s. Hence y will never double-mark x and
x will remain in the list of y.

Similarly, since Ωx has the smallest priority among the groups that can merge, no member of Ωy can
receive a message from a group with a smallest priority. Therefore y will never receive and then will
never send to x a list with a too far node with a smallest priority than x one’s. Hence x will never
double-mark y and y will remain in the list of x.

After Dmax timer, the list of y (resp. x) has reached any u ∈ Ωx (resp. Ωy) thanks to the fair channel
Hypothesis. Moreover the quarantine of these new members reaches 0 and they are now included in
viewu. Thus, the edge (x, y) becomes an internal edge.

Hence, starting from configuration c with ¬ΠM (c), the system reaches in finite time a configuration
c′′ with nee(c) > nee(c′′). �

The following proposition is given by Propositions 9, 10 and 11; it shows that any execution
reaches in finite time a suffix in which ΠM is true. We denote by emax such a suffix.

Proposition 12 (Maximality) On a fixed topology, any execution e reaches in finite time a suffix
emax.
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Proof. By Prop. 10, the execution reaches a suffix enotincr such that the nee function will no more
increase. By Prop. 11, the execution reaches a suffix edecr such that the nee function decreases while
ΠM is not true. Hence, while ΠM is false, the number of external edges will eventually decrease. By
Prop. 9, this means that the number of subgraphs will eventually decrease while ΠM is false. Since
the graph is finite, the number of subgraphs cannot decrease infinitely and ΠM will eventually become
true. �

5.2 Best-effort requirement

We now consider the dynamic of the network. We show that if the continuity property is violated
into a group, then there exists a pair of nodes belonging to that group such that the distance between
them is larger that Dmax. The following technical proposition justifies the compatibleList test.

Proposition 13 (Compatible lists) Let v be a node having the list (a0v , a
1
v, . . . , a

p
v), (p ≥ 0) and

assume that its neighbor w sends the list (a0w, a
1
w, . . . , a

q
w), (q ≥ 0). Then, the diameter of the group of

v after v accepts w remains smaller than or equal to Dmax if and only if there exists i ∈ {0, . . . , p} such
that w is neighbor of all the nodes belonging to aiv and either p−i+1+q ≤ Dmax or i/2+q+1 ≤ Dmax.

Proof. Let c ∈ esafe be a configuration (Proposition 8). Let w be the first node of Ωc
w for which the

list of ancestor’s sets is received by v. Then, the only external edges between Ωc
v and Ωc

w known by
v are those joining w (external edges are not propagated). Hence, without loss of generality, assume
that only these external edges exist between the groups.

(⇒) Assume that the conditions are fulfilled. Let u ∈ akv and u′ ∈ alw be two nodes in the lists of v
and w respectively. There exists at most two families of shortest paths from u to u′, depending on
the external edge used to reach w. Let P1 be a path that includes the edge (v,w). It starts from u
and joins v by k edges in the group of v, joins w by the edge (u, v) and then reaches u′ by l edges in
the group of u. Let P2 be a path from the second family. It starts from u and joins a node v′ ∈ aiv
by |k − i| internal edges in the group of v, then joins w by the edge (v′, w) and then reaches u′ by l
internal edges in the group of u.

The length of P1 is bounded by k + 1 + q. But since P1 is a shortest path, it is shorter to reach u′

from u by joining a node of a0v (i.e., v) than by joining a node of aiv (such as v′). Hence we have
k ≤ i/2 and the length of P1 is bounded i/2 + 1 + q, which is smaller than Dmax by hypothesis. The
length of P2 is bounded by p− i+ 1 + q, which is also smaller than Dmax by assumption.

Hence, for any node u and u′ belonging to the group of v and w respectively, there exists a path from
u to u′ with less than Dmax edges. The list of w is then compatible with the list of v, and can then
be accepted by v.

(⇐) Assume by contradiction that the conditions are not fulfilled and that v accepts the list of w,
i.e., v includes the list of w by computing its new list with ant—refer to Lines 14− 16 of Procedure
compute(). That means that the list of w is compatible—refer to Lines 6 − 8—, which contradicts
the assumption. Then the nodes of listcw will be propagated in the lists of nodes of listcv and
reciprocally. But at least one node u ∈ listcv will see that a node u′ ∈ listcw is too far from it
and reciprocally. Either u or u′ will reject the lists of its neighbors that contain the too far node
(depending on the priority between u and u′) and either the group of v or the group of w splits (when
a neighbor is rejected by u, it disappears from listu, and then from viewu; it is then no more in
Hv). �

Proposition 14 For any execution e, for any configuration ci in e, ΠT (ci, ci+1) ⇒ ΠC(ci, ci+1).

13



Proof. Suppose that there exists a configuration ci and a node v such that viewciv 6⊆ view
ci+1
v . Then

there exists a node u such that u ∈ viewciv and u 6∈ view
ci+1
v . This cannot happen after u or v has

added a new node in its view, thanks to the quarantine mechanism. This can only happen because
either u or v removed a node from their views.

Without loss of generality, suppose that v removed a node x: x ∈ viewciv and x 6∈ view
ci+1
v . If

x 6∈ view
ci+1
v , then (i) the quarantine of x is not null or (ii) x is not in list

ci+1
v or (iii) x is marked

in list
ci+1
v (Line 31 in Procedure compute()).

(i) The first case is exclude because x was already in viewciv .

(ii) In the second case, if v has not received the message of x while it received it before, then x left
the neighborhood of v. Then, in configuration ci+1, there is not path from x to v with only nodes of
Ωci
v and d

ci+1

Ω
ci
v

(x, v) = +∞. Thus ¬ΠT (ci, ci+1) (a neighbor left).

(iii) In the third case, if x is simple marked, its list is not good while it was in configuration ci, which
is exclude (Line 3). If x is double-marked, this cannot happen after the compatibleList test (Line 7)
because x was in viewciv . If this happened after Line 19, then x sent a list with a too far node y
having priority on v. If y 6∈ Ωci

v , then y 6∈ viewciv . Then the quarantine of y is not null and no node of
Ωci
v has admitted y in its view. Therefore, thanks to Prop. 13, y would have never been propagated

inside Ωci
v until v, because of the compatibleList test (Line 6). Finally, if y ∈ Ωci

v , then the distance
from y to v in configuration ci+1 is larger than Dmax: d

ci+1

Ω
ci
v

(x, v) > Dmax and ¬ΠT (ci, ci+1). �

6 Conclusion

This paper introduces the best effort requirement to complete the self-stabilization for designing
algorithm in dynamic networks. To illustrate this approach, a new problem inspired from VANET
has been specified: the Dynamic Group Service. A best effort distributed protocol called GRP has been
designed and proved for solving this problem in message passing. The algorithm is self-stabilizing and
fulfills a continuity property whenever the dynamic allows it. The protocol has been implemented
and its performances studied by simulation (see reference in Footnote 1 page 3). We believe that the
best effort requirement is promising for building useful services in dynamic networks.
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A Omitted proofs

A.1 Proof of Proposition 1 (Dmax)

Proof. Starting from configuration c1, the system will reach in finite time a configuration in which
every node has computed its list after expiration of its timer. After such a computation, the size of
the lists is bounded by Dmax+ 1 (because it is truncated at the Dmax+ 1 position, Line 28). �

A.2 Proof of Proposition 2 (Exist)

Proof. Let c ∈ eDmax be a configuration (Proposition 1). Let u be a node label such that u 6∈ V and
denote by U c

k the set of nodes having u in their list at position k in configuration c. Consider the
function φ(c) defined by φ(c) = min{k ∈ N, U c

k 6= ∅} and φ(c) = ∞ if ∀k ∈ N, U c
k = ∅. We prove that

φ is continuously growing along the execution to be eventually equal to infinity forever.

Consider a node v in U c
φ(c): v contains u at position φ(c) in its computed list and no node in

configuration c contains u at a smaller position in its computed list. Until the next expiration of its
timer, v cannot receive a list containing u in a smaller position than φ(c). Hence, the system will
reach in finite time a configuration in which the node v has computed a new list that does not contain
u at a position smaller than φ(c) + 1. After a timer (fair channel Hypothesis), the system reaches in
finite time a configuration in which the neighbors of v have received this list.

After finite time, any node v ∈ U c
φ(c) will do the same. The system then reaches in finite time after

configuration c a configuration c′ in which U c′

φ(c) is empty, meaning that φ(c) < φ(c′).

By iteration, φ is growing along the execution. Since the size of the lists is bounded by Dmax + 1
(Proposition 1), there exists a configuration c′′ reached in finite time after c in which φ(c′′) = ∞,
meaning that u does not appear anymore in the computed lists of the nodes forever. �

A.3 Proof of Proposition 5 (Double-marked edge)

Proof. Let v and w two nodes of G such that d(v,w) = Dmax + 1. Without loss of generality, we
suppose that pr(w) < pr(v). Suppose that there exists a path from v to w that does not contain any
double-marked edge. By Proposition 4, there exists a neighbor u of v such that u sends to v a list
containing w. The size of this list is larger than Dmax. There is two cases. (i) u 6∈ viewv. In this case,
listu is replaced by (u). (ii) u ∈ viewv. In this case, v computes a list using the one sent by u. Since
d(u, v) > Dmax, the resulting list is too long. Since pr(w) < pr(v), the computation will be done again
without the list provided by u, which will be replaced by (u). In the two cases, u is double-marked
by v. Hence, any path from u to v will eventually contains a double-marked edge. �

A.4 Proof of Proposition 6 (Subgraphs)

Proof. By Proposition 5, there exists a suffix s1 such that any path from u to v contains a double-
marked edge. By Proposition 3, there exists a suffix s2 included in s1 such that for any configuration
c in this suffix, u 6∈ listcv and v 6∈ listcu. Then u 6∈ Hv and v 6∈ Hu.
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Let consider a node w such that w ∈ Hv and w ∈ Hu. Then there exists at least one path from u to
v containing w. The length of such a path is larger than Dmax. Then, by Proposition 5, it admits a
double-marked edge, either on the subpath from u to w or from the subpath from w to v.

Now, let consider all the paths from u to v containing w; they all contain a double-marked edge.
Suppose that for one path P1, this double-marked edge is between w and v and for a second path P2,
it is between u and w. Then, by considering edges of P1 from u to w and edges of P2 from w to v,
we obtain a path from u to v without any double-marked edge, which is a contradiction. Then, all
paths from u to v containing w admit a double-marked edge, and this edge is always between u and
w or always between w and v. Thus, w cannot belong to both Hu and Hv, meaning that there is no
node w such that w ∈ Hu and w ∈ Hv.

Hence, any execution reaches a suffix such that, for any configuration c in this suffix, Hc
u and Hc

v are
distinct. �

A.5 Proof of Proposition 7 (Agreement)

Proof. By Proposition 6, for any execution, there exists a suffix such that, for any nodes u and v in
G, if d(u, v) > Dmax, then the subgraphs Hu and Hv are distinct. Consider now two nodes w and v
such that w belongs to Hv

By Proposition 4, for any execution, there exists a suffix such that, for any configuration c in this
suffix, the identities of Hv will be in listcw.

By Proposition 3, for any execution, there exists a suffix such that, for any configuration c in this
suffix, the listcw contains only vertices of Hv.

After the end of the quarantine period, all the nodes in listw belong to vieww. Then the system
reaches a suffix in which all the nodes of Hv and only these nodes appear in vieww, for any vertex
w ∈ Hv. Hence, view

c
v = viewcw = Ωc

v. This gives ΠA. �

A.6 Proof of Proposition 8 (Safety)

Proof. By Proposition 6, for any execution and any nodes u and v in G satisfying d(u, v) > Dmax,
the subgraphs Hu and Hv will eventually be distinct. Hence, for any execution, there exists a suffix
esafe such that, for any configuration c ∈ esafe, for any vertex v in G, Diam(Hc

v) ≤ Dmax.

Then, by Proposition 7, we have maxx,y∈Ωc
v
dΩc

v
(x, y) ≤ Dmax. This gives ΠS . �

A.7 Proof of Proposition 9 (Nee)

Proof. Let (u, v) be an external edge in a configuration ci and assume that it is an internal edge
in configuration ci+1. This means that Ωci

u 6= Ωci
v and Ω

ci+1
u = Ω

ci+1
v . Hence nee(ci) > nee(ci+1) ⇒

ndg(ci) > ndg(ci+1). �

A.8 Proof of proposition 10 (Not incr.)

Proof. Let c ∈ eagree be a configuration (Proposition 7). Let (u, v) be an internal edge in configu-
ration c. Then we have Ωc

u = Ωc
v and u is in listcv. In order (u, v) becomes an external edge, one

of its extremity (say v) would have double-marked the other (in Procedure compute()). But this
cannot happen after the goodList test (line 3) because c ∈ esubgraphs. This cannot happen after the
compatibleList test (line 6) because u is in already in viewcv. �
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A.9 Proof of Proposition 11 (Decreasing)

Proof. Let c ∈ enotincr be a configuration (Proposition 10). Starting from such a configuration,
the nee function cannot increase. Suppose that ΠM is not true in c. Then, by definition of ΠM ,
there exists two neighbors nodes x and y with different views that could merge their groups without
breaking ΠS . By fair channel hypothesis, a timer later the system reaches a configuration c′ in which
x (resp. y) has received the list sent by y (resp. x).

Without loss of generality, suppose that Ωx has the smallest priority among all the subgraphs that
can merge, and Ωy has the smallest priority among all the groups that can merge with Ωx.

During the compute() Procedure on x and y, the goodList tests are true because c′ ∈ enotincr and
then c′ ∈ esafe. The compatibleList test is true on both x and y because they cannot have change
their list since configuration c. Hence we obtain: x ∈ listy and y ∈ listx.

Since Ωy has the smallest priority among the neighbors of Ωx, no member of Ωx can receive a message
from a group with a smallest priority. Therefore x will never receive and then will never send to y a
list with a too far node with a smallest priority than y one’s. Hence y will never double-mark x and
x will remain in the list of y.

Similarly, since Ωx has the smallest priority among the groups that can merge, no member of Ωy can
receive a message from a group with a smallest priority. Therefore y will never receive and then will
never send to x a list with a too far node with a smallest priority than x one’s. Hence x will never
double-mark y and y will remain in the list of x.

After Dmax timer, the list of y (resp. x) has reached any u ∈ Ωx (resp. Ωy) thanks to the fair channel
Hypothesis. Moreover the quarantine of these new members reaches 0 and they are now included in
viewu. Thus, the edge (x, y) becomes an internal edge.

Hence, starting from configuration c with ¬ΠM (c), the system reaches in finite time a configuration
c′′ with nee(c) > nee(c′′). �

A.10 Proof of Proposition 13 (Compatible lists)

Proof. Let c ∈ esafe be a configuration (Proposition 8). Let w be the first node of Ωc
w for which the

list of ancestor’s sets is received by v. Then, the only external edges between Ωc
v and Ωc

w known by
v are those joining w (external edges are not propagated). Hence, without loss of generality, assume
that only these external edges exist between the groups.

(⇒) Assume that the conditions are fulfilled. Let u ∈ akv and u′ ∈ alw be two nodes in the lists of v
and w respectively. There exists at most two families of shortest paths from u to u′, depending on
the external edge used to reach w. Let P1 be a path that includes the edge (v,w). It starts from u
and joins v by k edges in the group of v, joins w by the edge (u, v) and then reaches u′ by l edges in
the group of u. Let P2 be a path from the second family. It starts from u and joins a node v′ ∈ aiv
by |k − i| internal edges in the group of v, then joins w by the edge (v′, w) and then reaches u′ by l
internal edges in the group of u.

The length of P1 is bounded by k + 1 + q. But since P1 is a shortest path, it is shorter to reach u′

from u by joining a node of a0v (i.e., v) than by joining a node of aiv (such as v′). Hence we have
k ≤ i/2 and the length of P1 is bounded i/2 + 1 + q, which is smaller than Dmax by hypothesis. The
length of P2 is bounded by p− i+ 1 + q, which is also smaller than Dmax by assumption.

Hence, for any node u and u′ belonging to the group of v and w respectively, there exists a path from
u to u′ with less than Dmax edges. The list of w is then compatible with the list of v, and can then
be accepted by v.
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(⇐) Assume by contradiction that the conditions are not fulfilled and that v accepts the list of w,
i.e., v includes the list of w by computing its new list with ant—refer to Lines 14− 16 of Procedure
compute(). That means that the list of w is compatible—refer to Lines 6 − 8—, which contradicts
the assumption. Then the nodes of listcw will be propagated in the lists of nodes of listcv and
reciprocally. But at least one node u ∈ listcv will see that a node u′ ∈ listcw is too far from it
and reciprocally. Either u or u′ will reject the lists of its neighbors that contain the too far node
(depending on the priority between u and u′) and either the group of v or the group of w splits (when
a neighbor is rejected by u, it disappears from listu, and then from viewu; it is then no more in
Hv). �
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