
HAL Id: inria-00525384
https://hal.inria.fr/inria-00525384

Submitted on 11 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Regions and Permissions for Verifying Data Invariants
Romain Bardou, Claude Marché

To cite this version:
Romain Bardou, Claude Marché. Regions and Permissions for Verifying Data Invariants. [Research
Report] RR-7412, INRIA. 2010, pp.40. �inria-00525384�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50050007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00525384
https://hal.archives-ouvertes.fr

appor t

de r ech er ch e

IS
S

N
0

2
4

9
-6

3
9

9
IS

R
N

IN
R

IA
/R

R
--

7
4

1
2

--
F

R
+

E
N

G

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Regions and Permissions for Verifying Data

Invariants

Romain Bardou — Claude Marché

N° 7412

September 2010

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université

4, rue Jacques Monod, 91893 ORSAY Cedex
Téléphone : +33 1 72 92 59 00

Regions and Permissions for Verifying Data Invariants

Romain Bardou∗ † , Claude Marché†∗

Thème : Programmation, vérification et preuves
Équipes-Projets PROVAL

Rapport de recherche n° 7412 — September 2010 — 37 pages

Abstract: To formally verify behavioral properties of programs, stating complex first-
order formulas as data invariants proves useful. In the context of pointer programs,
such invariants are hard to maintain because of aliasing. We propose a type system
based on memory regions and linear permissions which allows to reduce preservation
of invariants to first-order verification conditions in a sound way. It further allows data
abstraction and effect hiding. It thus provides an approach to modular verification of
behavioral properties of pointer programs.

Key-words: Formal Specification, Deductive verification, Data invariants, Abstrac-
tion, Region-based type system

This work is partly supported by INRIA Collaborative Research Action (ARC) “CeProMi”
(http://www.lri.fr/cepromi/) and by the ESF COST action IC0701 “Formal Verification of
Object-Oriented Software” (http://www.cost-ic0701.org/)

∗ Lab. de Recherche en Informatique, Univ Paris-Sud, CNRS, Orsay, F-91405
† INRIA Saclay - Île-de-France, F-91893

Vérification d’invariants de données à base de régions et

de permissions

Résumé : Les invariants de données sont nécessaires pour établir des propriétés fonc-
tionnelles avancées des programmes. Leur vérification par preuve demande de les ex-
primer dans un langage logique expressif comme les formules du premier ordre. Dans
le cas des programmes avec pointeurs, la vérification de ces invariants est rendue en-
core plus complexe à cause du partage.

Nous proposons un système de typage statique basé sur des régions mémoire et des
permissions d’accès linéaires, afin de réduire, de façon sure, la vérifaction de preser-
vation des invariants à des obligations de preuve. Notre approche permet l’abstraction
de données et le masquage des effets de bords internes aux modules de programmes.
Ainsi, cette approche est une méthode de vérification modulaire de propriétés de pro-
grammes avec pointeurs et partage.

Mots-clés : Spécification formelle, Vérification par preuve, Invariants de données,
Abstraction, Typage à base de régions

Regions and Permissions for Verifying Data Invariants 3

Contents

1 Introduction 5

2 Permission-based Invariant Preservation 6

3 Formalization 10

3.1 Typing with Regions . 10
3.2 Permissions . 13
3.3 Memory Model and Operational Semantics 15
3.4 Soundness Theorem . 17
3.5 Example: Linked Lists . 20
3.6 Example: Observer Pattern . 21
3.7 Example: Hash Tables . 23

4 Data Abstraction 24

4.1 Abstraction Theorem . 24
4.2 Example: Counter . 25
4.3 Example: Memoization . 26

5 Prototype and Experimentations 27

5.1 The Capucine prototype . 27
5.2 Example: Constant-Time Sparse Arrays 27

5.2.1 Capucine arrays . 29
5.2.2 Capucine sparse array structure 30
5.2.3 Capucine sparse array code and test harness 31
5.2.4 Running VC generation and proof 32

6 Related Works 34

7 Conclusion and Future Works 35

RR n° 7412

Regions and Permissions for Verifying Data Invariants 4

List of Figures

1 Life of a pointer . 8
2 Region ownership tree . 9
3 Syntax of type declarations . 10
4 Syntax of logic annotations . 11
5 Syntax of programs . 11
6 Typing expressions . 12
7 Typing permissions . 14
8 Operational semantics . 18
9 List functions . 21
10 Regions for Observer . 22
11 VCs for sparse arrays in Why GUI 33

RR n° 7412

Regions and Permissions for Verifying Data Invariants 5

1 Introduction

Complex properties on functional behavior of programs can be expressed using the
so-called behavioral interface specification languages. Examples of such specifica-
tion languages are JML [8] for Java, Spec# [4] for C#, ACSL [5] and VCC [25] for
C. These typically allow to express properties using first-order formulas over program
states. Following the Hoare-logic concepts, those formulas are typically classified as
preconditions and postconditions on program routines, invariants on loops, assertions
on particular program points, and data invariants. The latter are also called class invari-
ants in the context of object-oriented (OO) languages.

Verifying that a given program meets its given specification amounts to generate
verification conditions (VC): first-order logic formulas which must be checked for va-
lidity. Although the techniques for generating proper VCs have been studied for a long
time, generating sufficient VCs for preservation of data invariants remains a challeng-
ing issue [17].

Here is a simple example using invariants, in OO-style syntax. The first class below
introduce a Sensor to record the rotation speed of a car’s wheels.
class Sensor {

double rpm; // wheels rpm

// update the rpm

void read() { · · · }
}

The class Car below is in charge of displaying the current speed on the board.
static void main (String argv) {

· · ·
Sensor s := new Sensor();
Car c := new Car(s);
s.read(); · · ·
}

A data invariant specifies that the displayed speed should be a given factor K of the
wheel’s rpm. When calling Car.update(), the invariant is violated by the call to my-

Sensor.read() but re-established before the end of the method call. Nevertheless, it
is not enough to check that all methods of Car preserve the invariant to guarantee it is
preserved all the time. Indeed, in the main program below:
class Car {

int displayedSpeed;
Sensor mySensor;
data invariant:
displayedSpeed = round(K × mySensor.rpm);
// update the displayed speed

void update() {
mySensor.read();
displayedSpeed := K × mySensor.rpm;

}
}

the invariant is violated, because the main program calls a sensor’s method directly
without notifying the change to the car. Such a program is correct enough to compile

RR n° 7412

Regions and Permissions for Verifying Data Invariants 6

and run, but is conceptually flawed: once the car is initialized with its sensor, no other
part of the program should access the sensor directly.

There are several techniques proposed in the literature to avoid this kind of mistake.
They share the common informal idea that the car should own its sensor, in the sense
that nobody else should access the sensor’s method directly. In the context of object-
oriented paradigm, techniques are mostly based either on runtime checking of owner-
ship properties, or on deductive techniques via VC generation. Only few approaches
are based on advanced static typing techniques, e.g. universe type systems [12]. In the
context of functional-style programs with side-effects, the same issue is tackled mostly
by advanced type systems (e.g. involving memory regions and various notions of ac-

cess permissions or capabilities [9]) but these do not consider behavioral properties
expressed by general formulas. Our goal is to bridge the gap between those approaches
by proposing a technique based first on advanced static checking involving regions and
permissions, and generation of VCs only when verification goes beyond static typing.

Our contributions, which are developed on a core programming language that we
introduce in Section 3, are the following:

• We define a type system in two parts: the first deals with memory regions and the
second deals with permissions. A noticeable originality is that for read access
no permission is required. The general ideas are presented in Section 2 and
formalized in Section 3.

• Our first result (Theorem 3.1) shows that for well-typed programs, data invariants
for pointers in a given region are guaranteed to be valid whenever the closed

permission on that region is available. This is shown in Section 3.4.

• Our second result is motivated by the need for modular reasoning. Theorem 4.1
is a soundness property of effect hiding: we may hide some regions in the public
interface of a module and side-effects on such regions can be safely ignored.

The core language has been implemented as a prototype called Capucine, available
on web page http://romain.bardou.fr/capucine/. We describe briefly
this implementation in Section 5 and illustrate it on a complete example. Other exam-
ples are given on the web page.

We compare with related work in Section 6.

2 Permission-based Invariant Preservation

This section describes informally the core ideas of our language. For simplicity, we
adopt a classical, not OO-style, setting. Formalization is done in Section 3.

Types We require invariants to be associated to pointer types. This allows to statically

know the invariant of a pointer by looking at its type. For instance, type PosInt is the
type of pointers on positive integers:

type PosInt =
int
inv(this) = !this > 0

end

where int is the type of values pointed by PosInt pointers. Parameter this of the
invariant is a PosInt pointer, which value is accessed using !this .

RR n° 7412

Regions and Permissions for Verifying Data Invariants 7

Regions As we cannot statically consider all pointers, we put each pointer in a region,
which is a set of pointers. The type of PosInt pointers of region ρ is denoted by
PosInt [ρ]. Here is a function that adds two PosInt pointers:

val sum(x : PosInt [ρx], y : PosInt [ρy]): int = !x + !y

Permissions We associate permissions to regions. Permissions are properties of re-
gions and their pointers. We consider five kinds of permissions:

• ρ∅, which denotes that region ρ is empty;

• ρ◦, which denotes that region ρ is a singleton;

• ρ×, which denotes that region ρ is a singleton and that its only pointer verifies
its invariant;

• ρG, which denotes that every pointer of region ρ verifies its invariant (“G” stands
for “group”);

• σ −◦ ρ, which denotes that σ× can be given to obtain ρG.

Pointers belonging to a region ρ with permission ρ◦ are open, and pointers belonging
to a region ρ with permission ρ× or ρG are closed.

Permissions are linear. They can be consumed and produced by a function:

val invert(x : PosInt [ρx]): int consumes ρx
× produces ρx

× = 1 / !x

Function invert can only be called if the caller provides ρx
×. This ensures that x

verifies its invariant and that no invertision by zero occurs. Permissions cannot be
duplicated: if invert did not produce ρx

×, ownership of ρx would be transferred from
the caller to invert .

Consider the following functions which each take a PosInt pointer and add it to a
container data structure:

val add1 (x : PosInt [ρx], c: Container [ρc]): unit consumes ∅ produces ∅
val add2 (x : PosInt [ρx], c: Container [ρc]): unit consumes ρx

× produces ρx
×

val add3 (x : PosInt [ρx], c: Container [ρc]): unit consumes ρx
× produces ∅

The first version does not require any permission on the region of x . This means that
the caller does not have to own x to add it to c. The second version requires that the
caller owns x and returns the permission so that the caller does not lose ownership.
With the third version, the caller loses ownership of x .

Permission ρ◦ is required when assigning pointers. This prevents invariants from
being broken. Consider functions decrBad and decrGood1 :

val decrBad(x : PosInt [ρx]): unit = x := !x − 1
val decrGood1 (x : PosInt [ρx]): unit consumes ρx

◦ produces ρx
◦ = x := !x − 1

Function decrBad is rejected to prevent the invariant of x from being broken if !x = 1.
One way to fix the function is to require ρx

◦, which decrGood1 does. It also returns
the permission so that the caller do not lose ownership.

RR n° 7412

Regions and Permissions for Verifying Data Invariants 8

region ρini in {ρG, ρini
∅}

let x = new PosInt [ρini] in {ρG, ρini
◦}

x := 1; {ρG, ρini
◦}

pack x ; {ρG, ρini
×}

let x ′ = (adopt x in ρ) in {ρG}
· · ·
region σ in {ρG, σ∅}
let x ′′ = (focus x ′ in σ) in {σ −◦ ρ, σ×}
unpack x ′′; {σ −◦ ρ, σ◦}
x ′′ := 5; {σ −◦ ρ, σ◦}
pack x ′′; {σ −◦ ρ, σ×}
unfocus x ′′ in ρ {ρG}

Figure 1: Life of a pointer

Packing and Unpacking Operations pack and unpack respectively close and open
a pointer. Assume a pointer x in a region ρ. Unpacking x consumes ρ× and produces
ρ◦. Packing x does the opposite: it consumes ρ◦ and produces ρ×, but it also generates
a proof obligation requiring that the invariant of x holds. This gives us another way to
fix decrBad :

val decrGood2 (x : PosInt [ρx]): unit consumes ρx
× produces ρx

× pre !x > 1 =
unpack x ; x := !x − 1; pack x

The pack operation generates a proof obligation, requiring that the old value of x

is greater than 1. We add a precondition to ensure this (permission ρx
× only gives

!x > 0).
Choosing between decrGood1 and decrGood2 is an important design decision.

Does the function need the invariant of its parameter? Does the function preserve this
invariant? Should the function require the caller to handle the opening and closing of
the parameter? Or, on the opposite, should the invariant be hidden and should the caller
only manipulate closed values? Our type system handles all these cases and gives the
choice to the user.

Focusing and Unfocusing To modify a pointer x of a group region ρ (i.e. with
permission ρG), we need to extract it first. Indeed, we need to keep track of open
pointers so that when we close them, only their invariant is verified. We extract pointers
to singleton regions using the focus operation: if x is in ρ, focus x in σ consumes
ρG and σ∅ and produces σ −◦ ρ and σ×. This returns another pointer, which is the
same as x but typed with region σ. This is reversed using unfocus.

Life of a Pointer A pointer is created using allocation: new C[ρ] returns a fresh
pointer of type C[ρ]. Region ρ must be empty before (permission ρ∅) and is singleton
(ρ◦) after.

The example of Figure 1 sums up the life of a pointer. We write available permis-
sions after each line for convenience. A pointer x is first created in an empty region
ρini . It is initialized, packed, and put in an existing group region ρ using region adop-

tion. Operation region σ in e binds a new empty region σ in e . Later, its value is
modified. But before that the pointer is focused and unpacked.

RR n° 7412

Regions and Permissions for Verifying Data Invariants 9

x y

!x .1 !y .1 !x .2 !y .2

!(!x .2) !(!y .2)

ρ

ρ.r1 ρ.r2

ρ.r2 .r

Figure 2: Region ownership tree

Many of these operations could be inferred. For instance, if the user modifies a
pointer x in a region ρ with permission ρG, it is mandatory to focus and unpack x

before. In this article though, we focus on the core ideas of our language and leave
inference for future works.

Region Ownership Tree Consider a type 〈ρ1 , ρ2 〉 Pair , which is parameterized by
regions ρ1 and ρ2 . It uses two positive integers in respective regions ρ1 and ρ2 , with
an invariant stating that one integer is greater than the other. This invariant is easily
broken, as after packing the pair pointers of ρ1 and ρ2 can still be assigned. To prevent
this, the pair must own its components. We use the same syntactic condition which
is used in ownership approaches [3]: the invariant of a pointer x cannot depend on a
pointer which is not (transitively) owned by x . However, in our system it is the regions
that own other regions. We add an own declaration in our type, which acts as a region
binder:

type Pair =
own r1 , r2
(PosInt [r1] × PosInt [r2])
inv(this) = !(!this.2) > !(!this.1)

end

Regions r1 and r2 are no longer region parameters, they are owned by the data struc-
ture. If a region ρ contains Pair [ρ] pointers, we can access the owned regions of ρ
using ρ.r1 and ρ.r2 .

To prevent pointers of ρ.r1 and ρ.r2 from being modified when ρ is packed, the
“package” ρ contains permissions ρ.r1G and ρ.r2

G. These permissions are not avail-
able as long as ρ is packed. Unpacking ρ produces ρ.r1

G and ρ.r2
G, and packing ρ

again consumes those permissions.
All pointers of ρ share the same regions ρ.r1 and ρ.r2 for all of their owned point-

ers. This is illustrated by Figure 2, with two Pair [ρ] pointers.

Using Invariants in Proofs We know that whenever ρ× or ρG is available, pointers
of ρ verify their invariant. To actually use these invariants in proofs, we can provide
an operation of invariant assertion such as: assert invariant of e. This operation

RR n° 7412

Regions and Permissions for Verifying Data Invariants 10

Type definition:
type C =
own r ,· · ·,r
τ
inv(x) = P

end

With :
C ::= 〈r ,· · ·,r〉 (τ ,· · ·,τ) C

Values :
v ::= c Constant

p Address
(v ,· · ·,v) Tuple

Types :
τ ::= unit, int, bool, · · · Base type

τ×· · ·×τ Tuple
C[ρ] Pointer
α Type variable

Regions :
ρ ::= r Region name or variable

ρ.r Local region

Permissions :
Σ ::= ρ∅ Empty region

ρ◦ Open singleton region
ρ× Closed singleton region
ρG Group region
σ −◦ ρ Focus lock

Figure 3: Syntax of type declarations

would provide the invariant of e at the current point of the program, in the hypotheses
of the proof obligations, if the right permission is available. Other approaches add
these hypotheses automatically [2].

3 Formalization

3.1 Typing with Regions

This section details the first part of our type system: typing of regions in expressions.
Typing of permissions will be tackled in Section 3.2. Our type system with regions is
very similar to [26, 29, 15], themselves based on ML polymorphism.

Syntax of the language is as follows: first the syntax of type declarations is given
in Figure 3, then syntax of logic formulas is presented in Figure 4 and finally syntax of
programs is in Figure 5.

Region binders Regions are bound at the level of functions. All regions are implic-
itly quantified universally. Consider these two different sum functions:

RR n° 7412

Regions and Permissions for Verifying Data Invariants 11

Terms :
t ::= f (t ,· · ·,t) Logic application (including equality)

t .i Projection
x Variable
!t Dereferencing

Predicates :
P ::= ⊤ | ⊥ | ∃x , P | ∀x , P | P ∨ P | P ∧ P | ¬P Connector

t Term

Figure 4: Syntax of logic annotations

Expressions :
e ::= v Value

(e,· · ·,e) Tuple
e.i Projection
x Variable
let x = e in e Local variable
e; e Sequence
f (e,· · ·,e) Function call
if e then e else e Test
while e do e Loop
e := e Assignment
!e Dereferencing
new C[ρ] Allocation
pack e Packing
unpack e Unpacking
adopt e in ρ Adoption
focus e in σ Focus
unfocus e in ρ Unfocus
region r in e Local region

Value or function:
val f (x : τ , · · ·, x : τ): τ
consumes {Σ,· · ·,Σ}, pre P

produces {Σ,· · ·,Σ}, post P = e

Figure 5: Syntax of programs

RR n° 7412

Regions and Permissions for Verifying Data Invariants 12

Γ ⊢ e1 : C[ρ] C : τ1 Γ ⊢ e2 : τ1

Γ ⊢ e1 := e2 : unit
ASSIGN

Γ ⊢ e : C[ρ] C : τ1

Γ ⊢ !e : τ1
DEREF

f (τ1 , · · · , τn) : τ Γ ⊢ e1 : τ1 σ · · · Γ ⊢ en : τn σ

Γ ⊢ f (e1 , · · · , en) : τ σ
CALL

Γ ⊢ e1 : bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ

Γ ⊢ if e1 then e2 else e2 : τ
IF

Γ ⊢ new C[ρ] : C[ρ]
ALLOC

Γ ⊢ e : C[ρ]

Γ ⊢ pack e : unit
PACK

Γ ⊢ e : C[ρ]

Γ ⊢ unpack e : unit
UNPACK

Γ ⊢ e : C[σ]

Γ ⊢ adopt e in ρ : C[ρ]

Γ ⊢ e : C[ρ]

Γ ⊢ focus e in σ : C[σ]

Γ ⊢ e : C[σ]

Γ ⊢ unfocus e in ρ : unit

Figure 6: Typing expressions

val sum1 (x : PosInt [ρ], y : PosInt [ρ]): int = !x + !y
val sum2 (x : PosInt [ρx], y : PosInt [ρy]): int = !x + !y

Parameters of sum1 must belong to the same region ρ, whereas no restriction is made
by sum2 as ρx and ρy are two different regions.

Regions may also be bound at the level of types, either as owned regions or as
type parameters. A local binder is available at the level of expressions: region ρ in e

creates an empty region ρ which is bound in e .
As for ML type variables, region variables are unified when needed. If a value has

type PosInt [ρ] but is used with type PosInt [σ], regions variables ρ and σ are unified.
If they cannot be unified, a typing error is raised.

Typing rules are given in Figure 6.

Typing rules The focus operation takes a pointer of a group region and copies it tem-
porarily into another empty region (which becomes a singleton region). The property
of the regions being empty, singleton or group will be handled by permissions. Thus,
the only thing the FOCUS rule does is to check that the pointer is indeed a pointer, and
to ensure that the returned pointer is of the same type but in the new region.

Typing function calls is done by finding a substitution σ. This substitution both sub-
stitutes type variables (in case of polymorphism) and region variables. This substitution
is applied to parameter types and to the return type. Rule CALL uses f (τ1 , · · ·, τn): τ
to denote the fact that f is declared with parameter types τ1 , · · ·, τn and return type τ .

RR n° 7412

Regions and Permissions for Verifying Data Invariants 13

The other rules are quite straightforward. Allocating a pointer produces a pointer of
the requested region, packing or unpacking an expression requires that the expression
is a pointer, and so on.

3.2 Permissions

This section details the second part of our type system: typing of permissions. Rules
are given in Figure 7.

Structural rules A permission sequent takes the following form:

{Σ̄1} e {Σ̄2}

where e is an expression, and Σ̄1 and Σ̄2 are lists of permissions. This reads: “e con-
sumes Σ̄1 and produces Σ̄2 ”. Informally, permissions Σ̄1 are required for e to reduce,
and once e reduces to a value, we are left with permissions Σ̄2 . This mechanism is
best illustrated by rule CSEQ: if e2 consumes Σ̄2 , then e1 must produce Σ̄2 for the
sequence e1 ; e2 to be typed.

These sequents allow us to define a linear typing of permissions. Permissions can-
not be duplicated: ρ∅ is not equivalent to ρ∅, ρ∅. Thus, Σ̄ denotes a bag of permissions,
or a multi-set, but not a set. The order does not matter, however.

Rule CWEAK1 allows to drop permissions. If an expression produces Σ, we might
as well use it in a context where it did not.

Permissions ρ∅ and ρ× can be weakened to ρG using rules CWEAK2 and CWEAK3
respectively. Indeed, ρG denotes that all pointers of region ρ verify their invariants. In
particular, it is the case if ρ is empty (denoted by ρ∅) or if ρ is a singleton whose only
pointer verify its invariant (denoted by ρ×).

An expression that reduces by consuming some permissions can always reduce by
consuming and re-producing more permissions. This is done using rule CWEAK4,
which is similar to a framing rule.

General expressions Values (rule CVALUE) are already fully reduced, and thus do
not consume nor produce any permission.

Reducing an if-then-else test (rule CIF) or a while loop (rule CWHILE) does not
consume nor produce any permission in itself. Note, however, that these rules assume
some evaluation order between the sub-expressions. Other rules with multiple sub-
expressions such as CASSIGN also assume such order.

Calling a function (rule CCALL) consumes the permissions consumed by the first
parameter, then produces the permissions produced by this first parameter, and so on
until all parameters are reduced and we are left with permissions Σ̄. Then we remove
from Σ̄ the permissions consumed by the function, and add the permissions produced
by the function, to obtain the final permissions Σ̄′.

Pointer expressions Dereferencing (rule CDEREF) does not require any permission.
In other type systems with permissions, it usually requires some access right on the
pointer. In our system, as dereferencement does not necessarily assume the invariant
of the pointer being read, no permission is required.

Assignment (rule CASSIGN) must not break any invariant. Invariants that might be
broken are the invariant of the pointer being modified and those of its transitive owners.
Thus we require the pointer to be open: it must be in a region ρ with permission ρ◦.

RR n° 7412

Regions and Permissions for Verifying Data Invariants 14

{Σ̄1} e {Σ̄2 , Σ}

{Σ̄1} e {Σ̄2}
CWEAK1

{Σ̄1} e1 {Σ̄2} {Σ̄2} e2 {Σ̄2}

{Σ̄1} while e1 do e2 {Σ̄2}
CWHILE

{Σ̄1} e {Σ̄2 , ρ
∅}

{Σ̄1} e {Σ̄2 , ρ
G}

CWEAK2
{Σ̄1 , r

∅} e {Σ̄2}

{Σ̄1} region r in e {Σ̄2 − r}
CREGION

{Σ̄1} e {Σ̄2 , ρ
×}

{Σ̄1} e {Σ̄2 , ρ
G}

CWEAK3
{Σ̄1} e {Σ̄2}

{Σ̄1} !e {Σ̄2}
CDEREF

{Σ̄} v {Σ̄}
CVALUE

{Σ̄1} e {Σ̄2}

{Σ̄, Σ̄1} e {Σ̄, Σ̄2}
CWEAK4

{Σ̄1} e1 {Σ̄2} {Σ̄2} e2 {Σ̄3}

{Σ̄1} e1 ; e2 {Σ̄3}
CSEQ

Σ̄ = Σ̄′′ ⊎ consumes(f) σ Σ̄′ = Σ̄′′ ⊎ produces(f) σ
{Σ̄1} e1 {Σ̄2} · · · {Σ̄n} en {Σ̄}

{Σ̄1} f (e1 , · · · , en) {Σ̄
′}

CCALL

{Σ̄1} e1 {Σ̄2} {Σ̄2} e2 {Σ̄3} {Σ̄2} e3 {Σ̄3}

{Σ̄1} if e1 then e2 else e3 {Σ̄3}
CIF

e1 : ρ {Σ̄1} e1 {Σ̄2} {Σ̄2} e2 {Σ̄3 , ρ
◦}

{Σ̄1} e1 := e2 {Σ̄3 , ρ
◦}

CASSIGN

{Σ̄, ρ∅} new C[ρ] {Σ̄, ρ◦, own(ρ)∅}

e : C[ρ] {Σ̄1} e {Σ̄2 , ρ
◦, own(ρ)G}

{Σ̄1} pack e {Σ̄2 , ρ
×}

e : C[ρ] {Σ̄1} e {Σ̄2 , ρ
×}

{Σ̄1} unpack e {Σ̄2 , ρ
◦, own(ρ)G}

e : C[σ] {Σ̄1} e {Σ̄2 , σ
×, ρG}

{Σ̄1} adopt e in ρ {Σ̄2 , ρ
G}

e : C[ρ] {Σ̄1} e {Σ̄2 , σ
∅, ρG}

{Σ̄1} focus e in σ {Σ̄2 , σ
×, σ −◦ ρ}

e : C[σ] {Σ̄1} e {Σ̄2 , σ
×, σ −◦ ρ}

{Σ̄1} unfocus e in ρ {Σ̄2 , ρ
G}

Figure 7: Typing permissions

This implies that its owners are also open. In practise, CASSIGN requires that after e1
and e2 are executed, permission ρ◦ is available to actually run the assignment e1 := e2 .
The permission itself is unaffected.

Allocation (rule CALLOC) returns a fresh, uninitialized pointer in a region ρ. This
new pointer might not verify its invariant. Thus, we cannot allow allocation in a group

RR n° 7412

Regions and Permissions for Verifying Data Invariants 15

region (ρG) as group regions assume the invariants of all of their pointers. We cannot
allocate in a singleton region, as the region would contain two pointers, become a group
region, and we would face the same problem. Thus, we only allow allocation in empty
regions. The operation consumes ρ∅ and produces ρ◦, as the region is now singleton.
Allocation also produces permissions denoting the fact that all regions owned by ρ are
empty (own(ρ)∅), so the user is able to allocate or adopt pointers in the regions owned
by ρ.

Packing (rule CPACK) a pointer in a region ρ requires that ρ is singleton and not
already packed (ρ◦). All regions owned by ρ must be closed: permissions own(ρ)G

are also consumed, to be “stored” in ρ×. This prevents the user from opening a pointer
which is owned by a closed pointer. Packing generates a proof obligation: the invariant
of the pointer being closed must hold.

Unpacking (rule CUNPACK) is the opposite of packing: it consumes ρ× and pro-
duces ρ◦ and permissions own(ρ)G. Unpacking cannot directly be done on pointers in
group regions, it requires focusing first.

Adoption (rule CADOPT) allows a group region ρ to absorb a singleton region σ.
The pointer x of this singleton region is no longer usable as a pointer of σ, as permission
σ× is consumed, but adoption returns a copy of the pointer in region ρ, which can be
used instead. This operation is not reversible.

Focusing (rule CFOCUS) allows to temporarily extract a pointer from a group re-
gion ρ to an empty region σ. It is not the opposite of adoption. As long as the pointer is
extracted, the group region is no longer usable: permission ρG is replaced by σ −◦ ρ,
which can be seen as a lock on region ρ. The key to this lock is σ×, which is also
produced by the focus operation. Indeed, region σ is no longer empty: it contains the
extracted pointer.

Unfocusing (rule CUNFOCUS) takes a lock σ −◦ ρ, its key σ×, and unlocks ρ. The
key is destroyed in the process: region σ is no longer usable.

Creation of a new empty region r (rule CREGION) produces permission r∅. This
region cannot get out of its scope: after e is computed, all permissions on r are ignored
(we denote this operation Σ̄−r).

3.3 Memory Model and Operational Semantics

To express the soundness of our type system, we first give a semantics for it. We use
a big-step operational semantics. This section details the memory model used, how
expressions reduce to values and how these reductions modify memory. The proof of
soundness itself is done in Section 3.4.

Heap Model We model the heap using: a function H from pointer addresses to their
values, a function R from region names to the set of their pointers, and a function F

from region names to region names. We denote H = H , R, F . Function H represents
the traditional heap. In this sense, it is the only part of H that is actually needed to
run the program. Function R is used to reason about the contents of regions. It can be
modified by allocations, adoptions, and so on.

Function F is used to reason about focusing, which temporarily extracts a pointer
from a group region ρ to a singleton region σ. However, the pointer of σ is still a
pointer of ρ in our model: ρ includes σ. This is denoted by the fact that F (σ) = ρ.
Function F is used to extend function R: if F (σ) = ρ, we define, for every region r

owned by ρ, R(σ.r) = R(ρ.r).

RR n° 7412

Regions and Permissions for Verifying Data Invariants 16

We define the fusion operation R[σ ❀ ρ]. It is used by adoption, to insert the region
tree of σ into ρ. Regions σ and ρ must contain pointers of the same types, with the same
region trees. Thus, the operation simply consists in replacing each node of the tree of
ρ by the union of this node and the corresponding node in σ.

We use notation f [v 7→ r] to denote function f where value returned for v is r

instead of the previous binding, if any. In particular, we use notations H [p 7→ v],
R[ρ 7→ s] and F [σ 7→ ρ]. We also may use H instead of H , R or F , if it is not
ambiguous. For instance, and H[p 7→ v] is H where H is H [p 7→ v]. Although H(ρ)
could be both R(ρ) or F (ρ), we will only use it to denote R(ρ).

Heap Coherence Intuitively, a heap is coherent if invariants that should hold do hold,
regions that should be singleton are singleton, and so on. But first we need some
auxiliary definitions. We define term evaluation JtKH in the usual fashion. In particular,
J!tKH = H(JtK). Then we define the satisfaction of a predicate P in H, and we denote
it H |= P , in the usual fashion by using JtKH.

Definition 1 (Satisfaction of a Pointer Invariant) A pointer p satisfies its invariant in

heap H, and we denote it H |=inv p, if and only if: if I is the invariant predicate of p,

then H |= I (H (p)) and if p′ is in a region owned by the region of p then H |=inv p
′

inductively.

Definition 2 (Pointer Commitment) A pointer p is committed for heap H and

permissions Σ̄ if modifying p could break another invariant. We denote it

committed(p, H, Σ̄). Formally: committed(p, H, Σ̄) if, and only if there is a value

v , a region ρ such that ρ× ∈ Σ̄ or ρG ∈ Σ̄, and a pointer q ∈ H(ρ) such that p 6= q

and H[p 7→ v] 6|=inv q .

Definition 3 (Heap Coherence) Heap H is coherent for permissions Σ̄, and we denote

it coh(H, Σ̄), if:

1. for all region ρ, there is at most one permission of Σ̄ where ρ appears positively

(i.e. not at the left of a lollipop −◦);

2. for all region ρ, if ρ appears positively in a permission of Σ̄, then for all pointer

p of H(ρ), we do not have committed(p, H, Σ̄);

3. for all ρ∅ ∈ Σ̄, we have H(ρ) = ∅ and no permission on a region owned by ρ
appear in Σ̄;

4. for all ρ◦ ∈ Σ̄, there is p such that H(ρ) = {p};

5. for all ρ× ∈ Σ̄, there is p such that H(ρ) = {p} and H |=inv p;

6. for all ρG ∈ Σ̄, for all p ∈ H(ρ), we have H |=inv p;

7. for all σ −◦ ρ ∈ Σ̄, there is p ∈ H(ρ) such that H(σ) = {p}, and for all

q ∈ H(ρ), if q 6= p then H |=inv q .

Item 1 ensures in particular that we cannot have both σ× and σ◦, which would lead
to errors. However, we can have both σ× and σ −◦ ρ.

Item 2 ensures that if we have a permission on region ρ, all its transitive owners
have been opened correctly. This allows to modify a pointer of ρ without breaking any
other invariant than the invariant of this pointer.

RR n° 7412

Regions and Permissions for Verifying Data Invariants 17

Items 3, 4, 5, 6 define how permissions control whether a region is empty, singleton
or group, and whether their pointers must verify their invariant. Point 7 describe the
particular case of the focus operation.

Operational Semantics Now that we have described precisely the possible states
of a program, we can define how this state is modified by each operation. We use
the following relation: e, H =⇒ v , H′ to denote that expression e reduces to value v ,
while heap H becomes H′.

The complete set of reduction rules is given in Figure 8. They define the =⇒
relation inductively, the base cases being values and allocation.

Allocation (rule SALLOC) returns a new pointer address p. Notation H[p 7→ ?]
means that this pointer is uninitialized (its actual value does not matter). It is allo-
cated in empty region ρ: after the allocation, ρ is a singleton region containing only p.
Regions owned by ρ (denoted own(ρ)) do not contain any pointer yet.

Adoption (rule SADOPT) takes a pointer of a region σ to put it in another region ρ.
This implies a fusion of the region trees, and R becomes R[σ ❀ ρ].

Focusing (rule SFOCUS) extracts a pointer p from a region ρ to an empty region σ,
which becomes singleton. Thus, R becomes R[σ 7→ {p}]. The region σ is linked to ρ
by modifying F , as p belongs both to σ and ρ.

Unfocusing (rule SUNFOCUS) removes the singleton region σ from the heap, so
that its pointer may be extracted again in another region. Otherwise, σ could break
coherence even if σ is not used anymore. The link F (σ) = ρ is removed.

3.4 Soundness Theorem

Now that we have defined our language and its semantics, we prove that a well-typed
program is sound. Our main result is that if an invariant is supposed to hold, then it
holds. To prove this global invariant, however, we need to prove a stronger property,
which is heap coherence (Definition 3, Section 3.3).

Theorem 3.1 (Soundness) If an expression is well-typed, executing it does not break

coherence of the heap. Formally:

Γ ⊢ e: τ (a)

{Σ̄} e {Σ̄′} (b)

coh(H, Σ̄) (c)

e, H =⇒ v , H′ (d)

implies coh(H′, Σ̄′)

Moreover, any well-typed expression either reduces to a value or do not terminate.
To prove this result, we would need to define a small-step semantics to handle non-
terminating expressions. As this is not the focus of this article, we simply remark that
if we hide region annotations and typing of permissions, the language we obtain is a
classical language which already verifies the property. Our heap H is expanded with F

and R, but they do not prevent the application of any semantic rule.
Proof. by induction on the reduction of e .

1. !e, H =⇒ v , H′:

Assume coh(H, Σ̄). Rule DEREF gives Γ ⊢ e: C[ρ]. Rule CDEREF gives
{Σ̄} e {Σ̄′}. Rule SDEREF gives e, H =⇒ p, H′. By induction, we thus have
coh(H′, Σ̄2).

RR n° 7412

Regions and Permissions for Verifying Data Invariants 18

e1 , H1 =⇒ v1 , H2 e2 [v1/x], H2 =⇒ v2 , H3

let x = e1 in e2 , H1 =⇒ v2 , H3

SLET

e1 , H1 =⇒ true, H2 e2 , H2 =⇒ v , H3

if e1 then e2 else e3 , H1 =⇒ v , H3

SIF1

e1 , H1 =⇒ false, H2 e3 , H2 =⇒ v , H3

if e1 then e2 else e3 , H1 =⇒ v , H3

SIF2

e1 , H1 =⇒ true, H2

e2 , H2 =⇒ (), H3 while e1 do e2 , H3 =⇒ (), H4

while e1 do e2 , H1 =⇒ (), H4

SWHILE1

e1 , H1 =⇒ false, H2

while e1 do e2 , H1 =⇒ (), H2

SWHILE2
v , H =⇒ v , H

SVALUE

e1 , H1 =⇒ v1 , H2

· · · en , Hn =⇒ vn , H f defined by f (x1 , · · · , xn) = e

e[v1/x1 , · · · , vn/xn], H =⇒ v , H′

f (e1 , · · · , en), H1 =⇒ v , H′
SCALL

e, H1 =⇒ p, H2 H2 (p) = v

!e, H1 =⇒ v , H2

SDEREF

e, H1 =⇒ p, H2

pack e, H1 =⇒ (), H2

SPACK
e, H1 [r 7→ ∅] =⇒ v , H2

region r in e, H1 =⇒ v , H2

SREGION

e, H1 =⇒ p, H2

unpack e, H1 =⇒ (), H2

SUNPACK

e1 , H1 =⇒ p, H2 e2 , H2 =⇒ v , H3

e1 := e2 , H1 =⇒ (), H3 [p 7→ v]
SASSIGN

p is fresh

new C[ρ], H =⇒ p, H[p 7→ ?][ρ 7→ {p}][own(ρ) 7→ ∅]
SALLOC

e : C[σ] e, H1 =⇒ p, H2

adopt e in ρ, H1 =⇒ p, H2 [σ ❀ ρ]
SADOPT

e : C[ρ] e, H1 =⇒ p, H2

focus e in σ, H1 =⇒ p, H2 [σ 7→ {p}][σ 7→ ρ]
SFOCUS

e : C[σ] e, H1 =⇒ p, H2

unfocus e in ρ, H1 =⇒ (), H2 [σ 7→ ∅][σ 7→ σ]
SUNFOCUS

Figure 8: Operational semantics

RR n° 7412

Regions and Permissions for Verifying Data Invariants 19

2. e1 := e2 , H =⇒ (), H′:

By induction and typing, we have {Σ̄} e1 {Σ̄1} and e1 , H =⇒ p, H1 with
coh(H1 , Σ̄1). We also have {Σ̄1} e2 {Σ̄2} and e2 , H1 =⇒ v , H2 with
coh(H2 , Σ̄2) and ρ◦ ∈ Σ̄2 where ρ◦ is the region of e1 . We obtain
coh(H2 [p 7→ v], Σ̄2) as p is not committed.

3. new C[ρ], H =⇒ p, H′:

We have H′ = H[p 7→ ?][ρ 7→ {p}][own(ρ)∅ 7→ ∅]. We have Σ̄ = Σ̄1 , ρ
∅ and

Σ̄′ = Σ̄1 , ρ
◦, own(ρ)∅, where ρ does not appear positively in Σ̄1 . It is enough

to show the property of permissions ρ◦ and own(ρ)∅. We do have p such that
H′(ρ) = {p}. Moreover, as p is fresh, no invariant may depend on its value
except the invariant of p itself. Permission ρ◦ implies that modifying p cannot
break any invariant. Thus the property of ρ◦ do hold. Properties of permissions
own(ρ)∅ hold by definition of H[own(ρ)∅ 7→ ∅], and because no permission on
a region of the form ρ.r .r ′ is produced, and such a permission could not exist
before as we had permission ρ∅.

4. pack e, H =⇒ (), H′:

By induction we have e, H =⇒ p, H′. We have e: C[ρ]. We have
Σ̄1 = Σ̄1 , ρ

◦, own(ρ)G and coh(H′, Σ̄1) by induction. We have Σ̄′ = Σ̄1 , ρ
×.

For all pointer q of a region ρ.r of own(ρ), we have permission ρ.rG, so we
have H′ |=inv q . Heap H′ satisfies the invariant of p by proof obligation. Thus,
H′ |=inv p and we conclude with coh(H′, Σ̄′).

5. unpack e, H =⇒ (), H′:

By induction we have e, H =⇒ p, H′. We have e: C[ρ]. We have Σ̄1 = Σ̄1 , ρ
×

and coh(H′, Σ̄1) by induction. We have Σ̄′ = Σ̄1 , ρ
◦, own(ρ)G. We must

prove that pointers of owned regions are not committed. By syntaxic restriction,
the only invariants which depend on a pointer of a region owned by ρ are the
invariants of pointers of ρ, or other regions owning ρ transitively which are thus
open, so we do not assume these invariants anymore. Thus we have coh(H′, Σ̄′).

6. adopt e in ρ, H =⇒ p, H′:

We have e: C[σ] and {Σ̄} e {Σ̄1 , σ
×, ρG}. By induction we have

e, H =⇒ p, H1 and coh(H1 , {Σ̄1 , σ
×, ρG}). We have H′ = H1 [σ ❀ ρ] and

Σ̄′ = Σ̄1 , ρ
G. Removing σ× cannot break coherence. We fusion σ in ρ; we must

prove that with this new value of H(ρ), coherence is preserved. The only pointer
added to ρ is p, whose invariant holds. Fusion of its region tree in ρ ensures that
the pointers it owns and on which its invariant may depend are still in its tree.

7. focus e in σ, H =⇒ p, H′:

We have e: C[ρ] and {Σ̄} e {Σ̄1 , σ
∅, ρG}. By induction we

have e, H =⇒ p, H1 and coh(H1 , {Σ̄1 , σ
∅, ρG}. We have

H′ = H1 [σ 7→ {p}][σ 7→ ρ] and Σ̄′ = Σ̄1 , σ
×, σ −◦ ρ. We lose permis-

sions σ∅ and ρG, which cannot break coherence. We gain permission σ×.
Region σ is indeed singleton in H′. Moreover, ρG gives H1 |=inv p, and thus
H′ |=inv p as pointer values have not changed and the tree of p is still accessible
thanks to the link σ 7→ ρ. Thus the property of σ× holds. Finally, as the property
of ρG holds in H1 , it also holds in H′, and thus the property of σ −◦ ρ holds.

RR n° 7412

Regions and Permissions for Verifying Data Invariants 20

8. unfocus e in ρ, H =⇒ (), H′:

We have e: C[σ] and {Σ̄} e {Σ̄1 , σ
×, σ −◦ ρ}. By induction we have

e, H =⇒ p, H′ and coh(H′, {Σ̄1 , σ
×, σ −◦ ρ}. We have Σ̄′ = Σ̄1 , ρ

G. The
property of ρG holds, as σ −◦ ρ gives the invariant of every pointer but the one
in σ, whose invariant is given by σ×.

9. region r in e, H =⇒ v , H′:

We have {Σ̄, r∅} e {Σ̄1}. We have coh(H, Σ̄), and thus
coh(H[r 7→ ∅], {Σ̄, r∅}). By induction we thus have e, H[r 7→ ∅] =⇒ v , H′

and coh(H′, Σ̄1). We have Σ̄′ = Σ̄1−r . Removing permissions mentioning r

does not break coherence.

10. f (e1 , · · ·, en), H =⇒ v , H′: By induction, e1 , · · ·, en reduce to v1 , · · ·, vn re-
spectively, and the heap we obtain is coherent. Coherence of H′ is given by
the fact that f is well-typed, and by applying CWEAK4 to use f in the current
context.

This is not enough, however, as weakening rules may be applied at any time. We
now prove their soundness as well.

Rule CWEAK1 is sound as removing a permission cannot break coherence. Coher-
ence only gets stronger as permission are added. Rule CWEAK2 is sound as a group
region can in particular be empty. Rule CWEAK3 is sound as a group region can in
particular be singleton as long as its pointer verifies its invariant, which is given by
permission ρ×.

We now prove that CWEAK4 preserves coherence. We suppose coh(H, {Σ̄, Σ̄1})
and we prove coh(H′, {Σ̄, Σ̄2}) for each operation e which modifies H to H′ by
consuming Σ̄1 and producing Σ̄2 .

Items 3, 4, 5, 6, 7 are easy to prove by just remarking that the proof we have done
before for each operation can also be done by assuming a stronger coherence property
with more permissions, and that the properties of these new permissions are preserved
by the operation.

The only operations that may break item 1 of coherence are allocation and unpack-
ing, which creates new permissions for regions owned by ρ, from ρ∅ and ρ× respec-
tively. This implies that ρ is in Σ̄1 , so if there is a double permission on the same
region it has to be on one of the regions ρ.r . This would imply that ρ.r was in Σ̄ or
Σ̄1 , which is impossible because of coh(H, {Σ̄, Σ̄1}).

Item 2 can be broken by a bad couple of regions (ρ, σ) where σ is transitively
owned by ρ and we have permissions ρ× or ρG and any permission where σ appears
positively. Operations that may produce such a bad couple are allocation, packing and
unpacking. Allocation and unpacking require region ρ in Σ̄1 and produce a permission
on ρ.r in Σ̄2 which may only produce a bad couple if ρ was already part of a bad couple
before the operation. Packing produces a permission ρ× by consuming all permissions
own(ρ)G, which means that there was no regions of the form ρ.r .r ′ used in Σ̄ or Σ̄1 ,
and no bad couple is produced either. ✷

3.5 Example: Linked Lists

We illustrate our setting on the classical example of linked list data structure. It is
made of a sequence of Node structures all in the same region. To allow node updates
we typically need more general sequences where the first node is in a different region

RR n° 7412

Regions and Permissions for Verifying Data Invariants 21

val cons(x : α, l : (α)〈ρ〉Node[ρ]): unit
consumes ρG produces ρG

post ∀y , mem(y , result) ⇐⇒
y = x ∨ old(mem(y , l)) =

region ρn in {ρG, ρn
∅}

let n = new (α)〈ρ〉Node[ρn] in

n := !l ; {ρG, ρn
◦}

pack n; {ρG, ρn
×}

let n = adopt n in ρ in {ρG}
region σ in {ρG, σ∅}
let l = focus l in σ in {σ×, σ−◦ ρ}
unpack l ; {σ◦, σ−◦ ρ}
l := Cons(x , n); {σ◦, σ−◦ ρ}
pack l ; {σ×, σ−◦ ρ}
unfocus l in ρ {ρG}

val nil(): (α)〈ρ〉Node[ρ]
consumes ρ∅ produces ρ×

post ∀y , ¬mem(y , result) =
let n = new (α)〈ρ〉Node[ρ] in {ρ◦}
n := Nil ; {ρ◦}
pack n; n {ρ×}

Figure 9: List functions

from the rest. Thus type Node is parameterized both by the type α of elements and the
region ρ of the other nodes:

type (α)〈ρ〉Node[ρn] = Nil | Cons of α × (α)〈ρ〉Node[ρ] end

To annotate the list functions with interesting behavioral properties, we introduce a
predicate for list membership, specified inductively by two clauses:

inductive mem : α, (α)〈ρ〉Node[ρ] → Prop :=
| casehead : ∀x n n ′, !n = Cons(x ,n ′) ⇒ mem(x ,n)
| casetail : ∀x y n n ′, !n = Cons(y ,n ′) ∧ mem(x ,n ′) ⇒ mem(x ,n)

The nil() function of Fig. 9 creates an empty list in a given empty region ρ. The new

statement consumes ρ∅ and produces ρ◦, the latter is consumed by pack producing ρ×.
A typical use of this function is region σ in let l = nil() in · · · to build a empty list l.

The cons() function in Fig. 9 adds an element at the head of a list. It operates “in-
place” modifying the first node to point to a newly allocated node. We do not need any
permission on x: lists do not own the data they contain.

3.6 Example: Observer Pattern

A typical example in the literature [23] which illustrates issues with data invariants is
the Observer pattern, a classical design pattern in OO paradigm.

Observers are objects that can register to a given subject, so that they are notified
by any changes in the subject state. For simplicity we assume that the internal state
is an integer. The Subject type comes with two public methods register and update

RR n° 7412

Regions and Permissions for Verifying Data Invariants 22

ρs

ρs .ρlist

ρs .ρobs

v3 v2 v1

Figure 10: Regions for Observer

which respectively registers observer o to this subject, and updates the internal state
with value v and notify the observers. The type Observer comes with a method notify

to notify this observer that the new Subject’s state is v.
We first decide to put observers in the same region. The invariant we seek relates

the subject and the collection of observers, so we declare it in the subject type and we
require that the region of observers is owned by the subject.

To represent the collection of observers, we reuse the linked list structure. The
Subject and the Observer types are defined below, where owned regions are illustrated
in Fig. 10. The subject owns both the region of the linked list and the region of the
observer.

type 〈ρs〉Observer [ρo] = Subject [ρs] × int end

type Subject [ρs] =
own ρlist , ρobs
((〈ρs〉Observer [ρobs]) 〈ρlist〉 Node[ρlist]) × int
inv(this) = ∀o: 〈ρs〉Observer [ρobs]; mem(o, !this.1) ⇒ !o.2 = !this.2

end

The functions for registration and updates are as follows.

val register(this: Subject [ρs], o: 〈ρs〉 Observer [ρo]) : unit
consumes ρs

×, ρo
× produces ρs

× =
unpack this; {ρs

◦, ρo
×, ρs .ρlist

G, ρs .ρobs
G}

let o = adopt o in ρs .ρobs in {ρs
◦, ρs .ρlist

G, ρs .ρobs
G}

cons(o, !this.1); {ρs
◦, ρs .ρlist

G, ρs .ρobs
G}

notify(o, !this.2); {ρs
◦, ρs .ρlist

G, ρs .ρobs
G}

pack this {ρs
×}

val notify(this: 〈ρs〉 Observer [ρo], v :int): unit consumes ρo
G produces ρo

G =
region σ in {ρo

G, σ∅}
let o = focus this in σ in {σ×, σ −◦ ρo}
unpack o; {σ◦, σ −◦ ρo}
o := (!o.1, v); pack o; {σ×, σ −◦ ρo}
unfocus o in ρo {ρo

G}

RR n° 7412

Regions and Permissions for Verifying Data Invariants 23

val update(this: Subject [ρs], n: int) : unit consumes ρs
× produces ρs

× =
unpack this; {ρs

◦, ρs .ρlist
G, ρs .ρobs

G}
this := (!this.1, n); {ρs

◦,ρs .ρlist
G, ρs .ρobs

G}
foreach o in !this.1 do

notify(o, n); {ρs
◦,ρs .ρlist

G, ρs .ρobs
G}

pack this {ρs
×}

An important remark is that ρσ.ρobs is owned by ρσ but not by ρσ.ρlist , whereas
pointers of ρs .ρobs lie in ρσ.ρlist . In other words, the ownership tree is not based on
the pointer structure.

Finally, note that in an actual implementation, the subject should not own the ob-
server but only the part which appears in the invariant. In this example, the subject
would no longer own ρobs ; instead, it would own a region ρ, and the int value of the
observer would be replaced by a pointer of ρ.

3.7 Example: Hash Tables

Assume a type Key and a function hash(x : Key [ρ]): int. A hash table indexed by Key

is an implementation of finite maps from Key to some type α. Data are arranged in an
array according to the hash value of their key, modulo the array size. Elements of same
hash are stored in small linked lists in each array cell.

Key being a mutable type, it would be a major mistake to allow the keys to be
mutated after they are added in the table: their hash value would probably change and
the value would then be stored in the wrong place. Mutation of keys can be forbidden
using permissions. First, we decide that the regions of keys is owned by the hash table.
It also owns the region of the small linked lists.

type (α)Hashtbl [ρ] =
own ρkeys , ρlists
((Key [ρkeys] × α) 〈ρlists〉 Node[ρlists]) array

end

Second, the add() function consumes the given permission on the key without returning
it, which forbids future mutation of it.

val add(h: (α) Hashtbl [ρ], k : Key [ρk], d : α): unit
consumes ρ×, ρk

× produces ρ× =
unpack h; {ρ◦, ρ.ρkeys

G, ρ.ρlists
G, ρk

×}
let k = adopt k in ρ.ρkeys in {ρ◦, ρ.ρkeys

G, ρ.ρlists
G}

let n = hash(k) mod len(!this) {ρ◦, ρ.ρkeys
G, ρ.ρlists

G}
in cons(!this.(n), (k , d)); {ρ◦, ρ.ρkeys

G, ρ.ρlists
G}

pack h {ρ×}

Remark that another implementation would be to make a full deep copy of the data
structure of the given key k, which would then make it possible to produce the permis-
sion on it again. The important point here is that permissions allow to use the more
efficient implementation without copy in a safe way, regardless of the complexity of
the key data type and its invariant. As soon as the permission is consumed by adding
the key into the table, it is known that its internal invariants cannot be violated: since
permission has been given up, the rest of the program cannot mutate it anymore.

RR n° 7412

Regions and Permissions for Verifying Data Invariants 24

4 Data Abstraction

We now consider the classical approach to modular programming: a module is a set
of type declarations and function definitions, whereas an interface for such a module
is a set of type declarations and function profiles. Any type declaration can be made
abstract by giving only the name but hiding the owned regions, the pointed type value
and the invariant. Function profiles give the type of parameters and returned value,
permissions consumed and produced, and also possible pre- and postconditions.

4.1 Abstraction Theorem

Let’s assume a module M with interface I.

Definition 4 A function of M implemented by an expression E soundly implements its

profile in I:

val f (x1 , · · ·, xk) consumes Σ̄ produces Σ̄′ pre P post P ′

if (1) P and P ′ refer only to data visible in I , (2) for any concrete execution:

E [v1/x1 , · · ·, vk/xk], H =⇒ v , H′

if H |= pre(f)[v1/x1 , · · ·, vk/xk] then:

H, H′, v |= post(f)[v1/x1 , · · ·, vk/xk , v/result]

A module M soundly implements an interface I if each function f of I is soundly

implemented in M .

Following this notion of abstraction, it is possible to extend our operational seman-
tics to allow calls to abstract functions. We add a new semantic rule:

e1,H1 =⇒ v1,H2 · · · ek,Hk =⇒ vk,H
H |= pre(f)[v1/x1, . . . , vk/xk]

H,H′, v |= post(f)[v1/x1, . . . , vk/xk, v/result]

f(e1, . . . , ek),H1 =⇒ v,H′

Theorem 4.1 If a program P is proved to satisfy its specification with respect to an

abstract interface I , then it is correct with respect to any module M which soundly

implements interface I .

Proof. When we reason on program P w.r.t interface I , a reasoning step on a
function call to some f in I is performed via the following deduction rule: if
f(v1, . . . , vk),H =⇒ v,H′ and H |= pre(f) then H,H′, v |= post(f). If we con-
sider an implementation M of I , we have to show that this deduction is correct.

Any concrete execution of this function call has the form
b[v1/x1, . . . , vk/xk], H̄ =⇒ v, H̄′ where H̄ (resp. H̄′) denote the heap H (resp. H′)
augmented with private data of M .

Assuming H |= pre(f) we immediately have H̄ |= pre(f) since H ⊆ H̄. From
the concrete execution step b[v1/x1, . . . , vk/xk], H̄ =⇒ v, H̄′ and the hypothesis that
M soundly implements I , we get H̄, H̄′, v |= post(f). But since H̄ = H ∪ P and
H̄′ = H′ ∪ P ′ where P and P ′ give the values of private data in M , and those do not
appear in post(f), we get H,H′, v |= post(f). ✷

RR n° 7412

Regions and Permissions for Verifying Data Invariants 25

Corollary 4.1 The side-effects occurring in regions of a module that are invisible in

the interface can be safely ignored from the outside of the module: they cannot violate

any external invariant, and external code cannot violate invariants in such a region.

We now illustrate these results on a few examples.

4.2 Example: Counter

We illustrate our abstraction theorem on a very simple example. Type Counter pro-
vides some arbitrary function f , and additionally counts how many times that function
is called. The concrete program is:

type Integer [ρ] = int end

type Counter [ρ]
own ρc
Integer [ρc]
inv(this) = !(!this) ≥ 0

end

val createCounter() : Counter [ρ]
consumes ρ∅ produces ρ× =
region ρi in { ρ∅, ρi

∅ }
let i = new Integer [ρ] in i := 0; { ρ∅, ρi

◦ }
pack i ; { ρ∅, ρi

× }
let c = new Counter [ρ] in c := i ; { ρ◦, ρi

× }
pack c { ρ× }

val f (c: Counter [ρ], <extra args>): <return type>
consumes ρ× produces ρ× =
unpack c; { ρ◦, ρ.ρc

G }
region σ in { ρ◦, σ∅, ρ.ρc

G }
let i = focus !c in σ in { ρ◦, σ×, σ −◦ ρ.ρc }
unpack i ; { ρ◦, σ◦, σ −◦ ρ.ρc }
i := !i+1; { ρ◦, σ◦, σ −◦ ρ.ρc }
pack i ; { ρ◦, σ×, σ −◦ ρ.ρc }
unfocus i in ρ.ρc ; { ρ◦, ρ.ρc

G }
pack c; { ρ× }
<remaining computation of f>

val nbCalls(c: Counter [ρ]): int = !(!c)

We abstract this module by:

type Counter [ρ]
val f (c: Counter [ρ], <extra args>): <return type>
consumes ρ× produces ρ×

val nbCalls(c: Counter [ρ]): int

Note that ρ.ρc is hidden and thus not useable by the rest of the program. From our
theorem, it is statically known that on the one hand the invariant of c is maintained;
and on the other hand, the side-effect on c when calling f can be safely hidden as part

RR n° 7412

Regions and Permissions for Verifying Data Invariants 26

of the modifications to ρ: no other invariant in the program can be violated by such a
call.

In other words, our permission-based approach allows a modular reasoning on data
invariants, with a true separation of the internal side-effects of a module and the exter-
nal ones.

4.3 Example: Memoization

Memoization is a general technique used to improve the time complexity of a recursive
function f . A private table records the pairs (x, f(x)) for later reuse.

Let f be the classical Fibonacci function computed by the recursive formula
f(n) = f(n − 1) + f(n − 2)1. The following data structure Fib computes f using
memoization. It reuses the hash tables of Section 3.7 for keys of type Integer .

type Fib[ρ] =
own ρhash , ρdata
(Integer [ρdata]) Hashtbl [ρhash]
inv(this) = ∀x , y ; mem((!x , !y), !this) ⇒ y = fib(x)

end

Predicate mem is similar to the one used by lists, and fib is a definition of the Fibonacci
function in the logic. The function computing Fibonacci is:

val fibo(x : Fib[ρ], n: int): int
consumes {ρ×} produces {ρ×}
pre (n ≥ 0) post (result = fib(n)) =
if n ≤ 1 then 1 else

try find(!x , n) with notFound ⇒
let y = fibo(x , n−1) in

let z = fibo(x , n−2) in

region σ in {ρ×, σ∅}
let k = new Integer [σ] in k := n; {ρ×, σ◦}
pack k ; {ρ×, σ×}
region σ′ in {ρ×, σ×, σ′∅}
let i = new Integer [σ′] in {ρ×, σ×, σ′◦}
i := y + z ; {ρ×, σ×, σ′◦}
pack i ; {ρ×, σ×, σ′×}
unpack x ; {ρ◦, ρ.ρhash

G, ρ.ρdata
G, σ×, σ′×}

let i = adopt i in ρ.ρdata in {ρ◦, ρ.ρhash
G, ρ.ρdata

G, σ×}
region σx in {ρ◦, ρ.ρhash

G, ρ.ρdata
G, σ×, σx

∅}
let y = focus !x in σx in {ρ◦, σx −◦ ρ.ρhash , ρ.ρdata

G, σ×, σx
×}

add(y , n, i); {ρ◦, σx −◦ ρ.ρhash , ρ.ρdata
G, σx

×}
unfocus y in ρ.ρhash ; {ρ◦, ρ.ρhash

G, ρ.ρdata
G}

pack x ; !i {ρ×}

An abstract interface for the module is:

type Fibo[ρ]
val fibo(x : Fib[ρ], n:int): int
consumes {ρ×} produces {ρ×} pre n ≥ 0 post result = fib(n)

The region of the Hashtbl is hidden: we can safely ignore its modifications.

1There are more efficient implementations, but it illustrates our point.

RR n° 7412

Regions and Permissions for Verifying Data Invariants 27

5 Prototype and Experimentations

The language described in this paper is now implemented in a stand-alone prototype
called Capucine. It is freely available on the web page http://romain.bardou.
fr/capucine, together with concrete examples. Please look at this web page for
up-to-date experimental data. In this section we quickly describe the implementation,
and present a detailed experiment.

5.1 The Capucine prototype

First, it is worth noticing that the first job of Capucine is to typecheck a given code with
respect to regions and permissions. But Capucine also uses an inference algorithm to
relieve the user from having to annotate the code with pack, unpack, focus and such
statements. In practice, most of the expected annotations are correctly inferred, as
shown by the examples that follow. But of course not everything is inferred: the user
still must declare the permissions consumed and produced by functions, and focus

statements must be given.
The third job is not to execute the code but is to generate verification conditions

to check that data invariants are preserved, and also any other user-defined properties
given as assertions in the code, or pre- and post-conditions to functions. The generation
of verification conditions proceeds by first generating intermediate code in the input
language of the Why VC generator [14], and then calling the Why tool to proceed with
VC generation and calls to several external provers.

In addition to providing the core language described before, Capucine offers these
functionalities:

• in the input language, modeling of data-types is permitted via algebraic-style
declarations, in the same flavor as Why, or other specification languages such as
ACSL [5];

• syntactic sugar constructs are given, such as declarations of field names as alter-
natives to notations .1, .2, etc (declaration selector below);

• inference of pack, unpack, adopt and unfocus when needed, as described above.

The prototype is available on the web page http://romain.bardou.fr/

capucine, together with a few concrete examples. Below we illustrate the proto-
type on an example given on the so-called VACID-0 benchmarks [18].

5.2 Example: Constant-Time Sparse Arrays

The following example of constant-time sparse arrays is inspired from the VACID-0
benchmarks [18] (http://vacid.codeplex.com/). The pseudo-java code for
it is as follows:

class SparseArray {

static final int DEFAULT = 0;

int val[];

uint idx[], back[];

uint n;

uint size;

static SparseArray create(uint sz) {

RR n° 7412

Regions and Permissions for Verifying Data Invariants 28

SparseArray t = new SparseArray();

val = new int[sz];

idx = new uint[sz];

back = new uint[sz];

n = 0;

size = sz;

return t;

}

int get(uint i) {

if (idx[i] < n && back[idx[i]] == i) return val[i];

else return DEFAULT;

}

void set(uint i, int v) {

val[i] = v;

if (!(idx[i] < n && back[idx[i]] == i)) {

assert(n < size); // (1)

idx[i] = n; back[n] = i; n = n + 1;

}

}

static void sparseArrayTestHarness() {

SparseArray a = create(10), b = create(20);

assert(a.get(5) == DEFAULT && b.get(7) == DEFAULT);

a.set(5, 1); b.set(7, 2);

assert(a.get(0) == DEFAULT && b.get(0) == DEFAULT);

assert(a.get(5) == 1 && b.get(7) == 2);

assert(a.get(7) == DEFAULT && b.get(5) == DEFAULT);

}

}

The SparseArray class implements the data structure displayed as follows. Assuming
three elements x y z were added, in this order, at indexes a, b, and c respectively, then
the three arrays look like this:

b a c

val +-----+-+---+-+----+-+----+

| |y| |x| |z| |

+-----+-+---+-+----+-+----+

idx +-----+-+---+-+----+-+----+

| |1| |0| |2| |

+-----+-+---+-+----+-+----+

0 1 2 n=3

back +-+-+-+-------------------+

|a|b|c| |

+-+-+-+-------------------+

Thus, the first element x was given the index 0 in idx, and its real index a is stored
in cell 0 of array back. With this data structure, one can access a previously inserted
element at index d as follows: (1) get the internal index i stored in idx[d], (2) if not
0 ≤ i < n then surely no element of index d was inserted, hence we can return the

RR n° 7412

Regions and Permissions for Verifying Data Invariants 29

default value, (3) if 0 ≤ i < n then look at index d’ = back[i], (4) if d’ = d then
there is indeed an element inserted with index d, hence return val[d], otherwise return
the default. What is clever in this implementation is that arrays do not need to be
initialized: this data-strucutre implements arrays of constant-time operations set and
get, but also constant-time creation.

The verification tasks are given by the assertions in the code above. The method
sparseArrayTestHarness() allows to test the implementation against simple
data. These tasks may appear easy at first, but they are not so easy because we want
to reason modularly on the code. This means we need to give specifications to our
methods that would apply to any instance of use. In particular, a tricky point is that
the main program calls the create() method twice, and we need to specify that
the resulting data structure is fresh. This means that one needs a methodology that
support some kind of seperation: for example the client program should know that
the create() method does produce an object with fresh internal arrays. It is thus a
interesting example for our methodology based on regions and permissions.

5.2.1 Capucine arrays

The Capucine concrete code starts as follows. First, we need to defined the structure of
arrays: this is defined by a pair of its length, together with a pure logic infinite array:

logic type array (a)

logic function store (array (a), int, a): array (a)

logic function select (array (a), int): a

axiom select_eq: forall a: array (a). forall i: int.

forall v: a. [select(store(a, i, v), i)] = [v]

axiom select_neq: forall a: array (a). forall i: int.

forall j: int. forall v: a.

[i] <> [j] ==> [select(store(a, i, v), j)] = [select(a, j)]

(* Array Reference *)

selector (length, cell)

class Array (a) =

(int * array (a))

invariant(this) = [0] <= [this.length]

end

val array_create(size:int): Array (a) [R]

consumes R^e (* empty region *)

produces R^c (* closed singleton region *)

requires [0] <= [size]

ensures [!result.length] = [size]

=

let tmp = new Array (a) in

tmp := (size, !tmp.cell); tmp

val array_get(this: Array (a) [R], i:int) : a

requires [0] <= [i] and [i] < [!this.length]

ensures [result] = [select(!this.cell,i)]

=

if 0 <= i and i < !this.length then select(!this.cell,i)

RR n° 7412

Regions and Permissions for Verifying Data Invariants 30

else ((while true do ());select(!this.cell,0))

val array_set(this: Array (a) [R], i:int, v:a) : unit

consumes R^c (* closed singleton region *)

produces R^c (* closed singleton region *)

requires [0] <= [i] and [i] < [!this.length]

ensures [!this.length] = [old(!this.length)] and

[!this.cell] = [store(old(!this.cell),i,v)]

=

if 0 <= i and i < !this.length then

(this := (!this.length, store(!this.cell,i,v)))

else (while true do ())

Notice that since Capucine supports parametric polymorphism, we can declare poly-
morphic array data structure. Functions get and set are properly equipped with pre-
conditions so as to check the absence of out-of-bounds array accesses. The occurences
of (while (true) do ()) are just tricks for encoding an “assert false” statement for un-
reachable branches.

5.2.2 Capucine sparse array structure

The Capucine concrete code for sparse arrays continues as follows.

predicate interval(a:int, x:int, b:int) =

[a] <= [x] and [x] < [b]

selector (value, idx, back, n, default, size)

class Sparse (a) =

own Rval, Ridx, Rback;

(Array (a) [Rval] * (* 1: value *)

Array (int) [Ridx] * (* 2: idx *)

Array (int) [Rback] * (* 3: back *)

int * (* 4: n *)

a * (* 5: default *)

int (* 6: size *))

invariant (x) =

[0] <= [x.n] and [x.n] <= [x.size] and

[!(x.value).length] = [x.size] and

[!(x.idx).length] = [x.size] and

[!(x.back).length] = [x.size] and

forall i: int. interval([0],[i],[x.n]) ==>

interval([0],[select (!(x.back).cell, i)],[x.size]) and

[select (!(x.idx).cell, select (!(x.back).cell, i))] = [i]

end

predicate is_elt(a: Sparse (a) [R], i: int) =

[0] <= [select (!(!a.idx).cell, i)] and

[select (!(!a.idx).cell, i)] < [!a.n] and

[select (!(!a.back).cell, select (!(!a.idx).cell, i))] = [i]

logic function model (Sparse (a) [R], int): a

RR n° 7412

Regions and Permissions for Verifying Data Invariants 31

axiom model_in:

forall a: Sparse (a) [R]. forall i: int. is_elt([a], [i])

==> [model(a, i)] = [select(!(!a.value).cell, i)]

axiom model_out:

forall a: Sparse (a) [R]. forall i: int. not is_elt([a], [i])

==> [model(a, i)] = [!a.default]

The invariant formalizes the picture given at the beginning of this section. The pred-
icate is_elt(a, i) tells whether the index i is defined in array a, as was explained
before.

Finally, the logic function model provides the logic model of the sparse array,
that is model(a, i) returns the element currently associated with index i in array a. It
is defined axiomatically because Capucine does yet support direct definitions of logic
functions.

5.2.3 Capucine sparse array code and test harness

We are now ready to provide the Capucine code corresponding to the pseudo-Java code,
as follows.

val create(sz:int, def: a): Sparse (a) [R]

consumes R^e

produces R^c

requires

[0] <= [sz]

ensures

[!result.size] = [sz] and

forall i: int. [model (result, i)] = [def]

=

let arr = new Sparse (a) in

arr := (array_create (sz), array_create (sz),

array_create (sz), 0, def, sz);

arr

val get(a: Sparse (a) [R], i: int): a

consumes R^c

produces R^c

requires [0] <= [i] and [i] < [!a.size]

ensures [result] = [model(a, i)]

=

let index = array_get(!a.idx, i) in

if 0 <= index and index < !a.n

and array_get(!a.back, index) = i

then

array_get(!a.value, i))

else

!a.default

val set(a: Sparse (a) [R], i: int, v: a): unit

consumes R^c

produces R^c

requires [0] <= [i] and [i] < [!a.size]

ensures

RR n° 7412

Regions and Permissions for Verifying Data Invariants 32

[!a.size] = [old(!a.size)] and

(forall j: int. [j] <> [i] ==>

[model(a, j)] = [old(model(a, j))]) and

[model(a, i)] = [v]

=

array_set((focus !a.value), i, v);

let index = array_get(!a.idx, i) in

if not (0 <= index and index < !a.n and

array_get(!a.back, index) = i)

then (

assert [!a.n] < [!a.size]; (* (1) *)

array_set((focus !a.idx), i, !a.n);

array_set((focus !a.back), !a.n, i);

a := (!a.value, !a.idx, !a.back,

!a.n + 1, !a.default, !a.size);

)

val main(): unit =

region Ra: Sparse (int) in

region Rb: Sparse (int) in

let default = 0 in

let a = (create(10,default): Sparse (int) [Ra]) in

let b = (create(20,default): Sparse (int) [Rb]) in

let x = get(a, 5) in

let y = get(b, 7) in

assert ([x] = [default] and [y] = [default]);

set(a, 5, 1);

set(b, 7, 2);

let x = get(a, 5) in

let y = get(b, 7) in

assert ([x] = [1] and [y] = [2]);

let x = get(a, 7) in

let y = get(b, 5) in

assert ([x] = [default] and [y] = [default]);

let x = get(a, 0) in

let y = get(b, 0) in

assert ([x] = [default] and [y] = [default]);

let x = get(a, 9) in

let y = get(b, 9) in

assert ([x] = [default] and [y] = [default]);

assert false (* poor man’s check for inconsistency *)

Notice that the get function needs permission on its argument because the invariant
is required to hold to prove the pre-condition of the call to array_get(). Such a
requirement could be relaxed if we allowed fractional permissions [7] such as they are
used in concurrent separation logic [6] or as they are implemented in Chalice [19].

5.2.4 Running VC generation and proof

Running the capucine tool on this file generates a few VCs which are displayed on
figure 11.

RR n° 7412

Regions and Permissions for Verifying Data Invariants 33

Figure 11: VCs for sparse arrays in Why GUI

Three VCs are not discharged, but the other ones are proved by all the provers Alt-
Ergo, Simplify, Z3 and CVC3, except one proved only by Simplify and Z3. This one
corresponds to the post-condition of function set related to the model.

The reasons for the three unproved VCs are as follows.

• The first two correspond to the assertion (1). It appears twice because of the if
condition having different ways of being true (this duplication is a typical effect
of the interpretation of lazy conjunction in Why).

Assertion (1) is a tricky one because proving it amounts to apply the pigeon-hole
principle: if n becomes equal to size, then we know that idx and back provide a
permutation of [0..size− 1], so we know that each index was filled, a contradic-

RR n° 7412

Regions and Permissions for Verifying Data Invariants 34

tion. These reasoning is unfortunately out-of-reach of automated provers so we
need to assume this assertion correct.

• The last unproved VC is indeed fortunately not proved, because it corresponds to
the last assertion of the test harness: we assert false as a way to test for possible
inconsistency, which might be introduced by the axioms we stated. This is not
of course a guaranty of consistency, but it is quite reassuring.

6 Related Works

This is a continuation of our previous work [2]. Main improvements are the addition
of regions and permissions, and static association of invariants to pointers.

The existing related works are essentially of two kinds. A first kind of work aims at
building advanced type systems to control aliasing or access to resources, to provide a
static ownership policy, etc. Regions in type systems were introduced by Jouvelot and
Talpin in 1991 [28] and used for memory management [29]. The notion of ownership
is due to Clarke, Potter and Noble [10] with the goal to control aliasing. The notions of
permissions or capabilities were introduced by Crary, Walker and Morrisett [11] and
operations of adoption, focus and unfocus by Fahndrich and Deline [13]. These provide
very advanced static typing for memory management, but no attempt was proposed yet
to apply such approaches to deductive verification [9].

The second kind of work is, on the other hand, aimed at verifying behavioral prop-
erties by theorem proving. Separation Logic [24] is a famous approach which builds in
the logic concepts of non-aliasing and of access capability. Yet, everything is pushed
into the logic hence delegated to a prover, no advanced static typing is involved. Own-
ership for deductive verification was proposed by Barnett et al. [3] in 2004, providing
for the first time a sound methodology for preserving invariants. Their ownership no-
tion resides also in the logic, not in a type system. In that approach, the ownership
relation is defined by declaring which class fields are owned. By using regions, in our
setting we allow ownerships links that do not follow pointer links, as in the Observer
example. Universe types [12, 22] add static typing to ownership but still disallows
ownership links different from pointer links. Regional logic [1] allows general own-
ership structures as we do, but everything is handled dynamically: regions are ghost

fields that the programmer must update. Dynamic frames provides a similar approach
by declaring regions as specification variables denoting memory footprints, on which it
is possible to reason with on the theorem proving side. As ownership, dynamic frames
do not provide advanced static typing, but has advantages close to what can be done in
separation logic: the logic formulas contain static information about memory structure.

Our work aims at bridging the gap between the two kinds of work, by pushing as
much information as possible into static typing. Our type systems are not as complex
as say [9], for example we do not support strong update which allow type to change
during execution. However, our approach does not require any permission for read ac-
cess, which was needed to allow pointer dereferencing in specifications. Notice finally
that the separation logic approach is clearly interesting to integrate in our setting, for
example to reason locally on a given region like in our Hashtbl example where the
small linked list all lie in the same region [16].

RR n° 7412

Regions and Permissions for Verifying Data Invariants 35

7 Conclusion and Future Works

We tackle data invariant preservation by combining static typing and theorem proving.
Static typing is used as much as possible to specify memory regions and permissions
to modify them. Future works include the following directions.

• Adapt the technique to object-oriented programs, possibly by using our language
as an intermediate language [20]. The support for dynamic calls must be studied,
and properties like behavioral subtyping [8] should be needed.

• Our abstraction result should be extended to refinement, where concrete private
fields could be modeled by abstract, pure datatype in interfaces [21, 27].

Acknowledgments

We thank François Pottier, Arthur Charguéraud and Sylvain Boulmé for fruitful dis-
cussion about capabilities, and all the other members of the CeProMi project for dis-
cussions on modular verification of pointer programs in general. We also thank Jean-
Christophe Filliâtre and Andrei Paskevich for providing an initial set of annotations for
the sparse arrays example.

References

[1] A. Banerjee, D. A. Naumann, and S. Rosenberg. Regional logic for local rea-
soning about global invariants. In European Conference on Object-Oriented Pro-

gramming (ECOOP), Paphos, Cyprus, July 2008.

[2] R. Bardou. Ownership, pointer arithmetic and memory separation. In Formal

Techniques for Java-like Programs (FTfJP’08), Paphos, Cyprus, July 2008.

[3] M. Barnett, R. DeLine, M. Fähndrich, K. R. M. Leino, and W. Schulte. Verifica-
tion of object-oriented programs with invariants. Journal of Object Technology,
3(6):27–56, June 2004.

[4] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# Programming System:
An Overview. In Construction and Analysis of Safe, Secure, and Interoperable

Smart Devices (CASSIS’04), volume 3362 of Lecture Notes in Computer Science,
pages 49–69. Springer, 2004.

[5] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto. ACSL:

ANSI/ISO C Specification Language, 2008. http://frama-c.cea.fr/

acsl.html.

[6] R. Bornat, C. Calcagno, P. O’Hearn, and M. Parkinson. Permission accounting
in separation logic. In POPL 2005, pages 259–270, New York, NY, USA, 2005.
ACM.

[7] J. Boyland. Checking interference with fractional permissions. In R. Cousot,
editor, Static Analysis: 10th International Symposium, volume 2694 of Lecture

Notes in Computer Science, pages 55–72, Berlin, Heidelberg, New York, 2003.
Springer.

RR n° 7412

Regions and Permissions for Verifying Data Invariants 36

[8] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino,
and E. Poll. An overview of JML tools and applications. International Journal

on Software Tools for Technology Transfer, 2004.

[9] A. Charguéraud and F. Pottier. Functional translation of a calculus of capabili-
ties. In ACM SIGPLAN International Conference on Functional Programming

(ICFP), pages 213–224, Sept. 2008.

[10] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias pro-
tection. In Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA’98), pages 48–64. ACM Press, 1998.

[11] K. Crary, D. Walker, and G. Morrisett. Typed memory management in a calculus
of capabilities. In ACM Symposium on Principles of Programming Languages

(POPL), pages 262–275. ACM Press, 1999.

[12] W. Dietl and P. Müller. Universes: Lightweight ownership for JML. Journal of

Object Technology, 4(8):5–32, 2005.

[13] M. Fahndrich and R. Deline. Adoption and focus: practical linear types for im-
perative programming. In Programming Language Design and Implementation

(PLDI), volume 37, pages 13–24, May 2002.

[14] J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Caduceus platform for deduc-
tive program verification. In W. Damm and H. Hermanns, editors, 19th Interna-

tional Conference on Computer Aided Verification, volume 4590 of Lecture Notes

in Computer Science, pages 173–177, Berlin, Germany, July 2007. Springer.

[15] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-
based memory management in Cyclone. In Programming language design and

implementation (PLDI), pages 282–293, 2002.

[16] N. R. Krishnaswami, J. Aldrich, L. Birkedal, K. Svendsen, and A. Buisse. Design
patterns in separation logic. In Types in Language Design and Implementation

(TLDI), pages 105–116. ACM, 2009.

[17] G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and verification chal-
lenges for sequential object-oriented programs. Formal Aspects of Computing,
2007.

[18] K. R. M. Leino and M. Moskal. VACID-0: Verification of ample correctness of
invariants of data-structures, edition 0. In Proceedings of Tools and Experiments

Workshop at VSTTE, 2010.

[19] K. R. M. Leino, P. Müller, and J. Smans. Verification of concurrent programs with
chalice. In A. Aldini, G. Barthe, and R. Gorrieri, editors, Foundations of Security

Analysis and Design V, FOSAD 2007/2008/2009 Tutorial Lectures, volume 5705
of Lecture Notes in Computer Science, pages 195–222. Springer, 2009.

[20] C. Marché. Jessie: an intermediate language for Java and C verification. In Pro-

gramming Languages meets Program Verification (PLPV), pages 1–2, Freiburg,
Germany, 2007. ACM.

RR n° 7412

Regions and Permissions for Verifying Data Invariants 37

[21] C. Marché. Towards modular algebraic specifications for pointer programs: a
case study. In Rewriting, Computation and Proof, volume 4600 of Lecture Notes

in Computer Science, pages 235–258. Springer, 2007.

[22] P. Müller and A. Rudich. Ownership transfer in universe types. In ACM SIGPLAN

conference on Object-oriented programming systems and applications (OOP-

SLA), pages 461–478. ACM, 2007.

[23] M. Parkinson. Class invariants: The end of the road? In T. Wrigstad, editor,
3rd International Workshop on Aliasing, Confinement and Ownership in Object-

Oriented Programming (IWACO), in conjunction with ECOOP 2007, Berlin, Ger-
many, July 2007. http://www.cs.purdue.edu/homes/wrigstad/

iwaco/.

[24] J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In
17h Annual IEEE Symposium on Logic in Computer Science. IEEE Comp. Soc.
Press, 2002.

[25] W. Schulte, S. Xia, J. Smans, and F. Piessens. A glimpse of a verifying C com-
piler. http://www.cs.ru.nl/~tews/cv07/cv07-smans.pdf.

[26] B. Steensgaard. Points-to analysis in almost linear time. In POPL ’96: Proceed-

ings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of program-

ming languages, pages 32–41, New York, NY, USA, 1996. ACM.

[27] A. Tafat, S. Boulmé, and C. Marché. A refinement methodology for object-
oriented programs. In B. Beckert and C. Marché, editors, Formal Veri-

fication of Object-Oriented Software, Papers Presented at the International

Conference, Karlsruhe Reports in Informatics, pages 143–159, Paris, France,
June 2010. http://digbib.ubka.uni-karlsruhe.de/volltexte/
1000019083.

[28] J.-P. Talpin and P. Jouvelot. Polymorphic type, region and effect inference. Jour-

nal of Functional Programming, 2(3):245–271, 1992.

[29] M. Tofte and J.-P. Talpin. Region-based memory management. Information and

Computation, 132(2):109–176, 1997. Academic Press.

RR n° 7412

Centre de recherche INRIA Saclay – Île-de-France
Parc Orsay Université - ZAC des Vignes

4, rue Jacques Monod - 91893 Orsay Cedex (France)

Centre de recherche INRIA Bordeaux – Sud Ouest : Domaine Universitaire - 351, cours de la Libération - 33405 Talence Cedex
Centre de recherche INRIA Grenoble – Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier

Centre de recherche INRIA Lille – Nord Europe : Parc Scientifique de la Haute Borne - 40, avenue Halley - 59650 Villeneuve d’Ascq
Centre de recherche INRIA Nancy – Grand Est : LORIA, Technopôle de Nancy-Brabois - Campus scientifique

615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex
Centre de recherche INRIA Paris – Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex
Centre de recherche INRIA Rennes – Bretagne Atlantique : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex

Centre de recherche INRIA Sophia Antipolis – Méditerranée : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

