
HAL Id: inria-00525343
https://hal.inria.fr/inria-00525343

Submitted on 21 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable mpNoC for massively parallel systems - Design
and implementation on FPGA

Mouna Baklouti, Yassine Aydi, Philippe Marquet, Jean-Luc Dekeyser,
Mohamed Abid

To cite this version:
Mouna Baklouti, Yassine Aydi, Philippe Marquet, Jean-Luc Dekeyser, Mohamed Abid. Scalable
mpNoC for massively parallel systems - Design and implementation on FPGA. Journal of Systems
Architecture, Elsevier, 2010, 56 (7), pp.278 - 292. �10.1016/j.sysarc.2010.04.001�. �inria-00525343�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50050047?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00525343
https://hal.archives-ouvertes.fr


Scalable mpNoC for Massively Parallel Systems – Design and Implementation

on FPGA

M. Baklouti∗,a,b, Y. Aydia, Ph. Marquetb, J.L. Dekeyserb, M. Abida

aCES Laboratory, National Engineering School of Sfax, Sfax, Tunisia
bUniv. Lille, F-59044, Villeneuve d’ascq, France

LIFL, Univ. Lille 1, F-59650, Villeneuve d’ascq, France

INRIA Lille Nord Europe, F-59650, Villeneuve d’ascq, France

UMR 8022, CNRS, F-59650, Villeneuve d’ascq, France

Abstract

The high chip-level integration enables the implementation of large-scale parallel processing architectures with 64

and more processing nodes on a single chip or on an FPGA device. These parallel systems require a cost-effective yet

high-performance interconnection scheme to provide the needed communications between processors. The massively

parallel Network on Chip (mpNoC) was proposed to address the demand for parallel irregular communications for

massively parallel processing System on Chip (mppSoC). Targeting FPGA based design, an efficient mpNoC low

level RTL implementation is proposed taking into account design constraints. The proposed network is designed as an

FPGA based IP (Intellectual Property) able to be configured in different communication modes. It can communicate

between processors and also perform parallel I/O data transfer which is clearly a key issue in an SIMD system. The

mpNoC RTL implementation presents good performances in terms of area, throughput and power consumption which

are important metrics targeting an on chip implementation. MpNoC is a flexible architecture that is suitable for use in

FPGA based parallel systems. This paper introduces the basic mppSoC architecture. It mainly focuses on the mpNoC

flexible IP based design and its implementation on FPGA. The integration of mpNoC in mppSoC is also described.

Implementation results on a StratixII FPGA device are given for three data parallel applications ran on mppSoC. The

obtained good performances justify the effectiveness of the proposed parallel network. It is shown that the mpNoC is

a lightweight parallel network making it suitable for both small as well as large FPGA based parallel systems.

Key words: Communication, FPGA, Network architecture, SIMD parallel processing, System-on-a-Chip.

1. Introduction

Modern applications like audio/video compression,

image processing and 3D graphics, need high perfor-

mances and efficient architectures to be executed, es-

pecially in the embedded systems domain. These ap-

plications require high execution speed and often real

time processing capabilities. In the nineteens, design-

ers focus on SIMD (Single Instruction Stream Multi-

ple Data Stream) architectures. This allows them to

speed-up significantly execution times of a variety of

∗Corresponding author

Email addresses: mouna.baklouti@lifl.fr (M. Baklouti),

yassine.aydi@oous.rnu.tn (Y. Aydi),

philippe.marquet@lifl.fr (Ph. Marquet),

jean-luc.dekeyser@lifl.fr (J.L. Dekeyser),

mohamed.abid@enis.rnu.tn (M. Abid)

tasks from matrix multiplication to image processing.

Typically an SIMD machine has a control unit which

broadcasts instructions to N processors, numbered (ad-

dressed) from 0 to N-1, and all active processors execute

the same instruction at the same time [32]. The inter-

connection network (ICN) can be used to connect pro-

cessors to memory modules. Alternatively, the network

can be used to interconnect processing elements (PE),

where each PE consists of a processor and a memory

module. But, until the last few years, silicon integration

technology doesn’t allow us to put such systems to the

SoC context, consequently these systems were then less

and less used. Since recently, we are able to integrate

billions transistors in a single chip (giga and tera-scale

integration GSI/TSI). On one side, new design method-

ologies such as IP (Intellectual Property) reuse and, on

the other side, the possible high integration level on a

Preprint submitted to Journal of Systems Architecture October 21, 2010



chip let us envisage such a revival of SIMD architec-

tures. Nowadays we have a great variety of high ca-

pacity programmable chips, also called reconfigurable

devices (FPGAs) where we can easily integrate com-

plete SoCs architectures for many different applications.

Due to the inherent flexibility of these devices (Field-

Programmable), designers are able to quickly develop

and test several hardware/software architectures. In this

paper, we used Altera reconfigurable devices to imple-

ment the mppSoC (massively parallel processing Sys-

tem on Chip) architecture and get experimental results.

The complexity in circuit design grows rapidly, still

validating Moores Law. Therefore, the ability of imple-

menting complex architecture in a single chip always

presents new challenges. One of the issues met by de-

signers when implementing large SoCs is the communi-

cation between their (numerous) components. Intercon-

nects are considered as one of the most important chal-

lenges in GSI/TSI facing today. At the chip level, inter-

connects have become the major component in the delay

of critical paths, are the largest source of power dissi-

pation, and cause reliability problems [33]. So an effi-

cient ICN intra-chip, with low latency and high band-

width, is fundamental for high communication through-

put among one components’architecture. In fact, shar-

ing busses is no longer a good method for connecting

multiple processors or other IPs due to their lack of

scalability and important power consumption. An alter-

native to bus based communication is network-on-chip

(NoC) [17]. NoC is an emerging paradigm for commu-

nications within multiprocessor systems implemented

on a single silicon chip.

Our contribution to SIMD on-chip design domain

consists in the implementation at an RTL abstraction

level of a system called mppSoC [29]. It looks like an

on-chip version of the famous MasPar [35]. MppSoC

contains a number of processing elements (PE), each

one has its own private local data memory. The whole

system is mastered by a processor called Array Con-

troller Unit (ACU). The PEs communicate using a Xnet

neighborhood ICN. It permits regular and neighboring

communications between PEs, but is not really efficient

when communications become irregular. Thus, to im-

prove the communication performances of the mppSoC,

an additional communication network, to assure point

to point communications, is needed. The objective of

this work is to provide designers with more complete

parallel architecture with high performances. Our con-

tribution is to propose a flexible massively parallel NoC,

implemented as a VHDL IP, to be integrated in such par-

ticular systems. The mpNoC can be configured to sup-

port different communication modes by programming.

The communication instructions permitting to manage

the global router, the PEs and the ACU are defined. The

present paper concentrates on point to point communi-

cations. Two types of global router, crossbar and delta

multistage networks (MIN), are discussed in detail.

The rest of this paper is organized as follows. The

use of a NoC in parallel architectures state of the art is

proposed in the next section. Section 3 introduces the

mppSoC platform. The mpNoC implementation is de-

tailed in Section 4. In this Section, we propose an effi-

cient way to integrate the communication network with

the mppSoC processors and devices. The execution of

some representative applications varying mppSoC com-

munication networks is briefly described in Section 5.

Section 6 discusses the performance results of the mp-

NoC compared to other NoC implementations. Section

7 outlines the conclusion with planned future work.

2. Related Works

The research effort in performance evaluation of

communication scheme of multiprocessor SoCs and es-

pecially NoC has been widely tackled in order to guar-

antee optimal communication performance. There has

also been a growing interest in designing novel NoC

alternatives for parallel architectures. Parallel systems

have been designed around a variety of inter processor

communication networks. Due to rapid advancement in

VLSI technology, it has become feasible to construct

massively parallel systems based on static interconnec-

tion structures as meshes, trees and hypercubes. An-

other class of parallel systems includes crossbar, mul-

tistage switching networks such as delta network, etc.

These mechanisms exhibit various trade-offs between

processor throughput, communication delays, and the

programming complexity. The performance of ICN un-

der uniform traffic load has been studied with both an-

alytical methods and simulations ([16], [13], [10], [6],

[11]).

SIMD implementations usually consist of a Control

Unit, an arbitrary number of PE and an ICN, which of-

ten are custom-made for the type of application it is

intended for. Processors can communicate with each

other through the ICN. If the ICN does not provide di-

rect connection between a given pair of processors, then

this pair can exchange data via an intermediate proces-

sor. The ILLIAC IV [3] used such an interconnection

scheme. It is composed of 64 processors operated on

64-bit words. The ICN in the ILLIAC IV allowed each

processor to communicate directly with four neighbor-

ing processors in an 8x8 matrix pattern such that the

ith processor can communicate directly with the four

2



neighbours: (i − 1)th, (i + 1)th, (i − 8)th and (i + 8)th pro-

cessors. So, to move data between two PEs, that are not

directly connected, the data must be passed through in-

termediary PEs by executing a programmed sequence of

data transfers [2]. This can lead to excessive execution

time if more irregular communications are needed. Ac-

cording to [14] the ILLIAC network is considered as a

single stage SIMD network. MorphoSys [26] [5] is a re-

configurable SIMD architecture that targets for portable

devices. It combines an array of 64 Reconfigurable

Cells (RCs) and a central RISC processor (TinyRISC)

so that applications with a mix of sequential tasks and

coarse-grain parallelism, requiring computation inten-

sive work and high throughput can be efficiently imple-

mented on it. In MorphoSys, each RC can communicate

directly with its upper, below, left and right neighbors

peer to peer. This gives efficient regular applications,

but unfortunately non-neighbors communications seem

to be tedious and time consuming. Other new SIMD ar-

chitectures have been proposed [24] [34] but they don’t

solve the problem of irregular communications since

they integrate only a neighborhood ICN. Among pop-

ular interconnected networks there are tree and hyper-

cube structures. Tree type structure is suited to certain

special kind of parallel processing where neighbour-

ing processors can communicate quite fast. However,

communication between non neighbouring processors

is slower and it requires intermediate processors to store

and forward message transfer. The hypercube structure

has shown suitability to fairly wide range of program-

ming tasks. However, relatively very few hypercube

structures are implemented commercially. A nearest

neighbor communication network is good for applica-

tions where the communications are restricted to neigh-

boring PEs. However, there are several problems which

require communications between PEs which are sepa-

rated by a large distance. Massively parallel machines

typically have a scheme to cover such communications

patterns. The Connection Machine [4] has a hypercube

ICN, the MasPar MP-1 [35] has an Omega network,

DAP has row and column highways [23] and the DEC

massively parallel processing chip has been designed

with a router communication network [31]. These sys-

tems can solve the problem of irregular communica-

tions. However they integrate a fixed ICN. The prob-

lem is that different applications might have different

demands for the architecture. In [15] author has demon-

strated that the perfect shuffle interconnection pattern

has a fundamental role in a parallel processor. It has

been shown that for some examples including the Fast-

Fourier Transform, polynomial evaluation, sorting, and

matrix transposition, the shuffle interconnection scheme

presents advantages over the near-neighbor (or cycli-

cally symmetric) interconnection scheme that is used in

the ILLIAC IV. So, the perfect shuffle interconnection

scheme deserves to be considered for implementation

in advanced parallel processors. Whether this intercon-

nection pattern should be used instead of, or in addition

to, other interconnection patterns depends very much

on the size and intended application of the parallel pro-

cessor. In [27], [14] a comparator study between four

MINs for SIMD architecture (Feng’s data manipulator,

STARAN flip network, omega network, and indirect bi-

nary n-cube) is presented. According to this study, the

networks may be ordered in terms of interconnection

capabilities as follows: flip network, indirect binary n-

cube, omega network, and ADM. The Omega network,

for example, may have to use address transformations to

perform all of the n-cube interconnections, due to the re-

versed order of its stages. It has been also shown that the

omega, ncube, and ADM network have control struc-

tures which allow them to function in a multiple control

environment. So, it has been proved that some types of

MINs are good networks for SIMD systems.

This analysis shows that existing SIMD architectures

are not capable of responding to the communication de-

mands, especially of irregular type, of many data par-

allel algorithms. Hence, there is a need for an SIMD

architecture that can perform neighbor as well as non

neighbor communications integrating a NoC with good

properties. An efficient and flexible irregular FPGA

based communication network dedicated to massively

parallel systems is described. A systemC implementa-

tion has already been proposed [33]. This work focuses

rather on the RTL implementation and FPGA perfor-

mance results of the mpNoC which can use different in-

ternal routers. We are interested by dynamic intercon-

nection structures, in particular crossbar and Delta MIN.

The validation of the mpNoC is performed through im-

plementation and simulation.

3. Basic mppSoC architectural model

MppSoC [29], which stands for massively parallel

processing System on Chip, is a novel SIMD architec-

ture built within nowadays processors. It is composed

of a grid of processors and memories connected by a

X-Net neighbourhood network and a general purpose

global router. MppSoC is an evolution of the famous

massively parallel systems proposed at the end of the

eighties. Each processor executes the very same in-

struction at each cycle in a synchronized manner, or-

chestrated by an unique control processor. The ACU

is responsible for fetching and interpreting instructions.

3



Processing Elements

Parallel memory

Global Router network

Global Router control
ACU

Parallel µinstruction broadcast

Data

Instructions

Data

Data

DataDataData

Data

Data

Data

Data

Sequential
memory

X−Net interconnection network

X−Net control

Figure 1: The mppSoC Architecture

Two kinds of instructions are considered: parallel ones

and non-parallel (i.e. sequential) ones. The control

processor transfers parallel arithmetic and data process-

ing instructions to the processor array, and handles any

control flow or serial computation that cannot be par-

allelized. Each PE in the 2-D grid is potentially con-

nected to its 8 neighbors via the X-Net, a neighborhood

network. However, this router cannot perform all the

needed communications particularly irregular ones. So

the idea is to integrate another communication network.

A single shared bus between all PEs, for example, is

not sufficient, since in an SIMD machine it is desirable

to allow many processors to send data to other proces-

sors simultaneously. Ideally, one would like each pro-

cessor sends data directly to every other processor, but

this is highly impractical for large N, since each proces-

sor would require N-1 lines. So, one solution is the use

of NoC. NoC-based communications will also become

mandatory for many applications to enable parallel in-

terconnections and communication throughputs [7]. In

the mppSoC architecture, each PE is connected to an

entry of mpNoC, a massively parallel Network on Chip

that potentially connects each PE to one another, per-

forming efficient irregular communications. The ACU

synchronously controls the two networks of the system:

the X-Net and mpNoC. Figure 1 illustrates the mpp-

SoC global architecture. In this work, processors ACU

and PEs are built from the processor IP miniMIPS [39]

running at 50 Mhz. The ACU is a complete processor

whereas the PE is a reduced processor derived from the

same processor as the ACU [28].

MppSoC is programmed in a data-parallel language.

A data-parallel language distinguishes sequential in-

structions and parallel instructions. A sequential in-

struction concerns sequential data of the ACU memory

and is carried out by the ACU as in an usual sequential

architecture. A parallel instruction is executed in a syn-

chronous manner by all the PE of the system, each PE

taking its operands from its local memory and storing

the result in this same memory (or may be in its own

local registers). Some specific instructions control the

two networks, allowing transfer of values from one PE

to another. Theses transfers are also executed in a syn-

chronous manner: all PEs communicating at the same

time with a PE designated by the instruction or one of

its operand values. A given X-Net communication for

example allows all PEs to communicate with a PE in a

given direction at a given distance. Direction and dis-

tance are here the same for all the PEs.

As already mentioned, the design of mppSoC is in-

spired from the famous MasPar [35]. Nevertheless three

major points distinguish mppSoC from the MasPar:

1. The mppSoC PEs are not any smaller 1- or 4-bit pro-

cessors as it was by the time of the Connection Ma-

chine CM-1 and MasPar MP-1. MppSoC uses 32-bit

processors.

2. The ACU and the PEs are designed from the same

processor. Some minor additions are made to this

processor to design the ACU, while its decode part

is suppressed in the PE, performing a better on chip

integration and reducing the power consumption.

3. The mppSoC global router not only connects the PEs

to each others, but also allows connecting the PEs to

ACU and to devices.

Another major difference between usual SIMD systems

and our mppSoC is the integration of mpNoC, a multi-

purpose NoC component in the mppSoC. The mpNoC

was designed as an IP that is able to synchronously con-

nect a set of inputs to a set of outputs. It is based on a

NoC router which transfers data from source to destina-

tion depending on the routing information. In this work,

we detail the implementation of the mpNoC based on a

crossbar and a Delta MIN. In the following section, we

introduce the mpNoC and the routing mechanism. The

used interconnection routers are also described.

4. MpNoC Design

MpNoC is the network component of the mppSoC

that allows a parallel communication of each PE to a

distinguished PE. One important property of the mp-

NoC is its ability to use different ICNs. An alternate

network which allows all processors to communicate si-

multaneously is the crossbar switch. The difficulty here

is that network costs grow with N2; given current tech-

nology, this makes crossbar switches infeasible for large

4



systems. The full crossbar is used only with a small

number of PEs. A more complex network is so needed

for big instances of mppSoC. In our case we also test

the integration of a Delta MIN in the mpNoC. MpNoC

allows exchanging data between any couple of PE in

parallel. It is considered as a global router of the mpp-

SoC. Nevertheless, if any communication between PEs

may be realized by a set of X-Net communications, as

performances and flexibility are concerned, the usage

of such a global router has an advantage over the X-Net

usage for many algorithms. Consequently, including or

not a global router in a given mppSoC design is a trade-

off between the cost in term of silicon and the advantage

in term of performance and flexibility, especially in the

case of a design targeting a configurable hardware such

as an FPGA. The nature of the targeted applications may

be the decisive element in this design choice.

Communications IPs generally are tedious to inte-

grate due to the number and the heterogeneity of con-

nection they manage. The IP blocks are also connected

into them through some fixed interface which will be

highlighted. The following subsection deals with partic-

ularities of each IP block and its integration into mpp-

SoC. We also demonstrate the flexibility of the mpNoC

integration in the mppSoC system.

4.1. MpNoC Overview

The mpNoC is designed as an IP that can be config-

ured to perform three functions in the mppSoC archi-

tecture. Firstly, the mpNoC is used as a global router

connecting, in parallel, any PE with another one. Sec-

ondly, the mpNoC is able to connect the PEs to the mpp-

SoC devices. Finally, the mpNoC is able to connect the

ACU to any PE of the mppSoC [33]. It is usually im-

practical to implement all the interconnections that may

be needed by the system to perform a large variety of

computations, so the ability of a network to perform a

variety of interconnections is important. The mpNoC

includes an internal network which transfers data from

sources to destinations. This network is the key point

of mpNoC. In order to allow an efficient and a realis-

tic IP integration of this network, its interface is generic

enough to support a configurable size (4x4, 32x32 for

example). While targeting an mpNoC integration into

mppSoC, the number of mpNoC sources and destina-

tions is equal to the number of PEs used in the mppSoC

grid. PEs are not directly connected to the mpNoC but

are connected to switches that allow to connect either

the PEs, either the ACU, or some devices to the mp-

NoC. As shown in Figure 2, the mpNoC IP is connected

to mppSoC and its input/output devices via controlled

switches. These switches are also controlled via the

Mode Manager

Chip

select

Data_IN
Address_IN

Interconnection Network

Data

Addr

Data_OUT

Address_OUT

Figure 3: mpNoC Architecture

ACU based on the mode instruction. In fact, the mp-

NoC contains a Mode Manager which establishes the

interconnections needed for one communication mode.

There are three different bidirectional communication

modes, as mentioned previously:

a) Mode PE - PE

b) Mode ACU - PE

c) Mode PE - I/O device

The designed mpNoC is parameterized in terms of num-

ber of PEs connected to the network and the chosen

communication mode. The rest of this Section high-

lights the mpNoC implementation and covers crossbar

and Delta multistage switching networks in detail.

4.2. MpNoC Implementation

MpNoC is implemented as a VHDL IP (Figure 3)

composed of a Mode Manager, which is responsible of

assuring the needed communication mode, and an ICN

which is the router component that allows data transfer.

This router could be of different types such as a cross-

bar or a MIN or other. However, integrating a given

irregular NoC for a given application becomes tedious,

error-prone, and time consuming due to the lack of a

flexible and scalable interface. MpNoC is character-

ized by its flexible and scalable synchronous interface,

in order to be integrated in different sized mppSoC con-

figurations. Its interface is configured to transfer data

from multiple senders (PEs/ACU/device) to multiple re-

ceivers (PEs/ACU/device). It is extensible to arbitrary

number of ports. In fact, to support arbitrary numbers of

PEs in an mpNoC interface, a simple approach is to stat-

ically map each PE request to one input port configured

as a vector of length equal to the number of PEs. The

mpNoC interface in one mppSoC configuration, with a

VGA device for example, contains the following sig-

nals:

5



Figure 2: mpNoC integration into mppSoC

clock : clock signal

reset : reset signal

cs : activation bit

- - - - Processors - - - -

- - - - IN - - - -

datainPE : PE data (32bit data vector (length=number of PEs))

requestinPE : PE address (32bit address vector (length=number of PEs))

ram wr PE : PE read/write (1bit R/W vector (length=number of PEs))

datainACU : ACU data (32 bits)

requestinACU : ACU address (32 bits)

write en : ACU read/write signal

- - - - OUT - - - -

dataoutPE : PE data Out (32bit data vector (length=number of PEs))

requestoutPE : PE address Out (32bit address vector (length=number of PEs))

dataoutACU : ACU data Out (32 bits)

requestoutACU : ACU address Out (32 bits)

- - - - Devices - - - -

dataoutVGA : VGA data Out (32 bits)

reqoutVGA : VGA address Out (32 bits)

The mpNoC always contains input and output ports ded-

icated to PEs and to ACU. The designer has to add only

the necessary needed connections with the mppSoC de-

vices. Such an interface can be easily incorporated into

different mppSoC configurations. The internal router

can service either a read or a write access at a time, as

the address is either read or write address respectively,

according to the read/write bit. If this bit is set to one,

a write operation is performed; otherwise a read opera-

tion is achieved. The data transfer is arbitrated between

all initiators in a round-robin fashion. To guarantee the

synchronous functioning of the mpNoC, a controller is

implemented. The Figure 4 illustrates how large the im-

plemented mpNoC controller is in comparison to the

different mpNoC components. We see that the size of

the mpNoC controller is about 27% of the whole mp-

NoC design. The size of the Mode Manager is signif-

icantly lower than that of the router. It only represents

29% of the mpNoC design. So the major component

MpNoCController Mode RouterMpNoC

(73%)
Controller

(27%)

Mode

(29%)

Router

(71%)

Figure 4: Size comparison of mpNoC components

that consumes more FPGA area is the internal router.

The following paragraphs detail more the mpNoC

components.

4.2.1. Mode Manager

The Mode Manager is composed of switches respon-

sible of establishing the needed connections according

to the chosen communication mode. By default, the

PE-PE mode is established. In fact, the mpNoC has

as inputs the data coming from the PEs, the ACU and

the devices. So the Mode Manager has to select the

corresponding data depending on the communication

mode set by the programmer. A chip select component

may activate the mpNoC. The mode is selectable with a

mode instruction.

4.2.2. Interconnection Network (mpNoC Router)

The ICN is the mpNoC router responsible of transfer-

ring data from sender to appropriate receiver. It may be

of different types. It has scalable communication archi-

tecture in order to fit to different sized mppSoC architec-

tures. In this work, two mpNoC implementations have

been proposed: one is based on a full crossbar network,

another on a Delta MIN. An effective implementation

6



Router

IN

Router 

OUT

Sources Targets

Switching Element

Figure 5: Example of 4x4 crossbar NoC

can be chosen depending, for instance, on the number

of PEs. Our choice is based on the fact that crossbar

networks are networks with good properties for systems

with small number of PEs. While targeting a huge net-

work size, it is necessary to deal between efficiency (ex-

pressed in average number of passes) and the silicon

space. MIN is considered as a promising solution for

applications which use parallel architectures integrating

a large number of processors and memories. They meet

the needs of intensive signal processing and they are

scalable to connect a large number of modules. The mp-

NoC router has N input data ports and N input address

ports, where N is the number of PEs in the system. If

PEs are senders so all input ports are activated. If the

ACU is the sender so the data of the ACU is transmit-

ted via the first input port of the network by the Mode

Manager. All the other input ports are disabled. The

same manner is applied to the output ports. In the fol-

lowing sections, we discuss the implementation of each

individual mpNoC internal network in detail. We func-

tionally verified each individual block and synthesized

each block and complete design using Quartus II syn-

thesis tool and the simulator Modelsim Altera. We con-

clude with a comparison between the two implemented

internal networks.

Crossbar based mpNoC

A full crossbar network allows simultaneously con-

necting any pair of nodes unoccupied. In general, it

is used to connect a limited number of processors and

memories. We look more closely into a packet-switched

crossbar.

Implementation

The crossbar ICN is a multiple bus system, where all

units are interlinked as shown in Figure 5. There is a

separate path available to each target. The architecture

is based on two main building blocks. Blocks on the

left hand side are called Routers IN, and blocks on the

right hand side are called Routers OUT. The Router IN

PE 0

PE 1

PE N

PE N+1

PE N+2

PE M

MPNoC

DATA_OUT

Mode Manager

Router_in0

Router_in1

Router_inN

Router_inN+1

Router_inM

Router_out0

FIFO

FIFO

Arbiter 

Router_out1

FIFO

FIFO

Arbiter 

Router_outM

FIFO

FIFO

Arbiter 

Figure 6: The crossbar architecture in the PE-PE mode

has the role of getting a request from its (left) input

port and sending it to the right Router OUT accord-

ing to its address. Inversely, the Router OUT detects

if there is data to be sent to this port. When this is

the case, a transfer occurs from the source to the target.

The Figure 6 shows in detail the crossbar architecture

connecting PEs to PEs (the case of the PE-PE mode).

The network architecture consists of input ports, out-

put ports, N routers, N arbiters (where N is the number

of PEs in the system) and switch fabric. The switch

fabric is the interconnection between inputs and out-

puts. The used ports communicate 32 bits wide data

and address busses. Each Router out stores the incom-

ing data and address to which the data is destined in

buffers. The buffers are maintained as First-In-First-Out

(FIFO) queues. A common problem arises when several

senders are ready to send their data to the same receiver.

The round robin approach offers an elegant solution to

fix this issue [36]. The Router out contains an arbiter

that assigns a priority token to one sender. As soon as a

transfer occurs, the token goes to the next sender in a cir-

cular way. If one FIFO that has the priority is not ready,

its nearest neighbor (in the round robin algorithm) that

contains data will complete its transaction, and so on.

In this way, a transfer can occur at each clock cycle for

each Router out that has at least one full FIFO. All the

activities are synchronized to a global clock signal. Dif-

ferent buffer sizes are tested with the Router out mod-

ule. Table 1 shows the implementation results varying

the buffer depth. It is clearly shown that using a buffer

of less size consumes less area than when using a bigger

size buffer. Since the mpNoC is dedicated to an SIMD

architecture, it functions in a synchronous way. In this

way, only one communication is executed at a time, then

the next communication is executed after the comple-

7



Table 1: Router OUT with different buffer sizes implementation re-

sults

buffer size Logic Utilization Total block

number of words ALUTs registers memory bits

2 5 69 128

4 9 73 256

8 13 77 512

16 17 81 1024

tion of the first and so on. That’s why, every buffer

sufficiently needs two 32-bits wide words (data + ad-

dress), even with a larger number of PEs. The final im-

plemented crossbar contains FIFO buffers of size two.

The following paragraph presents performance evalua-

tion and analysis of the crossbar network.

Crossbar performances

In this paragraph, we evaluate the NoC performances.

In fact, NoC evaluation metrics, such as area and aver-

age latency became essential aspects for optimizing the

implementation of networks in a multi processor SoC

design. The implementation results on the FPGA Altera

Stratix 2S180, in terms of logic utilization, maximum

throughput (TP) and latency are reported in Table 2. The

TP is defined as the average number of data transfers de-

livered by the network per cycle per output port. The la-

tency is the time spent to achieve a communication from

the sender to the corresponding receiver. Minimum and

maximum latency values are measured. We clearly see

that when increasing the number of connected nodes,

the crossbar network occupies more area on the target

FPGA. One of other major difficulties with the crossbar

is the rapid growth rate of the number of connections

that must be made when new nodes are added. Cross-

bar has the complexity of N2 connections, where N is

the number of switches in this non blocking network.

Test results also show that the max TP decreases as the

number of connected nodes increases.

Delta MIN based mpNoC

A MIN can be defined as a network used to inter-

connect a group of N inputs to a group of M outputs

using several stages of switches elements led by linking

stages [8]. A MIN is defined by: its topology, switch-

ing strategy, routing algorithm, scheduling mechanism,

and fault tolerance [37]. Among the proposed various

ICNs, those most commonly used are the class of delta

networks [16] which includes the omega network [12],

indirect binary n-cube network [18], and the cube net-

work [27]. Because of their low complexity, delta net-

works have always been considered as the alternatives

to crossbar switches for interconnecting processors and

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

	
�����
����
�

��������������

	�
�����������

Figure 7: Delta MIN Architecture (Case of Omega network)

Data AddressBit r/w

31

Dest Memory @

64 0

Figure 8: Delta MIN data packet

memory modules in multiprocessor systems [16]. In

this work, we focus on Delta MIN which derived from

Banyan networks characterized by one and only one

path between each source and destination [9].

Implementation

General an x bn delta network consists of an sources

and bn destinations, n number of stages and the ith

stage has an−1 bn−1 crossbar modules or Switching Ele-

ments (SE) of size a x b (in our case crossbars of size

2x2). Figure 7 shows a three stages 23 x 23 switching

Omega network. The nodes pairs are connected to each

other with switches which are dynamically set by con-

trol logic associated with interconnected network. Delta

network possesses full access property since it is possi-

ble to connect every node (Ni) to the other (N j). In a

MIN, a path between a source and a target is obtained

by operating each corresponding switch of the stage i in

straight mode if the ith bit of the destination address is

equal to 1, otherwise in exchange mode.

The basic building blocks of the Delta MIN are SEs,

connected by links. The SE is composed of two FIFO

and a scheduler who decides when data is sent from par-

ticular inputs to their desired outputs following a round

robin scheduling algorithm. We can vary the topology

of the network (omega, baseline, and butterfly) just by

varying the topology of interconnection links between

the crossbar stages. The implemented MIN is a packet

data communication network. The package is composed

of three parts, as shown in Figure 8. The 65-bits packet

data is mainly composed of:

- The head of the packet (1 bit): contains the bit

8



Table 2: Crossbar performance results

Number Logic Utilization Total block memory Latency Max TP

PEs ALUTs registers bits (cycles) (32bits/cycle)

4PEs 281 483 512 2-5 1.232

8PEs 548 806 1024 2-9 1.131

16PEs 957 1469 2048 2-17 1.045

32PEs 1905 2818 4096 2-33 0.923

64PEs 4191 5917 8192 2-65 0.833

128PEs 10184 13609 16384 2-129 0.782

Table 3: Delta MIN performance results

Number Logic Utilization Latency Max TP

PEs ALUTs registers (cycles) (32bits/cycle)

4 402 1404 6-9 1.260

8 1101 3885 9-16 1.193

16 1456 5401 12-27 1.085

32 2099 7746 15-46 0.886

64 2905 9022 18-81 0.812

128 3834 10397 21-148 0.742

read/write to determine the nature of the memory ac-

cess read/write.

- The data (32 bits)

- The tail of the packet (32 bits): composed of the des-

tination and the memory address.

Delta MIN performances

Simulation results give statistical values for FPGA

area, latency and the maximum throughputs of the

blocking network which are reported in Table 3. As the

crossbar, the Delta MIN requires more FPGA resources

when increasing the number of connected nodes. We

clearly see from the above tabulated results that the data

transfer rate decreases as the number of nodes increases.

One major difference is the network latency which is

higher in the MIN compared to the crossbar.

Crossbar/Delta MIN Comparison

The implementation of the two internal networks

shows that the mpNoC is a flexible and an efficient net-

work. The choice of the utilized network should be

based on the application requirements. The most im-

portant metrics helping the decision process are inter-

connection area and TP. Comparing between the two

different mpNoC ICNs, as shown in Figure 9, we no-

tice that the area of a full crossbar network is increas-

ingly important than MIN while increasing the size of

the two networks (more than 64 connected nodes). The

area of interconnection depends on the topology (topol-

ogy weakly connected will have an area smaller than

Figure 9: Logic utilization of the crossbar and Delta MIN networks

600

800

1000

1200

1400

ta
 t

ra
n

sf
e

r/
cy

cl
e

 (
x

1
0

3
)

Crossbar TP

0

200

400

4 8 16 32 64 128

d
a

ta
 t

ra
n

s

Number of connected nodes

Delta MIN TP

Figure 10: Maximum TP of the two internal mpNoC networks

topology completely connected), located services (more

the established mechanisms are complex and numer-

ous, more resources area is important) and the size of

buffers included in the routing resources. As a result,

Delta MINs are performing in terms of area to connect

a large number of nodes. The area of MIN is propor-

tional to Nlog2N, compared to N2 for full crossbar net-

works. In Figure 10, the obtained maximum TPs of a

crossbar and a Delta MIN networks with different num-

ber of nodes are compared. Results demonstrate that

the TP of the delta MIN and the crossbar are compa-

rable. The delta MIN has a TP higher than the cross-

bar with smaller number of PEs (less than 32 PEs), and

vice-versa. According to these results, it seems that the

delta MIN is better suited for systems with small trans-

9



requestoutPE
[PE0,…,PEM]

requestoutACU

reqoutDevice notif

MpNoC

ControllerreqoutDevice

send

receiv

notifController
mode

Figure 11: MpNoC Controller Interface

missions. When transmissions become longer, cross-

bar has a higher TP which is mostly constituted by the

fact, that there are more interconnection paths available

in parallel. Whereas, delta networks suffer from inter-

nal blocking which severely degrades their TP perfor-

mance.

We deduce that the crossbar network offers multi-

ple simultaneous communications with the least amount

of contention, but at a very high hardware complex-

ity. The crossbar is a low latency, non-blocking ICN

for large data transfers. However, it becomes expen-

sive for large values of N. In comparison, multistage

switching networks may offer a better cost (area and

power)/performance (delay and TP) compromise for

large complex systems.

4.2.3. MpNoC Controller

To assure synchronization, which is the key char-

acteristic of an SIMD system, an mpNoC controller

IP must be integrated in the architecture when using

the mpNoC. It has a functioning dependent on the

communication mode. This IP verifies if data trans-

ferred by a sender is received by the corresponding re-

ceiver. The verification is carried when there are mul-

tiple receivers or multiple senders to assure all data

transmissions. Otherwise, the single receiver sends

directly an acknowledgement to the ACU. The mp-

NoC controller (Figure 11) has as inputs: the addresses

signals transferred via the mpNoC (requestoutPE and

requestoutACU or reqoutDevice), the communication

mode mode, send and receiv signals coming from

senders and receivers respectively; and a notification

signal notif as output port. send and receiv signals are

configured as bit arrays of length equal to the number

of PEs as it is the maximum number of connections of

the mpNoC. If the sender is the ACU or a device, it has

to set the first bit of the send signal to ’1’, otherwise it

is set to ’0’. The same manner is followed if we only

have one receiver which can be the ACU or a device.

If the PE is the sender it has to set the bit which has

the same number as its identity to ’1’. The same man-

ner is applied by the PE receiver. For example in the

case of 4 PEs, send and receiv signals are configured as

4-bits arrays (array (nb slave-1 downto 0) of std logic;

where nb slave is equal in this case to 4). If the ACU

sends data to the PE1 then the ACU has a send signal

configured as ”0001” and the PE1 has a receiv signal

configured as ”0010” when receiving its data. The mp-

NoC controller continuously verifies if the communica-

tion is achieved form senders to appropriate receivers. It

also verifies if all needed communications are success-

ful. Based on the mode communication, it compares

between send and receiv signals taking into account the

transmitted addresses via the mpNoC. When the com-

munication is successful, the mpNoC controller gener-

ates a notification signal to the ACU in order to continue

executing the remaining instructions.

In order to allow sending and receiving data through

networks, we use different communication instructions

that will be described in the following subsection.

4.3. Communication instructions

We use the MIPS assembly language for development

of mppSoC parallel programs. From an mppSoC assem-

bly code, the mppSoC compiler generates a binary that

can be used by the FPGA implementation. This mpp-

SoC compiler is a modification of the GNU MIPS as-

sembler. MpNoC is managed through communication

instructions based mainly on the processor load (LW)

and store (SW) instructions. To set the communication

mode we employ a mode instruction which consists in

writing the mode value in a defined address. It is based

on the SW processor instruction: SW cst, @ModeMan-

ager, where:

- @ModeManager = ”0x9003”

- cst is a constant which can have five different values

corresponding to five different interconnection modes

respectively.

Below, the definition of mode constant values in the

VHDL configuration file is showed.

–MPNoC Modes

constant Mode0 : positive := 0; – PE − > PE

constant Mode1 : positive := 1; – ACU − > PE

constant Mode2 : positive := 2; – PE − > ACU

constant Mode3 : positive := 3; – PE − > Device

constant Mode4 : positive := 4; – Device − > PE

From an implementation point of view the communi-

cation mode constant is a three bits value. After set-

ting the required mpNoC interconnection, data transfers

will occur through communication instructions which

are SEND and RECEIVE instructions.

10



SEND instruction: serves to send data from a sender

to a corresponding receiver, relying on the SW memory

instruction: SW data, address. The 32-bits address can

be partitioned in different fields depending on the estab-

lished communication mode. It contains in case of:

1. PE-PE Mode: the identity of the PE receiver (32-

SL add width bits) and the PE dest memory address

(SL add width bits);

2. PE-ACU Mode: the ACU memory address

(MS add width bits);

3. ACU-PE Mode: the identity of the PE receiver (32-

SL add width bits) and the PE dest memory address

(SL add width bits);

4. PE-Device Mode: the device address (32 bits);

5. Device-PE Mode: the identity of the PE receiver (32-

SL add width bits) and the PE dest memory address

(SL add width bits).

MS add width and SL add width are the parametric

memory sizes of the ACU and the PE memories respec-

tively. When needed, zeros are inserted into the emptied

bits to obtain the 32-bits address. The communication

modes ACU-Device and Device-ACU are direct point

to point communications.

RECEIVE instruction: serves to obtain the received

data, relying on the LW memory instruction: LW data,

address. It analogously takes the same address field as

SEND instruction.

It is clear from the above address coding that the num-

ber of PEs in the system also depends on the memory

size. However, increasing the number of PEs leads to

decreasing the PE memory size which is the advantage

of the SIMD architecture. For example when each PE

has a memory of 256 K-bytes we can integrate up to

65536 PEs, which is a sufficient number.

Furthermore, we notice that the execution time of a

communication instruction can vary depending on the

communication mode. If multi-senders want to send

their data to a same receiver (PE-ACU mode for ex-

ample), the data is sequentially transferred since the re-

ceiver can accept one data at a time. So the total ex-

ecution time of this communication instruction is the

execution time considering one to one communication

multiplied by the number of senders (N) since we have

to repeat it N times (we find the same process in the

traditional SIMD systems like Maspar [35]).

The Xnet neighborhood network is programmed as

the mpNoC. It is managed by SEND and RECEIVE

instructions. Their address field takes three operands:

the distance, the direction and the memory address.

The distance defines the number of paths needed to

achieve the communication between the PE sender and

Table 4: SW MIPS Format

31 – 26 25 – 21 20 – 16 15 – 0

101011 base rt offset

Table 5: SEND Format

31 – 26 25 – 21 20 – 16 15 – 0

101011 rd rt offset

the other receiver on the same row or column or diago-

nal. There are eight direction 3-bits constant values that

the programmer can specify to denote each of the fol-

lowing directions: North (000), East(010), South(001),

West(011), North East(100), North West(101), South

East(110) and South West(111).

SEND and RECEIVE instructions rely on LW and

SW MIPS instructions with some added modifications.

In fact the SW instruction has the format shown in Ta-

ble 4. In this format, the address is composed of 21 bits

(offset+base) and the value to be stored is contained in

the register rt. In comparison, the SEND instruction re-

places the base field, as shown in table 5, by the number

of the register (rd) that can contain the address to be

transmitted. In this case, the address field is the sum of

the register rd value and the offset, and is 32 bits wide.

5. MppSoC Applications

The objective of this section is to test the use of dif-

ferent communication networks: from a neighborhood

network to an irregular network with different inter-

connection routers. We want to test the reliability and

the effectiveness of the NoC and compare the perfor-

mances of the various parallel configurations with dis-

tinct communication networks. Two mpNoC networks

were tested: full crossbar and Delta MIN with three

topologies (Omega, Baseline and Butterfly). These lat-

ter differ in the number of different N-to-N interconnec-

tion patterns they can achieve. Three parallel algorithms

were implemented: image rotation, 2D convolution and

FIR Filter. There are two main considerations in the

mapping of parallel algorithms onto mppSoC. First is

the number of available PEs and the second is the se-

lection of the best configuration to map the algorithm.

The purpose of this Section is to evaluate performance

of three parallel algorithms when mapped onto mpp-

SoC system. Implementation results and performance

evaluation of each algorithm are presented. The anal-

ysis provides the flexibility to vary several parameters,

and therefore, it is easier to study the effects of alter-

native approaches. The results identify the communi-

11



Figure 12: Extract from image rotation assembly codes

cation network suitable for an algorithm. As already

mentioned, the MIPS instruction set was extended to

program the mppSoC [28]. The execution of mppSoC

binary needs first to integrate the binary program in the

instruction memory and, after the synthesis, is deployed

with the bitstream to the FPGA board. We target Altera

Stratix 2S180 FPGA which includes 143 520 ALUTs

for hardware logic [38].

5.1. Image Rotation Algorithms

Image rotation algorithms seem to be simple and

good examples to use the mpNoC. In fact, in this sit-

uation, communications are very irregular: PEs need

to communicate using several different directions and

lengths. Obviously, it is possible to realize that using

the X-Net network, but this needs several communica-

tion steps (as much as the number of PEs). We realize

17161-pixel image rotations on different sized mppSoC

designs. The resulting images of Figure 12 were pro-

vided by an execution of binary programs on mppSoC

mapped to an FPGA. In this work, we are specifically

interested by image mirroring and special image rota-

tion by 90, 180 and 270 degrees. It is quite simple to do

these rotations by remapping the pixel locations: choos-

ing the source pixel that corresponds to each destination

pixel and setting the destination pixel to that value. In

these algorithms we are considered that the number of

PEs is equal to N where N=n2. The PEs are arranged in

a 2D (nxn) grid. As an example for an image rotation

(of size (MxM)) by 90 degrees, each PE performs the

rotation on its submatrice of size (M/nxM/n). Then all

PEs send their data in order to the VGA device to re-

construct the final rotated image. The mpNoC is used

to connect PEs, ACU with PEs and to also connect PEs

with a VGA device allowing displaying image on the

screen. So, the mpNoC is necessary in this application

since it assures parallel I/O data transfers. The follow-

ing code shows the reconstruction of the rotated image

by the VGA device:

(ST1) For i=0 to n-1 do

(ST2) For j=0 to n-1 do

(ST3) Read data from PE(i)

(ST4) i:= i+n

(ST5) end For j

(ST6) end For i

Table 6: Clock frequency for mppSoC on Stratix 2S180 FPGA

Number Max. Freq. (MHz) Max. Freq. (MHz)

of PEs (mppSoC with crossbar) (mppSoC with Omega)

4 53.39 54.3

8 53.04 53.46

16 51.27 51.77

32 48.63 41.68

64 41.48 40.70

40

60

80

100

120

F
P

G
A

 R
e

ss
o

u
rc

e
s 

(%
)

Logic utilization (Omega)

Combinational ALUTs 

(Omega)

0

20

40

4 8 16 32 64 84

F
P

G
A

 R
e

Number of PEs (Memory size: bytes/PE)

Dedicated Logic registers 

(Omega)

Crossbar Logic utilization

(17160) (8580) (4288) (2148) (1076) (820)

Figure 13: Synthesis results of Delta MIN/crossbar based mppSoC

designs

When varying the number of PEs, we also vary the data

memory size of each PE. Two internal mpNoC ICNs are

tested: a crossbar and a Delta MIN with three topologies

(Omega, Butterfly and Baseline). The table 6 presents

the maximum clock frequency for the different mppSoC

designs varying the number of processors and the used

mpNoC interconnection networks: crossbar and omega

networks. Clock frequency drops due to the used net-

work. Although the frequency decreases, all designs

approximately run at the first frequency which is 50

MHz. The mppSoC with the omega network runs at

a frequency higher that when using the crossbar for a

number of PEs lower than 16. This conforms the re-

sults obtained in table 2 and 3. Performance results in

terms of computation cycles, logic area and energy con-

suming are also analysed. Figure 13 demonstrates that

84 PEs could be implemented if using Delta MIN con-

figured in the Omega topology, on the StratixII. How-

ever, when using the crossbar based mpNoC we are lim-

ited by the huge size of the crossbar network and 64 is

the maximum number of PEs that we could integrate on

the StratixII FPGA. It is also the same number that we

could integrate when using both neighbouring and mp-

NoC networks in the same system. The table 7 gives

the resources occupation for the ACU and the PE. It is

shown that one of the advantages of the SIMD parallel

system is a saving in the amount of logic. About 30%

of the logic on a typical processor chip is devoted to

12



2000

2500

3000

3500

4000

4500

5000

lo
c
k
 C

y
c
le

s Crossbar

Omega

Butterfly

Baseline

0

500

1000

1500

2000

4 8 16 32 64

Number of PEs

C
lo Baseline

Xnet

Figure 14: Execution time of image rotation algorithm for different

sized mppSoC designs

Table 7: Processors FPGA logic utilization

Processors ALUTs registers FPGA occupation

ACU 2851 1936 2%

PE 1031 321 <1%

control.

As illustrated by Figure 14, the speedup increases

when increasing the number of PEs. SIMD systems can

provide a high throughput, as long as the processing al-

gorithm exhibits a high degree of parallelism at the in-

struction level. However, this is not the case when us-

ing the Xnet network since the PE spend more time to

do communication than computation. Since communi-

cations are irregular, we need many cycles to achieve

all the communications between PEs. It is so shown

that the Xnet network is not efficient for the image rota-

tion. This is due to the fact that the communications are

not regular enough to be managed by the Xnet network.

We demonstrate that the irregular communications are

very tedious to realize using the neighboring network.

We deduce that the crossbar based mppSoC design per-

forms a speed up higher than a Delta MIN based mpp-

SoC design. It has also been shown that the baseline

topology is the most appropriate topology if the de-

signer wants to implement a Delta MIN based mpNoC

with this application. The three different MIN topolo-

gies differ in terms of the connection links between the

crossbar based stages.

In order to estimate the embedded system efficiency,

we measure the amount of energy E =TxP required to

compute the algorithm, where P(W) is the power dis-

sipation. P values are measured using the PowerPlay

power analysis tool of Quartus II. It can be observed

from the Figure 15 that, as we increase the number of

PEs, the energy consumption decreases. We clearly see

that the crossbar based mppSoC consumes less energy

than a baseline MIN based mppSoC. This is due to the

fact that the crossbar achieves less execution time. Ac-

cording to these different performance results, we de-

20000

25000

30000

35000

40000

45000

 C
o

n
s
u

m
p

ti
o

n
 (

J
)

baseline MIN

Crossbar

0

5000

10000

15000

4 8 16 32 64

Number of PEs

E
n

e
rg

y
 C

Figure 15: Energy Consumption of different sized mppSoC designs

duce that the choice of a crossbar internal network is

better, in our case, than a Delta MIN, depending on the

application requirements. It should be also noted that

the complexity of the crossbar network pays off in the

forms of reduction in the time complexity as well as

energy consuming. However, if the designer wants to

integrate more than 64 PEs in the mppSoC system, he

should choose a Delta MIN based mpNoC.

5.2. 2D Convolution Algorithm

Two-dimensional (2D) convolution is a basic oper-

ation in image processing and requires intensive com-

putation. The SIMD model is considered suitable for

this kind of application. In fact, the image convolution

involves local image transformations resulting in thou-

sands of potentially parallel operations. We focus on the

2D convolution computed in the discrete wavelet trans-

form (DWT) [20]. In this work, we perform convolu-

tion on a 256x256 32-bit pixels image. Multiple pix-

els are mapped onto a separate PE. For an image NxN,

each processor has M=N2/P pixels in its local memory,

where P (assume P=pxp) is the total number of PEs.

In general, pixel(i,j), 0≤i≤N-1, 0≤j≤N-1 is mapped to

PE((i mod p),(j mod p)). Therefore this mapping pre-

serves the adjacency of any two pixels. In an initial-

ization phase, the ACU sends to every PE the corre-

sponding pixels to be stored in its local data memory.

The convolution operation is performed as follows: for

each pixel(i,j) a 2x2 sliding template, called convolu-

tion kernel, is convolved with the 2x2 window centered

on pixel(i,j). That is, each value into the pixels win-

dow is multiplied by the corresponding signed weight

into the convolution kernel. Then, the 2x2 products ob-

tained in this way are added to produce the output pixel

value. Each PE has the kernel coefficients stored in its

local data memory. The algorithm performs the con-

volution by each processor distributing its pixel values

to the neighborhood in a pipelined manner. In this case,

the Xnet neighborhood network is used. But only North,

South, East and West connections are required. At any

13



Figure 16: FPGA Resources of Crossbar/Xnet based mppSoC designs

step all PEs have the same neighbor connection. We

also test the use of a crossbar based mpNoC and com-

pare it with the neighborhood network.

In this case, the relationship between the input pix-

els Bs(x,y) (each PE performs a convolution on its bloc

image denoted by Bs) , the convolution kernel weights

h(i,j) and the convolved pixels rs(x,y) is given by:

rs(x, y) = Bs ∗ h

=

n∑

i=1

n∑

j=1

Bs(x − i + 1, y − j + 1) × h(i, j) (1)

where s ∈ [1, nb PEs]; n=2

At any time, every PE computes a partial sum for its

convolution. The implemented algorithm is similar to

that explained in [19], [1]. We address the scaling of

mppSoC to match the computational complexity of a

convolution application. The impact of scaling is quan-

tified in terms of FPGA allocation, execution time and

energy consuming. As shown in Figure 16, the crossbar

network is considerably larger, especially in the imple-

mentation with 64 PEs. With 4 PEs the crossbar is about

1,5 times as big as the Xnet, but with 64 PEs this rela-

tionship is increased to twice. It is therefore likely that

this difference in size will increase further when imple-

menting larger networks.

The neighborhood network is more efficient for ap-

plications which needs inter processor communications

since it is designed for that purpose. As illustrated from

Figure 17, we can see that the regular network version

is the fastest one. For 64 PEs for example, the mppSoC

with Xnet takes 14 ms whereas with a crossbar it takes

25 ms which is approximately two times higher. In addi-

tion, the Xnet network has a latency of one cycle, due to

local communications, making it a more powerful and

efficient communication network to perform neighbor-

ing communications compared to mpNoC. Figure 18

demonstrates that the Xnet consumes less energy than

Figure 17: Execution Time of 2D convolution algorithm

300

400

500

600

 C
o

n
s
u

m
p

ti
o

n
 (

J
)

Crossbar

Xnet

0

100

200

4 8 16 32 64

Number of PEs

E
n

e
rg

y
 C

Figure 18: Energy Consuming for Crossbar/Xnet mppSoC designs

the crossbar. Consequently, using a neighborhood net-

work for a 2D convolution is more suitable than inte-

grating the mpNoC.

5.3. FIR Filter

FIR (Finite Impulse Response) filtering is one of the

most popular DSP algorithms. It is well suited to be

executed on SIMD systems. FIR filters are easy to de-

sign. On the other hand, they require increased number

of multiplications and additions, and, what is also im-

portant, number of memory reads. A FIR filter is imple-

mented with the following equation:

Y(n) =

M−1∑

k=0

bkX(n − k) (2)

where X is the input signal and bk are filter coefficients.

M is the filter order or number of taps. An M-order

FIR filter requires M multiplications and M additions

for every output signal sample. It also requires 2M

memory read operations, M of them is for input signal,

the rest for them is for filter coefficients. In this work

an adapted version of the difference equation called the

Direct Form Structure (Figure 19), is implemented. To

run the FIR-filter, we tested two mppSoC designs based

on two different communication networks: the neigh-

borhood network Xnet and the crossbar. Application

results describe the performance and speedup of the im-

plemented FIR-filter. Shown in Figure 20 are the clock

cycles needed when running the FIR filter application.

14



Z-1 Z-1 Z-1 Z-1
x(n)

+ + + +

h(0) h(2) h(3)h(1) h(M-2)

+

h(M-1)

y(n)

Figure 19: Direct Form of FIR Filter

1000

1500

2000

2500

lo
c
k
 C

y
c
le

s

Xnet

Crossbar

0

500

1000

2 4 8 16 32 64

Number of PEs

C
lo

Figure 20: Execution Time of a FIR algorithm for different sized mpp-

SoC designs

The results are based on a 64-tap FIR and an impulse

response with a length of 128. When PEs are added

to the system, a larger part of the output signal can be

calculated on at the same time. On the other hand, com-

munication instructions are decreased and this results

in a maximum speed up of about five. As expected,

the mppSoC architecture based on the neighbourhood

inter-processor network is the most effective for the FIR

application. These results show that, based on flexible

communication networks in the mppSoC system, the

programmer would use the best interconnect suited to

his application and its requirements.

It has been proved from these experiments that avail-

ability of flexible communication is critical to achieve

high performance.

6. Network architecture comparison

Many NoC architectures proposals have been inves-

tigated. The challenge consists in offering the best con-

nectivity and throughput with the simplest and cheap-

est architecture, particularly for parallel architectures as

SIMD ones. Unfortunately, very few of these propos-

als provided any kind of implementation or performance

data that could be used for relevant comparison against

this work. In addition few NoC implementations have

been proposed for SIMD parallel systems. As a result

it is difficult to perform direct comparison with other

SIMD dedicated network approaches. However, other

NoC implementations for multiprocessing/parallel sys-

tems could be representative to be compared with our

mpNoC.

Table 9: MCNoC and mpNoC performance results

NoC Version Occupation Throughput

FFs LUTs

MCNoC 3951 4731 280 MB/s

mpNoC 806 548 305,115 MB/s

Our proposal is the massively parallel network on

chip, mpNoC, which is flexible and can implement dif-

ferent interconnection networks. This flexibility is a key

characteristic of mpNoC that distinguishes it from the

other proposed NoC. It also supports different commu-

nication modes: one to many, many to one and many to

many communications offering parallel data transfers.

The mpNoC is scalable and can cope with a large num-

ber of cores. Comparing it with some other NoC im-

plementations, we find that our mpNoC is efficient and

provides powerful performances.

For example, in [22] a multiprocessor architecture for

the massively parallel GCA model is presented. It con-

tains an omega network. The table 8 compares between

this network and our omega MIN based mpNoC. We see

that our network presents better results when increas-

ing the number of PEs since it consumes less ALUTs

in the FPGA (reduction of the hardware cost by over

3x with 32 cores). This makes it efficient for massively

parallel on chip architectures. In [30] a parallel routing

mechanism for a MIN on the circuit-switching mode is

presented. The authors take into account only one-to-

one and one-to-many permutations. However, many-

to-one and many-to-many permutations are not consid-

ered. Our approach differs from the previous one. In

fact, our target architecture is an SIMD massively par-

allel architecture where multicast has an important role,

and one-to-one permutation almost never takes place.

The proposed mpNoC can be also configured to sup-

port different communication modes by programming.

Through experiments, we show that a configurable par-

allel router that can change its communication mode in

accordance with the applications communication need

can potentially increase the performance of the NoC and

the final system. In [25] a multi-cluster NoC architec-

ture for parallel processing is proposed. It shows better

performance than conventional NoCs. When compar-

ing the area occupation and the network throughput for

8 cores with our crossbar based mpNoC, we find that

the mpNoC achieves better results, as demonstrated in

table 9 . Accroding to table 9, the mpNoC presents a

high throughput than the MCNoC (1.089x). In [21] a

programmable NoC is proposed. It has a flexible archi-

tecture dedicated to be used in FPGA-based systems. It

15



Table 8: Synthesis Results

Network Comm. accesses ALUTs

4PEs 8PEs 16PEs 32PEs

Omega Only read 279 818 2344 6092

mpNoC Read and write 402 1101 1456 2099

Table 10: PNoC and mpNoC router characteristics

Network Flexibility Parameter Switching

PNoC Network topology Data-path width circuit

& connected nodes

mpNoC Interconnection network connected nodes packet

Table 11: PNoC and mpNoC performance results

Number Network Area Speed

of nodes (MHz)

4 PNoC 366 slices 138

4 mpNoC (crossbar) 445 Logic Elements 123

8 PNoC 1305 slices 126

8 mpNoC (crossbar) 802 Logic Elements 113

also shows better performances compared with a shared

bus implementation. The Table 10 compares PNoC and

our mpNoC in terms of router characteristics. The sig-

nificant difference is the network parameters. The actual

mpNoC version works with 32bits data width. We note

that ongoing work aims to parametrize the data width

of the mpNoC, however it is outside the scope of this

paper. The table 11 compares PNoC and crossbar based

mpNoC, working with 32bits data width, in terms of

area and speed for 4 and 8 connected nodes. We see

that the mpNoC achieves better performances in term of

area since it reduces the hardware cost when increasing

the number of connected nodes. However it decreases

slightly the speed. In general, it presents good area/time

performances.

We deduce from previous comparisons that the pro-

posed mpNoC is well suited for parallel architectures

achieving better performances. It is considered as

a lightweight network which requires few FPGA re-

sources making it suitable for both small and large

FPGA-based systems.

7. Conclusion

Having an efficient communication network in mod-

ern multiprocessor systems on-chip is certainly one of

the biggest challenges for designers. This is particu-

larly true for SIMD architectures. In this paper, we in-

troduced the mppSoC system which is an SIMD mas-

sively parallel processing System on Chip. Among its

important features, we emphasize on its communication

networks. The mppSoC platform uses X-Net network

for inter-processor communications. This network is

very efficient for neighboring communications. How-

ever, it is time consuming when dealing with point-to-

point communications. For that purpose, mppSoC also

integrates an efficient irregular communication network

IP called mpNoC, a massively parallel Network on Chip

that can be used alone or with X-Net.

The mppSoC platform is entirely described at RTL

level and implemented on FPGA. It can be configured to

use different sizes and network topologies. This config-

urability makes it possible to tailor the architecture for a

specific application and thereby increasing its effective-

ness. MpNoC can be configured in different communi-

cations modes: to communicate between processors and

also to perform I/O data transfer. This work shows the

gains that could be achieved with such strategy. Mp-

NoC uses a set of library internal networks that have

varying cost and performance metrics. Two networks

were tested: a crossbar and a Delta MIN with three dif-

ferent topologies (omega, baseline and butterfly). The

mppSoC designed networks are scalable and paramet-

ric in order to satisfy different data parallel application

requirements. The FPGA implementation, with vari-

ous configurations, has been validated on three signif-

icant applications. According to the performances of

each configuration, the designer can choose the most

16



appropriate one for the tested application. We have

demonstrated that it is vital to have a flexible intercon-

nection scheme which can be applied to the system de-

sign. Compared to other implemented NoC, the mpNoC

presents good performances making it suitable to FPGA

based parallel systems.

The implementation and evaluation of significant and

complete applications on mppSoC system are ongoing.

Future works deal with the choice of the processor IP.

The MIPS processor has been chosen for our first imple-

mentation because of its open source availability; how-

ever, it is not optimized for a particular FPGA. Our aim

is to test other processor IPs more optimized in order to

enhance the implementation effectiveness. Finally, on

the integration side, if large configuration may not be in-

tegrated on a single chip, we are considering multichip

implementations. Connecting together on a board, those

chips will be able to act like a unique SIMD machine ex-

ecuting a single program. The definition of a chip inter-

face and especially the splitting of the networks on the

different chips has to be studied with a special attention

on the scalability of the architecture.

References

[1] A. N. Choudhary and J. H. Patel, Parallel architectures and par-

allel algorithms for integrated vision systems (University of Illi-

nois at Urbana-Champaign, 1989).

[2] B. Parhami, Introduction to Parallel Processing: Algorithms and

Architectures (Kluwer Academic Publishers, 1999).

[3] R. Michael Hord, The Illiac IV: The First Supercomputer (Com-

puter Science Press, 1982).

[4] W. D. Hillis, The Connection Machine (The MIT Press, Cam-

bridge, 1989).

[5] M-H. Lee, H. Singh, G. Lu, N. Bagherzadeh, F. J. Kurdahi, E.

M. C. Filho and V. C. Alves, Design and Implementation of the

MorphoSys Reconfigurable Computing Processor. J. VLSI Sig-

nal Processing Systems. 24 (2000) 147-164.

[6] M. Kumar and J.R. Jump, Performance Enhancement in

Buffered Delta Networks Using Crossbar Switches and Multiple

Links. J. Parallel and Distributed Comput. (1) (1984) 81-103.

[7] M. Rupp, D. Milojevic and G. Gogniat, Design and Architec-

tures for Signal and Image Processing. EURASIP J. on Embed-

ded Systems. (2008).

[8] T. H. Szymanski and V. C. Hamacher, On the universality of

multipath multistage interconnection networks, J. Parallel and

Distributed Comput. 7 (1989) 541-569.

[9] C. P. Kruskal and M. Snir, A unified theory of interconnection

network, Theoret. Comput. Sci. 48 (1986) 75-94.

[10] C. P. Kruskal and M. Snir, The Performance of Multistage Inter-

connection Networks for Multiprocessors. IEEE Trans. Comput.

32 (1983) 1091-1098.

[11] C. P. Kruskal, M. Snir, and A. Weiss, The distribution of wait-

ing times in clocked multistage interconnection networks. IEEE

Trans. Comput. 37 (1988) 1337-1352.

[12] D. H. Lawrie, Access and Alignment of Data in an Array Pro-

cessor. IEEE Trans. Comput. 24 (1975) 1145-1155.

[13] D.M. Dias and J. R. Jump, Analysis and Simulation of Buffered

Delta Networks. IEEE Trans. Comput. 30 (1981) 273-282.

[14] H. J. Siegel, Interconnection Networks for SIMD Machines,

Computer. 12 (1979) 57-65.

[15] H. S. Stone, Parallel Processing with the Perfect Shuffle. IEEE

Trans. Comput. 20 (1971) 153-161.

[16] J. H. Patel, Performance of processor-memory interconnections

for multiprocessors. IEEE Trans. Comput. 30 (1981) 771-780.

[17] L. Benini and G. DeMicheli, Networks on Chips: A New SoC

Paradigm. IEEE. Computer. 35 (2002) 70-78.

[18] M. C. Pease, The Indirect Binary n-Cube Microprocessor Array.

IEEE Trans. Comput. 26 (1977) 458-473.

[19] S. Ranka and S. Sanhi, Convolution on Mesh Connected Multi-

computers. IEEE Trans. on Pattern Analysis and Machine Intel-

ligence. 12 (1990) 315-318.

[20] A. Al Muhit, Md S. Islam and M. Othman, VLSI Implementa-

tion of Discrete Wavelet Transform (DWT) for Image Compres-

sion, in: Proc. International Conference on Autonomous Robots

and Agents, ICARA’04 (New Zealand, 2004).

[21] C. Hilton and B. Nelson, PNoC: a flexible circuit-switched NoC

for FPGA-based systems, in: Proc. IEEE Computers and Digital

Techniques (2006) 181-188.

[22] C. Schack, W. Heenes and R. Hoffmann, A Multiprocessor Ar-

chitecture with an Omega Network for the Massively Parallel

Model GCA, in: Proc. 9th International Workshop on Embed-

ded Computer Systems: Architectures, Modeling, and Simula-

tion (2009) 98-107.

[23] D. Parkinson, Experience in Using Highly Parallel Processing

Using DAP, in: Proc. Massively Parallel Scientific Computation

(NASA Conference Publication, 1986) 205-208.

[24] F. Schurz and D. Fey, A Programmable Parallel Processor Ar-

chitecture in FPGAs for Image Processing Sensors, in: Proc.

Integrated Design and Process Technology, IDPT’07 (2007).

[25] H. C. Freitas and P. O. A. Navaux, Evaluating On-Chip Inter-

connection Architectures for Parallel Processing, in: Proc. 11th

International Conference on Computational Science and Engi-

neering - Workshops (2008) 188-193.

[26] H. Du, M. Sanchez-Elez, N. Tabrizi, N. Bagherzadeh, M. L.

Anido and M. Fernandez, Interactive ray tracing on reconfig-

urable SIMD MorphoSys, in: Proc. Design, Automation and

Test in Europe Conference, DATE’03 (2003).

[27] H. J. Siegel and S. D. Smith, Study of multistage SlMD inter-

connection networks, in: Proc. 5th annual Symp. Computer Ar-

chitecture (1978) 223-229.

[28] M. Baklouti, Ph. Marquet, M. Abid and JL. Dekeyser, A design

and an implementation of a parallel based SIMD architecture for

SoC on FPGA, in: Proc. Design and Architectures for Signal

and Image Processing DASIP (2008).

[29] Ph. Marquet, S. Duquennoy, S. Le Beux, S. Meftali and JL.

Dekeyser, Massively parallel processing on a chip, in: Proc. 4th

International Conf. Computing Frontiers (2007) 277-286.

[30] R. Ferreira, M. Laure, A. C. Beck, T. Lo, M. Rutzig and L.

Carro, A Low Cost and Adaptable Routing Network for Recon-

figurable Systems, in: Proc. IEEE International Symposium on

Parallel & Distributed Processing IPDPS (2009) 1-8.

[31] R. Grondalski, A VLSI Chip Set for a Massively Parallel Archi-

tecture, in: Proc. International Solid State Circuits Conference,

ISSCC’87 (1987).

[32] S. D. Smith and H. J. Siegel, An Emulator Network for SIMD

Machine Interconnection Networks, in: Proc. 6th annual sympo-

sium on Computer architecture (1979) 232-241.

[33] S. Duquennoy, S. Le Beux , Ph. Marquet , S. Meftali and JL.

Dekeyser, MpNoC Design: Modeling and Simulation, in: Proc.

15th IP Based SoC Design Conference, IP/SOC (2006).

[34] S. E. Eklund, A Massively Parallel Architecture for Linear Ma-

chine Code Genetic Programming, in: Proc. 4th International

Conference on Evolvable Systems: From Biology to Hardware

17



(2001) 216-224.

[35] T. Blank, The MasPar MP-1 Architecture, in: Proc. IEEE Com-

pcon Spring90 (IEEE Society Press, San Francisco, CA, 1990)

20-24.

[36] X. Gao, Z. Zhang and X. Long, Round Robin Arbiters for

Virtual Channel Router, in: Proc. Multiconference on Compu-

tational Engineering in Systems Applications, IMACS (2006)

1610-1614.

[37] Y. Aydi, S. Meftali, M. Abid and JL. Dekeyser, Dynamicity

Analysis of Delta MINs for MPSOC Architectures, in: Proc.

International Conference on Sciences ans Techniques of Auto-

matic control and computer engineering, STA’07 (2007).

[38] Altera Corporation, Stratix II Device Handbook. (2004).

[39] OpenCores, miniMIPS overview.

<http://www.opencores.org/project,minimips>.

18


