
HAL Id: inria-00525409
https://hal.inria.fr/inria-00525409

Submitted on 11 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contextual graph grammars characterising Rational
Graphs

Christophe Morvan

To cite this version:
Christophe Morvan. Contextual graph grammars characterising Rational Graphs. Workshop on Non-
Classical Models for Automata and Applications 2010, 2010, Jena, Germany. pp.141-153. �inria-
00525409�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50049983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00525409
https://hal.archives-ouvertes.fr

CONTEXTUAL GRAPH GRAMMARS
CHARACTERISING RATIONAL GRAPHS

Christophe Morvan
Universit Paris-Est,

INRIA Rennes Bretagne Atlantique
Campus de Beaulieu, 35042 Rennes, France

Email: christophe.morvan@inria.fr

Abstract

Deterministic graph grammars generate a family of infinite graphs which characterise context-
free (word) languages. The present paper introduces a context-sensitive extension of these gram-
mars. We prove that this extension characterises rational graphs (whose traces are context-
sensitive languages). We illustrate that this extension is not straightforward: the most obvious
context-sensitive graph rewriting systems generate non recursive infinite graphs.

1. Introduction

In 1956, and then in 1959 Noam Chomsky wrote two articles which defined the Chomsky
hierarchy. This hierarchy has had a tremendous impact on the development of the theory of
formal languages. Since the early sixties, it has served for the classification, and evaluation of
the expressive power of formal languages and formal models.

There is a deep connection between this hierarchy and graphs. It is obvious for type 3 languages
(regular languages) which are characterised by finite automata. But from the mid-eighties on,
there has been an increasing effort to characterise language families by graph families.

One of the first attempts to establish properties on structures characterising type 2 languages
has been done by Muller and Schupp. They proved the decidability of the monadic second
order theory of the graphs of pushdown automata [MS85]. In their work, the vertices of the
graphs are the configurations of the pushdown automaton, and the arcs are transitions between
configurations. Such a characterisation is called internal, it thoroughly depends on the choice
of the machine, and it gives an explicit name to each vertex. Courcelle, in [Cou90], extended
the decidability of monadic second order theory to graphs generated by deterministic graph
grammars. Indeed these graph grammars were classical graph rewriting systems used to char-
acterise families of graphs. In this paper they were used to define infinite graphs. Indeed these
graphs are very close to graphs of pushdown automata ([CK01]) but it is an external charac-
terisation: each grammar generates a set of isomorphic graphs. The name of the vertices are
not explicitly stated along the generation of the graph. This is really important as it provides
a higher level of abstraction. Another slight extension of these two families is formed by the

2 Christophe Morvan

prefix-recognizable graphs from [Cau96]. In this paper Caucal provides both an external and
internal characterisation of these graphs. He also proves that they have a decidable monadic
second order theory, and that they characterise context-free languages.

For type 1 languages (context-sensitive languages), there are also several graph characterisa-
tions: transition graphs of linear bounded Turing machines [KP99], rational graphs [Mor00],
automatic graphs [BG00, Ris03] or linear bounded graphs [CM06a]. All these works provide
internal characterisations: the graphs are defined as sets of transitions between vertices which
are words on some alphabet.

To our knowledge there is no external graph characterisation of context-sensitive languages.
In particular there exists no context-sensitive extension of Courcelle’s graph rewriting systems.
[Sch97] is a survey presenting several contextual graph rewriting systems but they are used
exclusively to characterise families of finite graphs, and no connection is established with the
Chomsky hierarchy.

In this paper we propose an external characterisation of rational graphs in terms of contextual
rewriting system. It is organised in two main parts: the first recalls the definition of regular
and rational graphs and the second presents context-sensitive graph rewriting systems. We first
examine a natural, unrestricted, contextual extension of graph grammars. We show that it is too
general, as it produces non-recursive graphs. Then, we propose a restriction, which corresponds
to rational graphs. Afterwards we examine possible relaxations of some constraints which yield
families of non-recursive graphs. We conclude this paper applying our characterisation to
reprove some facts on context-sensitive languages.

2. Deterministic graph grammars and rational graphs

In this section we define classical notations and recall fundamental definitions for deterministic
graph grammars and rational graphs.

2.1. Mathematical preliminaries

Fundamentals

For any set E, its powerset is denoted by 2E; if it is finite, its size is denoted by |E|. Let the
set of non-negative integers be denoted by N, and {1, 2, 3, . . . , n} be denoted by [n]. A monoid
M is a set equipped with an associative operation (denoted ·) and a (unique) neutral element
(denoted ε). A monoid M is free if there exist a subset A of M such that M = A∗ :=

⋃

n∈N A
n

and for each u ∈ M there exists a unique finite sequence of elements of A, (u(i))i∈[n], such that
u = u(1)u(2) · · · u(n); if A is finite, then is free, of finite rank. Elements of a free monoid of
finite rank are called words. Let u be a word in M , |u| denotes the length of u and u(i) denotes
its ith letter.

Contextual Graph Grammars Characterising Rational Graphs 3

Hypergraphs

Let F be an alphabet (finite set) ranked by a mapping ̺ : F → N, this mapping associates to
each element of F its arity. Given a ranked alphabet F , we denote by Fn the set of symbols
of arity n. Now given V an arbitrary set, a hypergraph G is a subset of ∪n>1FnV

n. The vertex
set of such a hypergraph is the set VG = {v ∈ V | FV ∗vV ∗ ∩G 6= ∅}, in our setting, this set is
either finite or countable. A hyperarc of arity n is denoted by f v1 v2 · · · vn. Hyper arcs of
arity 2 are called arcs. Given a hypergraph G, an arc ast in G is identified with the labelled
transition s

a
−→
G

t or simply s
a
−→ t if G is understood. Furthermore, a is the label, s the source

and t the target.

Elements of F1 (labels of arity 1) are called colours.

Graphs

A (simple oriented labelled) graph G over V , labelled by P is a hypergraphs having only
hyperarcs of arity 1 or 2 (P = P1 ∪ P2). Given a graph G, the set of sources and targets are
respectively denoted by Dom(G) and Im(G) (by convention, both sets contain also vertices
belonging to arity 1 hyperarcs).

A graphG is deterministic if distinct arcs with the same source have distinct label: r
a
−→ s ∧ r

a
−→

t ⇒ s = t. Let G be a graph, a path in between vertices u ∈ Dom(G) and v ∈ Im(G), labelled

w, corresponds to the existence of vertices (ui)i∈[n] such that u = u1, v = un and ui
w(i)
−−→
G

ui+1

for i ∈ [n− 1]. Such a path is denoted by
w

==⇒
G

or simply
w

==⇒ if G is understood.

A graph morphism g, between graphs G and G′ is a mapping from Dom(G) ∪ Im(G) to
Dom(G′) ∪ Im(G′) such that if there is an arc u

a
−→
G

v, then there is an arc g(u)
a
−→
G′

g(v).

Such a morphism is an isomorphism if g is a bijection, and its inverse is also a morphism.

2.2. Deterministic graph grammars

A finite presentation is an effective tool in order to manipulate an infinite graph. Such pre-
sentations allow to conceive algorithms working on these graphs. Deterministic (hyperedge
replacement) graph grammars are a classical example of finite (external) characterisations of
infinite graphs. These grammars were initially defined to be an extension to graphs of word
grammars (see, e.g., [Roz97]). These graph grammars derived, from an axiom, an infinite fam-
ily of finite graphs. Courcelle in [Cou90] considered the deterministic form of these grammars,
each grammar, seen as a set of equations, admits a single (up to isomorphism) infinite graph as
least solution. In [Cau07], Caucal made an extensive survey on deterministic graphs grammars.
In particular, he gave a uniform presentation of several results: he developed a framework of
simple techniques, making intensive use of colours and colouring, to provide new proofs of these
results.

4 Christophe Morvan

Definition 2.1 (Hypergraph grammar). A hypergraph grammar (hr-grammar for short) G, is
a 4-tuple (N, T,R,H0), where N and T are two ranked alphabets of respectively non-terminals
and terminals symbols; H0 is the axiom, a finite graph formed by hyperarcs labelled by N ∪ T ,
and R is a set of rules of the form f x1 · · · x̺(f) → H where f x1 · · · x̺(f) is an hyperarc
joining disjoint vertices and H is a finite hypergraph.

Observe that usually, the vertices appearing in the left-hand side of a rule appear in the right-
hand side (though the definition does not command it).

Remark 2.2. In this paper, we consider graphs, therefore, the terminal symbols will have
either rank one, or two. Such a graph is seen as a simple subset of T2V V ∪ T1V .

A grammar is deterministic if there is a single rewriting rule per non-terminal:

(X1, H1), (X2, H2) ∈ R ∧X1(1) = X2(1) ⇒ (X1, H1) = (X2, H2)

Now, given a set of rules R, the rewriting −→
R

is the binary relation between hypergraphs

defined as follows: M rewrites into N , written M −→
R

N if there is a non-terminal hyperarc

X = Av1v2 . . . vp in M and a rule Ax1x2 . . . xp → H in R such that N is obtained by replacing
X by H in M : N = (M − X) ∪ h(H) for some injection h, mapping vi to xi for each i, and
every other vertices of H to vertices outside of M . This rewriting is denoted by M −−→

R,X
N .

Now, this rewriting obviously extends to sets of non-terminal, for E such a set, this rewriting
is denoted: M −−→

R,E
N . The complete parallel rewriting =⇒

R
is the rewriting relative to the set of

all non-terminal hyperarcs of R.

Now given a deterministic graph grammar G = (N, T,R,H0), and a hypergraph H, we denote
by [H] := H ∩ (T VH VH ∪T VH) the set of terminal arcs, and colours of H. We define Gω, the
limit set of G, as the set of all countable union of [Hn], derived from H0 (there are infinitely
many Hn for each n):

Gω =
{

∪n>0[Hn] | ∀n > 0, Hn =⇒
R

Hn+1

}

Formally, Gω is a set of graphs, and we say that a graph H is generated by G if it belongs
to Gω. But all these graphs are isomorphic, thus, we will often express that Gω is the graph
generated by G.

Example 2.3. This is a simple example of deterministic graph grammar and a representation
of the resulting graph.

Contextual Graph Grammars Characterising Rational Graphs 5

A rule An axiom A graph
(2)

(1)
(1) (2)

A

A A

a

cb

a

cb

A A

a

cb

a a

Graph grammars characterise regular graphs. This characterisation is very efficient to extend
techniques working for finite graphs to these infinite graphs (for example computing the con-
nected components of a regular graph is simply doing it inductively on the right-hand sides
of the rules). Furthermore these graphs (restricted to finite degree) correspond to transition
graphs of pushdown automata [CK01]. Yet, algorithms defined on pushdown automata often
make technical assumptions on the form of the automaton: for example that each state reflects
that the configuration belongs to a certain regular set. In most cases these assumptions only
affect the internals of the automaton, it does not affect the structure of its configuration graph.
More precisely, these transformations do not affect globally the family of graphs but some in-
dividual graph may be transformed switching representation. This is not the case for graph
grammars: normal forms preserve the generated graph. Thus graph grammars are more suited
when focussing on structural properties.

In the next subsection we will define rational graphs with an internal characterisation, later on,
in Section 3 we will extend graph grammars in order to characterise rational graphs. The way
we enrich these grammars is similar to what is done for word grammars: contextual rewriting
is necessary. However, in order to avoid being too general, we will have to separate context arcs
from non-terminal ones, and the axiom will be a regular graph (defined by a hr-grammar).

2.3. Rational graphs

In this subsection we present key elements on rational graphs. More details can be found
in [Mor00, MS01].

The family of rational subsets of a monoid (M, ·) is the least family containing the finite subsets
of M and closed under union, concatenation and iteration.

A transducer is a finite automaton labelled by pairs of words over a finite alphabet X, see for
example [Ber79]. A transducer accepts a relation in X∗×X∗; these relations are called rational
relations as they are rational subsets of the product monoid (X∗×X∗, ·).

Now, let us consider the graphs of Σ × X∗ × X∗ (here, in order to separate explicitly first
and second vertices, we use Cartesian product instead of concatenation). Rational graphs are
extensions of rational relations, they are defined by labelled transducers.

Definition 2.4. A labelled transducer T = (Q, I, F, E, L) over X and Σ, is composed of a finite

6 Christophe Morvan

set of states Q, a set of initial states I ⊆ Q, a set of final states F ⊆ Q, a finite set of transitions
(or edges) E ⊆ Q×X∗×X∗×Q and a mapping L from F into 2Σ.

An arc u
a
−→ v is accepted by a labelled transducer T if there is a path from a state in I to a

state f in F labelled by (u, v) and such that a ∈ L(f).

Definition 2.5. The set of rational graphs in Σ×X∗ ×X∗, denoted by Rat(Σ×X∗ ×X∗), is
formed by the graphs accepted by labelled transducers.

Example 2.6. The graph depicted below, on the right-hand side, is generated by the labelled
transducer on the left-hand side.

p

q1

q2

r1 a

r2 b

r3 c

0/0
0/1

1/⊥

ε/0

1/ε

0/1

1/1

0/0

1/1

1/1

0/0

ε

⊥

0

1

a

c

b

00

01

a

b

000

001

a

b

11

01

c

b

111

011

c

b

b

The path p
0/0
−−→ q1

0/1
−−→ r2

1/1
−−→ r2 accepts the pair (001, 011), the final state r2 is labelled by b

thus there is an arc 001
b
−→ 011 in the graph.

Rational graphs have been introduced in order to define a general family of infinite graphs gen-
eralising previous families. They have few decidable properties, but they characterise context-
sensitive languages (csl) [MS01]. The rational trees (rooted connected acyclic rational graphs
such that each vertex has at most one predecessor) have a decidable first order theory [CM06b].

Employing transducers to define a family of graphs is an internal characterisation. A side-effect
of such a definition is that the set of vertices of a rational graph is a regular set of words.
This implies that some graphs are not rational simply because of their vertex set, but it is not
related to their structure. In contrast, for finite graphs, every algorithm, every characterisation,
is given up to renaming of the vertices. Such external characterisation is difficult to obtain for
infinite graphs. Still, characterisations like hr-grammars overcome this problem. The next
section defines contextual graph grammars characterising rational graphs.

3. Contextual graph grammars

There are several contextual graph rewriting systems (see Section 4 in [Sch97]). But like for
hr-grammars, these systems have not been used to characterise families of infinite graphs.
Especially in the sense of deterministic graph grammars. We will see that it is difficult to
define such systems generating exclusively recursive sets of arcs.

Contextual Graph Grammars Characterising Rational Graphs 7

3.1. Contextual graph rewriting systems

Recursivity is understood differently for a set of finite graphs, and a single infinite graph: in
the first case, it corresponds to checking that a given graph belongs to the family, whereas for
systems that produce a single graph, recursivity corresponds to deciding, from the grammar,
the existence of an arc between two given vertices. In the case of sets of graphs, as soon as the
grammar does not remove terminal arcs, it is recursive. In the case of a single graph, it is not
sufficient: the rules may use non-terminal arcs to perform complex computations, which may
eventually produce an arc depending on the result of this computation, in such a situation, the
graph itself may be non-recursive.

In this first subsection we present a naive contextual rewriting system which generates non-
recursive graphs.

Let NR be a finite ranked set of non-terminals, and TR a finite ranked set of terminals.

We propose here a natural definition of contextual graph rewriting system.

Definition 3.1 (Contextual graph rewriting system). A contextual graph rewriting system S,
is a set of rules of the form Hc∪f x1 · · · x̺(f) → Hc∪H where f x1 · · · x̺(f) is a non-terminal
hyperarc, Hc is a finite context graph, and H is a finite hypergraph, that can share some vertices
with Hc and

{

x1, · · · , x̺(f)

}

. Furthermore, Hc is composed only of terminal hyperarcs, and
Hc ∪ f x1 · · · x̺(f) forms a connected hypergraph.

The sketch of proof for Proposition 3.2 provides an example of contextual rewriting rules (rules
r0, r1, r∆ are explicitely depicted).

Now, given a rewriting rule Hc∪f x1 · · · x̺(f) → Hc∪H, a rewriting step in a graph G consists
in finding the non-terminal f in G, such that there is a morphism h of Hc ∪ f x1 · · · x̺(f) into
G then removing f from G, and adding H to G according to the rule, and to the morphism
h. Given a contextual graph rewriting system S, and a finite graph H, we define Sω(H) in
the same way as Gω for a hr-grammar G. Recall that this graph is a restriction to terminal
symbols, in particular in our setting it only has hyperarcs of arity 1 or 2.

We say that such a contextual rewriting system is deterministic, if there is, at most, one rule
for each non-terminal. This restriction only limits non-determinism, as there might be some
situations where the context of a non-terminal can be found more than once. In such situation,
it means that the rewriting system may generate at least two non-isomorphic graphs.

Unfortunately this natural generalization of hr-grammars is much too general (even restricted
to systems where there is always a single morphism to match the context): the graph rewriting
systems generate non recursive graphs.

The first observation toward this result is the following: the transition graph of a Turing
Machine is recursive: given two configurations of the machine it is trivial to check that they

8 Christophe Morvan

are connected in the transition graph. The second observation is that the accessible restriction
(restriction to reachable configurations) of this graph is non-recursive; if it were recursive it
would imply the decidability of accessibility for Turing machines.

Proposition 3.2. Let M be a Turing machine; u0, and u1 two configurations of M , there exists
effectively a contextual graph rewriting system S which generates, from a finite axiom A, a set
of graphs isomorphic to the accessible component of the transition graph of M , from its initial
configuration. Furthermore each vertex in bijection with u0 and u1 is marked by a colour c0 and
c1 respectively (each graph in Sω contains a single pair of such vertices).

Proof (sketch). Let M be a Turing machine, with tape alphabet Σ = {0, 1},and states in the
finite set Q. For simplification we assume the tape is filled initially by zeros, and that M

operates on such a tape, we also assume that the tape is only infinite on the right, finally a
configuration ends with a 1 or a state symbol. A transition of M is a tuple (p, A, q, B, δ) where
p, q ∈ Q are respectively the current and next state of M , A ∈ Σ is the tape letter immediately
on the right of the reading head, δ ∈ {−1,+1} represent the movement of the head to the left
or right, and B is the letter replacing A after the move. Let ∆ = (p, q, 1, 0,−1) be a transition
of M .

X0

1

1

X1X1 X0X0

X1

1

1

X1 X1

p1
pn 0

1

0
1

#

r0

r1

root end

root end
∆0

nxt

0

p

1

0

p

1

q

0

0

q

0

0

r∆,0

Rules r0 and r1 generate a complete tree corresponding to configurations of M , each path
leading from the root to an arc labelled # corresponds to a configuration of the machine. For
each transition ∆ of M , there is one or two rules2similar to r∆,0 simulating the rewriting step
from a configuration to the next one. The context of such a rule is formed by the arcs 0, p, 1
and q, 0, 1 the rewriting consist simply in removing the non-terminal ∆0 and producing nxt.
Before applying these rules the transition is simply moving along a single path (recalling the
root and the end). The rule corresponding to nxt performs the same path along the second and
forth vertices. The rule that ensures termination and thus the restriction to a single connected
component is the following:

root end

root

end

chk

new

τ

#

#

#
rchk

The left hand-side of this rule witnesses that the computation has reached the end of the
original configuration, the non-terminal new records the position of the root and the position
of the extremity of the new configuration, the right hand-side from new starts over a new

2There are two rules when δ = −1 depending on the symbol preceding the reading head.

Contextual Graph Grammars Characterising Rational Graphs 9

computation. There is a τ -labelled arc between the two vertices corresponding to the respective
configurations. Ultimately the graph is formed simply by τ labelled arcs. The axiom is this
finite graph:

root

X0

end
p0 #

new

Colours c0 and c1 are simply added by a single rule having for context a tree corresponding to
both configurations. If it were decidable whether there is an τ -arc between c0 and c1, it would
enable to decide the existence of an arc in the (non-recursive) accessible component reachable
in the transition graph of M from the initial configuration.

Proposition 3.2 may be reformulated into following corollary.

Corollary 3.3. Deterministic contextual graph rewriting systems generate non recursive graphs.

Obviously from a Turing machine, M , and two configurations, the existence of an arc between
these configurations in the accessible component of the transition graph of M might be checked
if it could be checked in the graph generated by the system derived from Proposition 3.2.

3.2. Contextual hyper-edge-replacement graph grammars

We present, now, a more restrictive contextual rewriting system which will be used to charac-
terise rational graphs.

Definition 3.4. A contextual hyper-edge-replacement hypergraph grammar (chr-grammar for
short) is a tuple (C,N, T,Rc, H0), where C,N and T are finite ranked alphabets of respectively
contextual, non-terminal and terminal symbols; Rc is a deterministic contextual graph rewriting
system where, for each rule Hc ∪ fx1 . . . x̺(f) → Hc ∪H, the graph Hc is formed only by arcs
labelled in C, and H by arcs labelled in T ∪ N , and H0 is the axiom: a deterministic regular
graph formed by arcs with labels in C, and a single non-terminal hyperarc.

Given a chr-grammar G = (C,N, T,Rc, H0), the set G
ω is defined similarly as for hr-grammar

as Rω
c (H0).

Observe that, for each rule in Rc, the context graph (Hc) is not modified: no arc is removed,
and no arc is added, thus successive rewritings preserve the axiom H0. Furthermore, this
definition imposes that the axiom is a deterministic regular graph. This ensures that for each
rule r ∈ Rc (with non-terminal A) and each occurrence of A in the graph, there is at most
a single morphism which maps the context of the left-hand side of r to the neighbourhood of
A. This restriction may be checked, since verifying that a given graph grammar generates a
deterministic graph is decidable (direct consequence of Proposition 3.13 in [Cau07]).

Later in this paper we will discuss other structural restrictions (for the axiom), and see that it
is difficult to allow graphs that are not trees. We will also have to impose stronger restrictions
on the rules Rc in order achieve a characterisation.

10 Christophe Morvan

We first show that an |X|-ary tree as axiom is sufficient to obtain each graph of Rat(Σ×X∗ ×
X∗).

Proposition 3.5. Each rational graph is generated by a chr-grammar.

Like for Proposition 3.2, the proof is in the full paper. We sketch this straightforward construc-
tion.

Proof (sketch). Let G be a rational graph in Σ × X∗ × X∗ (and T a transducer representing
it), let H0 be the complete |X|-ary tree labelled on X (with a non-terminal p0 on the root).
For each state p of T , we have the following rule rp.

u1 u2
un v1

v2 vn rp u1 u2
un v1

v2 vn

p

q1 q2 qm

L(p)

Here, we suppose that there are transitions p
ui/vi
−−−→ qi for some states (qi)i∈[m], and also L(p)

represent all labels produced at state p (if p is a terminal state). Now each pair of path in H0

correspond to a path of pairs in T . Thus both graphs are the same.

3.3. Tree-separated contextual grammars generate rational graphs

This subsection identifies restrictions on chr-grammar which enable a converse inclusion for
Proposition 3.5.

A chr-grammar (C,N, T,Rc, H0) is called a tree-chr-grammar if the axiom H0 is a tree, and
the left-hand side of each rule of Rc is formed by trees rooted in the vertices of the non-terminal
(some vertices of this non-terminal may be non-root vertices of theses trees). Furthermore,
if each of these trees possesses a single vertex belonging to the non-terminal (its root) this
grammar is called a tree-separated-chr-grammar. Graphs generated by the latter are captured
by rational graphs:

Proposition 3.6. Any graph generated from a tree-separated-chr-grammar, is isomorphic to
a graph in Rat(Σ×X∗ ×X∗).

There are several difficulties to establish this result: the axiom is not a complete tree, so we
need to ensure that an arc is never set on a vertex that does not exist. Hyperarcs of arity
greater than 2 need to be taken into account. Finally, there may be twists: in the right-hand
side of a rule, the path from the goal of the original non-terminal may lead to the source of
some other non-terminal.

Contextual Graph Grammars Characterising Rational Graphs 11

In order to prove Proposition 3.6 we first state two technical lemmas (whose proofs are post-
poned to the appendix).

Lemma 3.7. The set of path labels from the root of a regular tree leading to some colour (arc
of arity 1) is a regular set of words.

Lemma 3.8. Any tree-separated-chr-grammar G can be effectively transformed into a tree-
separated-chr-grammar G′ generating the same set of graphs and such that, for each rule r of
G′, each non-terminal appearing in the right-hand side of r has at most one vertex in each tree
of the context graph.

We are now able to sketch the proof of Proposition 3.6.

Proof (sketch). We first suppose the axiom is some complete n-ary tree. Lemma 3.8 enables
that each non-terminal has at most a single vertex in each subtree of the right-hand side of
each rule.

Then the states of the transducer are defined by ordered pairs of vertices of the non-terminals,
and the transitions from the paths in the right-hand sides. Terminal states are defined by pairs
of vertices of terminal arcs (source, target).

Second, if the regular tree is not a complete tree, we use Lemma 3.7 to compute a regular
set of paths reaching leaves: P . Then, it is not sufficient to make an intersection with the
set P × P , since some rewriting may not occur from the absence of some vertex along the
rewritings. Thus, we synchronize the transducer with the set P : each state A(u1,u2) checks that
the complete context for the rule of A is available.

Combining Proposition 3.6 and 3.5 we state the main result of this paper (observe that the
grammar which proves Proposition 3.5 is tree-separated-chr-grammar).

Theorem 3.9. The family of rational graphs, and the graphs generated by tree-separated-chr-
grammars coincide.

Now, slightly modifying the rules presented in the proof Proposition 3.2 enables to extend it.
The rules r0 and r1 generate the axiom, and the only rule that does not satisfy tree-separated-
chr-grammar restrictions is rchk. From this observation we obtain the following result.

Proposition 3.10. Tree-chr-grammars generate non-recursive graphs.

This result proves that in some sense tree-separated-chr-grammars are the most general
context-sensitive graph rewriting system capturing rational graphs and nothing more.

12 Christophe Morvan

4. Applications and conclusion

Applications

We first reformulate Theorem 4.12 of [MS01] in the context of tree-separated-chr-graphs.

Theorem 4.1. [MS01] The set of paths between two colours in tree-separated-chr-graphs
coincide with context-sensitive languages.

A major interest of having a graph characterisation of languages is that it enables simple proofs
for language properties. In this subsection we provide a direct applications of tree-separated-
chr-grammars to reprove simple results for csl.

Proposition 4.2. Let G1 and G2 be two tree-separated-chr-graphs: the iteration of G1, the
concatenation and synchronisation product of G1 and G2 are tree-separated-chr-graphs.

These results are proved constructing a compound axiom and compound rules. Using Theo-
rem 4.1, Proposition 4.2 proves the following results:

Corollary 4.3. The csl are closed under concatenation and Kleene star; the intersection of
two csl is a csl.

One of the most stunning result for csl is closure under complementation [Sze88, Imm88]. It
would be interesting to reprove this result using a graph approach. Unfortunately, proving
closure under complementation with graphs is related to closure under determinisation. But
here, languages recognised by deterministic tree-separated-chr-graphs are deterministic csl.
If they contained all csl it would prove Kurdoda’s conjecture [Kur64] on the equivalence
between deterministic and non-deterministic csl. Our conjecture is that deterministic rational
graphs do not recognise all csl. Thus, using this graph characterisation to prove closure under
complement would be similar to proving the closure under complement of Bchi automata: it
would not use the graph structure.

Conclusion

In this paper we have presented a family of infinite graphs generated by contextual graph
grammars. This family characterises rational graphs. We also have examined several variants
which generate non-recursive graphs.

Elaborating on techniques from hr-grammar we hope to provide a toolbox for manipulating
these graphs and then being able to improve the knowledge of csl.

An interesting question is the characterisation of the graphs of higher order pushdown au-
tomata in terms of graph rewriting systems. Such a characterisation could enable a deeper
understanding of the structure of these objects.

Contextual Graph Grammars Characterising Rational Graphs 13

References

[Ber79] J. Berstel. Transductions and context-free languages. Teubner, 1979.

[BG00] A. Blumensath and E. Grädel. Automatic Structures. In 15th IEEE Symposium on Logic

in Computer Science LICS 2000, pages 51–62, 2000.

[Cau96] D. Caucal. On transition graphs having a decidable monadic theory. In Icalp 96, volume
1099 of LNCS, pages 194–205, 1996.

[Cau07] D. Caucal. Deterministic graph grammars. In Texts in logics and games 2, pages 169–250.
Amsterdam University Press, 2007.

[CK01] D. Caucal and T. Knapik. An internal presentation of regular graphs by prefix-recognizable
ones. Theory of Computing Systems, 34(4), 2001.

[CM06a] A. Carayol and A. Meyer. Context-sensitive languages, rational graphs and determinism.
Logical Methods in Computer Science, 2(2), 2006.

[CM06b] A. Carayol and C. Morvan. On rational trees. In Zoltán sik, editor, CSL 06, volume 4207
of LNCS, pages 225–239, 2006.

[Cou90] B. Courcelle. Handbook of Theoretical Computer Science, chapter Graph rewriting: an
algebraic and logic approach. Elsevier, 1990.

[Imm88] N. Immerman. Nondeterministic space is closed under complementation. SIAM Journal on

computing, 17(5):935–938, October 1988.

[KP99] T. Knapik and E. Payet. Synchronization product of linear bounded machines. In FCT,
volume 1684 of LNCS, pages 362–373, 1999.

[Kur64] S.-Y. Kuroda. Classes of languages and linear-bounded automata. Information and Control,
7(2):207–223, June 1964.

[Mor00] C. Morvan. On rational graphs. In J. Tiuryn, editor, Fossacs 00, volume 1784 of LNCS,
pages 252–266, 2000.

[MS85] D. Muller and P. Schupp. The theory of ends, pushdown automata, and second-order logic.
Theoretical Computer Science, 37:51–75, 1985.

[MS01] C. Morvan and C. Stirling. Rational graphs trace context-sensitive languages. In MFCS,
volume 2136 of LNCS, pages 548–559, 2001.

[Ris03] C. Rispal. The synchronized graphs trace the context-sensitive languages. In ENTCS,
volume 68, pages 55–70, 2003.

[Roz97] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Transfor-

mations, Volume 1: Foundations. World Scientific, 1997.

[Sch97] A. Schürr. Programmed graph replacement systems. In Rozenberg [Roz97], pages 479–546.

[Sze88] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta

Informatica, 26(3):279–284, November 1988.

