
HAL Id: inria-00525006
https://hal.inria.fr/inria-00525006

Submitted on 10 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model based design flow for implementing an
Anti-Collision Radar detection system

Imran Rafiq Quadri, Yassin El Hillali, Samy Meftali, Jean-Luc Dekeyser

To cite this version:
Imran Rafiq Quadri, Yassin El Hillali, Samy Meftali, Jean-Luc Dekeyser. Model based design flow for
implementing an Anti-Collision Radar detection system. 9th International IEEE Conference on ITS
Telecommunications (ITS-T 2009), Oct 2009, Lille, France. �inria-00525006�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50050341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00525006
https://hal.archives-ouvertes.fr

Model based design flow for implementing an
Anti-Collision Radar detection system

Imran Rafiq Quadri∗, Yassin ElHillali†, Samy Meftali∗ and Jean-Luc Dekeyser∗

∗INRIA Lille Nord Europe - LIFL - USTL - CNRS, 40 avenue Halley,59650 Villeneuve d’Ascq, FRANCE
Email:{Firstname.Lastname}@inria.fr

†IEMN-DOAE UVHC Le Mont Houy 59313 Valenciennes, FRANCE
Email:Yassin.ElHillali@univ-valenciennes.fr

I. I NTRODUCTION

In order to ensure and increase the safety and reliability
of transport systems, these systems are becoming more and
more intelligent. They integrate more and more sensors and
communication systems. Each of these functionalities can be
implemented on a System-on-Chip (SoC). These functionali-
ties are carried out by massive computations. As the number
of integrated functionalities increase in the transport systems,
the design and implementation complexity also increases ata
tremendous rate. Implementation of these functionalitiescan
be carried out either via FPGAs or DSP (digital signal pro-
cessors) platforms. FPGAs are considered the ideal choice as
they accelerate the computations by executing the algorithms
in a parallel manner.

Actually the initial steps in existing design flows are the
development of the complex algorithms; and then their manual
implementation, which are daunting tasks. Change in the scale
of the algorithm requires starting the implementation overfrom
scratch which results in increase design time. Normally these
steps are carried out by teams of different domains which
could result in compatibility issues.

We propose a high abstraction level design methodology
for implementation of these algorithms in a graphical manner.
The advantages offered by our approach aim to reduce time
to make up or time to market. Changes in the nature of the
algorithm can be easily carried out due to their graphical
nature and the code can be generated automatically rapidly.
Afterwards the implementation can be carried out on the target
FPGA platforms.

Model Driven Engineering (MDE) is an emerging domain
and can be seen as a High Level Design Flow in order to re-
solve the issues related to SoC co-design. MDE enables system
level (application/architecture) modeling at a high specification
level allowing several abstraction stages (i.e. IRs). Thusa
system can be viewed globally or from a specific point of
view of the system, allowing to separate the system model into
parts according to relations between system concepts defined
at different abstraction stages. This Separation of Views (SoV)
allows a designer to focus on a domain aspect related to an
abstraction stage thus permitting a transition from solution
space to problem space. Using a graphical modeling language
i.e. UML (Unified Modeling Language) for system description

increases the system comprehensibility. This allows designers
to provide high-level descriptions of the system that easily
illustrate the internal concepts (task/data parallelism,data de-
pendencies and hierarchy). These specifications can be reused,
modified or extended due to their graphical nature. Finally
MDE’s model transformationsallow to generate executable
models (or executable code) from high level models bridging
the gap between these models and execution platforms.

Gaspard [1],[2] as shown in Figure.1 is an MDE-based
SoC Co-design framework dedicated to parallel hardware
and software. It is based on the UML MARTE profile [3]
that allows to model real-time and embedded systems; and
allows to move from high level MARTE specifications to
different execution platforms such as RTL synthesis in FPGAs
[4]. Gaspard exploits the inherentparallelism included in
repetitive constructions of hardware elements or regular con-
structions such as application loops. The applications targeted
by Gaspard also focus on a specific application domain, that
of intensive data-parallel applications.

Figure.1: A global view of the Gaspard framework

In this paper we present the modeling and final implemen-
tation of a key integral part of an anti-collision radar detection

system. This part is based on delay estimation using a corre-
lation algorithm. This part is modeled at an high abstraction
level using the MARTE profile in the Gaspard framework.
Afterwards using the model transformations present in our
design flow, we have generated the necessary RTL level code
for synthesis on a target FPGA using commercial tools. An
important point to observe is that the final code generation
from the high level models usually is carried out in a few sec-
onds resulting in a huge save in the overall system conception
development time.

II. CASE STUDY: DELAY ESTIMATION CORRELATION

MODULE

Correlation algorithms are among the type of digital pro-
cessing largely employed in DSP (digital signal processing)
based systems. They offer a large applicability range such as
linear phase and stability. A correlation algorithm normally
takes some input data values and compute an output which is
then multiplied by a set of coefficients. Afterwards the result
of this multiplication is added together to produce the final
output. While a software implementation can be utilized for
implementing this functionality, the correlation functionality
will be sequentially executed. Where as a hardware imple-
mentation allows the correlation functions to be executed in a
parallel manner and thus increases the processing speed.

Figure.2: An overviw of our complete design flow

A. Algorithm

We propose to study a case where our radar uses a PRBS
(Pseudorandom binary sequence) of length of 127 chips. In
order to produce a computation result, the algorithm requires
64 multiplications between the 127 elements of the reference
code and the last 127 received samples. The result of this

multiplication produces 64 data elements. The sum of these
64 data elements produces the final result. This result can be
sent as input to other parts of the Anti-Collision radar detection
system.

The mathematical expression of the DECM is described as:

Ccy(j) =
1
N

N−1

∑
i=0

c(i) ·y(i + j) (1)

Wherec(i) represents reference code,y(i + j) the received
signal andN the length of the referenced code. In this case
stydy, the normalization1

127 does not improves the detection
quality itself, we consider the following expression:

Ccy(j) =
126

∑
i=0

c(i) ·y(i + j) (2)

Figure.2 shows the global overview of our design flow. The
figure only shows the top hierarchical level of our correlation
application. Once the application has been completely modeled
using the UML MARTE profile, the model transformations
allow to move from high level models to lower detailed models
which add detailed information and concepts related to RTL
semantics. Once the final low level RTL model is generated,
the model to text transformationscan be invoked which allow
to convert the models into user specified Hardware description
language. In our case, we generated the VHDL source code for
the modeled application, however, Verilog code can be easily
generated as well. The automatic generation of the code allows
to convert the application into a hardware functionality, i.e., a
hardware accelerator for final FPGA implementation.

The application contains temporal as well as spatial dimen-
sions which can be easily expressed in our design flow. Sim-
ilarly, task parallelismand data parallelismcan be specified
at the high abstraction levels, and the generated HDL code
expresses the parallelism specified at the modeling level. The
generated HDL code has been synthesized and simulated on
Xilinx Virtex II-Pro XC2VP30 as well as Stratix II 2S180
FPGAs in order to validate our design methodology.

1) High level view: Figure.3 shows the top level of our
modeled DCEM module. The instancetrm of the compo-
nent TimeRepeatedMultiplicationdetermines the multiplica-
tions while instancetrat of componentTimeRepeatedAddition-
Treedetermines the sum.

The instancetrdg of componentTimeRepeatedDataGen
produces the data values for the received signal while the in-
stancetrcg of componentTimeRepeatedCoeffGenproduces the
reference code. For the received signal, as the portout TRDG
of trdg has an infinite flow of data; it has a shape specification
of {*}. As only the 4 MSB (most significant bits) of the input
signal are retained, we utilize the type INTEGER RANGE -8
TO 7 for this signal. The reference code is initially composed
of 127 samples, and in order to standardize this input port with
a power of 2; we add a 128th element in the reference code.
The value of this element is neutral and does not effect the
final computation result. The reference code can have different
values: from a range of -1 to 1 where 0 allows to encode the

added element. Therefore type of the portout TRCGof trcg
is INTEGER RANGE -1 TO 1 with a shape of{128,*}. The
choice to model the reference code in the form of a flow in
time (on the basis of * in its dimension) permits to modify
the code during execution of the algorithm. Figure.3 shows
the top level view of the filter application.

The outputout TRATport of the instancetrat also indicates
infinite flow as illustrated by its dimension{*}. However, the
algorithm allows us to specify that the maximum value of the
output (type of the output port oftrat) will be between -4096
and 4095; hence the primitive type associated is INTEGER
RANGE -4096 TO 4095. In order to standardize the system
output, another component could be created betweentrat and
trdc to convert the output into INTEGER. This step has not
been taken in this case study. This value is then sent out to
the radar.

2) Modeling of the Multiplication step:The modeling of
the modeling step is shown in Figure.4 by means of two
components. The componentTimeRepeatedMultiplicationex-
presses the repetition in time whileRepeatedMultiplication
expresses the repetition in space. At the level ofTimeRepeat-
edMultiplication, the portinDataM of the instancerm is com-
posed of an array of 128 data elements and is constructed by a
sliding window in time of length 127. This sliding window is
expressed via theTiler connected to portinDataTRMwhich
expresses the data dependency between the two ports. The
componentRepeatedMultiplicationrealizes 64 multiplications
between the data on the portsinDataMandinCoeffMby means
of the repeated instantiations of the elementary component
Multiplication.

3) Modeling of the Addition step:Figure.5 represents the
component which realizes the addition of 128 data elements.
The input portinAdditionTreeof this tree has a dimension of
{128} while the output portoutAdditionTreeis a scalar: shape
of {1}.

The addition computation has been decomposed in a tree,
with each stage of this tree carrying out partial additions.The
dimensions of the ports between each stage in this pipeline of
tasks reduce by a factor of 2 (128→ 64 . . . 2→ 1). Figure.6
represents the first stage, which realizes a partial addition of
sixty four elements on an input port and produces thirty two
elements on its output port. The computation taskAddition is
repeated thirty two times and is elementary in nature.

In conclusion, we have presented a novel design methodol-
ogy to model complex intensive data-parallel applications. The
modeling is carried out using the UML graphical language and
the MARTE standard. Afterwards, automatic code generation
can be carried out via MDE tools and technologies. Finally the
code can be synthesized and implemented on a target FPGA.

B. Simulation Results

Figure.7 and Figure.8 shows the simulation results of our
DCEM.

REFERENCES

[1] INRIA DaRT team, “GASPARD SoC Framework,” 2009, http://www.
gaspard2.org/.

Figure.7:Peak 1

Figure.8:Peak 2

[2] A. Gamatíe and S. Le Beux and́E. Piel and A. Etien and R. B. Atitallah
and P. Marquet and J.-L Dekeyser, “A model driven design framework
for high performance embedded systems,” INRIA, Research Report RR-
6614, 2008, http://hal.inria.fr/inria-00311115/en.

[3] OMG, “Modeling and analysis of real-time and embedded systems
(MARTE),” http://www.omgmarte.org/.

[4] I.-R. Quadri, S. Meftali, and J.-L. Dekeyser, “A model driven design
flow for fpgas supporting partial reconfiguration,”International Journal
of Reconfigurable Computing, 2009, Hindawi Publishing Corporation,
Tentative publication date : June 2009.

Figure.4:Modeling of the Multiplication stage

Figure.5:The Addition tree

Figure.6:An addition step

