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Abstract. We propose a method for the recovery of projective shape and motion from multiple images of a scene
by the factorization of a matrix containing the images of allpoints in all views. This factorization is only possible
when the image points are correctly scaled. The major technical contribution of this paper is a practical method
for the recovery of these scalings, using only fundamental matrices and epipoles estimated from the image data.
The resulting projective reconstruction algorithm runs quickly and provides accurate reconstructions. Results are
presented for simulated and real images.

1 Introduction

In the last few years, the geometric and algebraic relationsbetween uncalibrated views have found lively interest in
the computer vision community. A first key result states that, from two uncalibrated views, one can recover the 3D
structure of a scene up to an unknown projective transformation [Fau92, HGC92]. The information one needs to do so
is entirely contained in the fundamental matrix, which represents the epipolar geometry of the 2 views.

Up to now, projective reconstruction has been investigatedmainly for the case of 2 views. Faugeras [Fau92] studied
projective reconstruction using 5 reference points. Hartley [HGC92] derives from the fundamental matrix 2 projection
matrices, equal to the true ones up to an unknown projective transformation. These are then used to perform reconstruc-
tion by triangulation[HS94]. As for multiple images, most of the current methods [MVQ93, Har93, MM95] initially
privilege a few views or points and thus do not treat all data uniformly.

Recently, multi-linear matching constraints have been discovered that extend the epipolar geometry of 2 views to 3
and 4 views. Shashua [Sha95] described the trilinear relationships between 3 views. Faugeras and Mourrain [FM95],
and independently Triggs [Tri95a] have systematically studied the relationships betweenN images. Triggs introduced
a new way of thinking about projective reconstruction. The image coordinates of the projections of a 3D point are
combined into a single “joint image vector”. Then, projective reconstruction consists essentially of rescaling the image
coordinates in order to place the joint image vector in a certain 4-dimensional subspace of the joint image space called
thejoint image. This subspace is characterized by the multi-linear matching constraints between the views.

The projective reconstruction method we propose in this paper is based on the joint image formalism, but it is not
necessary to understand this formalism to read the paper. Weshow that by rescaling the image coordinates we can
obtain ameasurement matrix(the combined image coordinates of all the points in all the images), which is of rank
4. Projective structure and motion can then be obtained by a singular value factorization of this matrix. So, in a
sense this work can be considered as an extension of Tomasi-Kanade’s and Poelman-Kanade’s factorization methods
[TK92, PK94] from affine to perspective projections.

The paper is organized as follows.(1) We motivate the idea ofreconstruction through the rescaling of image coordinates.
Throughout this paper we will restrict attention to the caseof bilinear matching constraints (fundamental matrix),
although the full theory [Tri95b] also allows tri- and quadrilinear matching constraints to be used. (2) We discuss some
numerical considerations and describe the proposed projective reconstruction algorithm. (3) We show results that we
have obtained with real and simulated data. (4) We conclude and discuss several open issues, which will be part of our
future work.1 This work was performed within a joint research programme between CNRS, INPG, INRIA, UJF.



2 Projective Reconstruction from Multiple Views

2.1 The Projective Reconstruction Problem

Suppose we have a set ofn 3D points visible inm perspective images. Our goal is to recover 3D structure (point
locations) and motion (camera locations) from the image measurements. We will assume no camera calibration or
additional 3D information, so we will only be able to reconstruct the scene up to an overall projective transformation
of the 3D space [Fau92, HGC92].

We will work in homogeneous coordinates with respect to arbitrary projective coordinate frames. LetQp be the
unknown homogeneous coordinate vectors of the 3D points,P i the unknown3�4 image projection matrices, andqip
the measured homogeneous coordinate vectors of the image points, wherep = 1; : : : ; n labels points andi = 1; : : : ;m
labels images. Each object is defined only up to an arbitrary nonzero rescaling,e.g.Qp � �pQp. The basic image
projection equations say that — up to a set of unknown scale factors — theqip are the projections of theQp:�ipqip = P iQp
We will call the unknown scale factors�ip projective depths2. If the Qp and theqip are chosen to have affine
normalization (‘weight’ components equal to 1) and theP i are normalized so that the vectorial part of the ‘weight’
component row has norm 1, the projective depths become true optical depths,i.e. true orthogonal distances from the
focal plane of the camera.

The complete set of image projections can be gathered into a single3m� n matrix equation:W � 0BBB@ �11q11 �12q12 � � � �1nq1n�21q21 �22q22 � � � �2nq2n
...

...
...

...�m1qm1 �m2qm2 � � � �mnqmn1CCCA = 0BBB@ P 1P 2
...Pm1CCCA�Q1 Q2 � � �Qn �

Notice thatwith the correct projective depths�ip, the3m � n rescaled measurement matrixW has rank at most 4.
If we could recover the depths, we could apply an SVD based factorization technique similar to that used by Tomasi
and Kanade [TK92] toW , and thereby recover both 3D structure and camera motion forthe scene. The main technical
advance of this paper is a practical method for the recovery of the unknown projective depths, using fundamental
matrices and epipoles estimated from the image data.

Taken individually, the projective depths are arbitrary because they depend on the arbitrary scale factors chosen for theP i, theQp and theqip. However taken as a whole the rescaled measurementsW have a strong internal coherence.
The overall scale of each triple of rows and each column ofW can be chosen arbitrarily (c.f. the arbitrary scales of the
projectionsP i and the 3D pointsQp), but once thesem+ n overall scales have been fixed there is no further freedom
of choice for the remainingmn � m � n scale factors in�ip. Hence, the projective depths really do contain useful
information.

2.2 Recovery of Projective Depths

Now we will show how the projective depths can be recovered from fundamental matrices and epipoles, modulo
overall row and column rescalings. The point projection equation�ipqip = P iQp implies that the6� 5 matrix�P i �ipqipP j �jpqjp� = �P i P iQpP j P jQp� = �P iP j��I4�4 Qp �
has rank at most 4. Hence, all of its5 � 5 minors vanish. We can expand these by cofactors in the last column to
get homogeneous linear equations in the components of�ipqip and�jpqjp. The coefficients are4 � 4 determinants2 This is not the same notion as the “projective depth” of Shashua, which is a cross ratio of distances along epipolar lines [Sha94]



of projection matrix rows. These turn out to be just fundamental matrix and epipole components [Tri95a, FM95]. In
particular, ifabc anda0b0c0 are even permutations of123 andP ai denotes rowa of P i, we have:[F ij]aa0 = �������� P biP ciP b0jP c0j �������� [eij]a = ��������P aiP 1jP 2jP 3j �������� (1)

Applying these relations to the three5 � 5 determinants built from two rows of imagei and three rows of imagej
gives the following fundamental relation between epipolarlines:(F ijqjp)�jp = (eij ^ qip)�ip (2)

This relation says two things:� Equality up to scale: The epipolar line ofqjp in imagei is the line through the corresponding pointqip and the
epipoleeij. This is just a direct re-statement of the standard epipolarconstraint.� Equality of scale factors: If the correct projective depths are used in (2), the two terms haveexactly the same
size— the equality is exact, not just up to scale. This is the new result that allows us to recover projective depths
using fundamental matrices and epipoles. Analogous results based on higher order matching tensors can be found in
[Tri95b], but in this paper we will use only equation (2).

Our strategy for the recovery of projective depths is quite straightforward. Equation (2) relates the projective depths
of a single 3D point in two images. By estimating a sufficient number of fundamental matrices and epipoles, we can
amass a system of homogeneous linear equations that allows the complete set of projective depths of a given point to
be found, up to an arbitrary overall scale factor. At a minimum, this can be done with any set ofm � 1 fundamental
matrices that link them images into a single connected graph. If additional fundamental matrices are available, the
equations become redundant and (hopefully) more robust. Inthe limit, allm(m � 1)=2 fundamental matrices and allm(m � 1) equations could be used to find them unknown depths for each point, but this would be computationally
very expensive. We are currently investigating policies for choosing economical but robust sets of equations, but
in this paper we will restrict ourselves to the simplest possible choice: the images are taken pairwise in sequence,F 12;F 23; : : : ;Fm�1m.

This is almost certainly not the most robust choice, but it (or any other minimal selection) has the advantage that it
makes the depth recovery equations trivial to solve. Solving the vector equation (2) in least squares for�ip in terms of�jp gives: �ip = (eij ^ qip) � (F ijqjp)keij ^ qipk2 �jp (3)

Such equations can be recursively chained together to give estimates for the complete set of depths for pointp, starting
from some arbitrary initial value such as�1p = 1.

However there is a flaw in the above argument: fundamental matrices and epipoles can only be recovered up to an
unknown scale factor, so we do not actually know the scale factors in equations (1) or (2) after all! In fact this does
not turn out to be a major problem. It is a non-issue if a minimal set of depth-recovery equations is used, because the
arbitrary overall scale factor for each image can absorb thearbitrary relative scale of theF ande used to recover the
projective depths for that image. However if redundant depth-recovery equations are used it is essential to choose a
self-consistent scaling for the estimated fundamental matrices and epipoles. We will not describe this process here,
except to mention that it is based on the quadratic identities between matching tensors described in [Tri95b].

Note that with unbalanced choices of scale for the fundamental matrices and epipoles, the average scale of the recovered
depths might tend to increase or decrease exponentially during the recursive chaining process. Theoretically this is not
a problem because the overall scales are arbitrary, but it could well make the factorization phase of the reconstruction
algorithm numerically ill-conditioned. To counter this were-balance the recovered matrix of projective depths afterit
has been built, by judicious overall row and column scalings.



2.3 Projective Shape and Motion by Factorization

Oncewehaveobtained theprojectivedepths,wecan extract projectiveshapeand motion fromthe rescaled measurement
matrixW .

Let W = U diag(�1; �2; : : : ; �s) V
be a Singular Value Decomposition (SVD) ofW , with s = minf3m;ng and singular values�1 � �2 � : : : � �s � 0.
SinceW is of rank 4, the�i for i > 4 vanish. Thus, only the first 4 columns (rows) ofU (V ) contribute to this matrix
product. LetU 0 (V 0) the matrix of the first 4 columns (rows) ofU (V ). Then,W = U 03m�4 diag(�1; �2; �3; �4)| {z }� V 04�n = U 0 � V 0 :
Any factorization of� into two4� 4 matrices�0 and�00,� = �0�00, leads toW = U 0�0| {z }Û �00V 0| {z }V̂ = Û3m�4V̂ 4�n :
We can interpret the matrix̂U as a collection ofm (3� 4) projection matricesP̂ i andV̂ as collection ofn 4-vectorsQ̂p, representing 3D shape : W = Û V̂ = 0BBB@ P̂ 1P̂ 2

...P̂m1CCCA3m�4 �Q̂1 Q̂2 � � � Q̂n�4�n (4)

Equation (4) shows that thêP i andQ̂p represent at least projective motion and shape, sinceP̂ iQ̂p = �ipqip � qip :
Unlike the case of orthographic projections [TK92], there are no further constraints on thêP i or Q̂p : we canonly
recover projective shape and motion. For any non singular projective transformationT 4�4, P̂ iT andT�1Q̂p is an
equally valid factorization of the data into projective motion and shape :(P̂ iT )(T�1Q̂p) = P̂ iQ̂p � qip :
A consequence of this is that the factorization of� is arbitrary. For the implementation, we chose�0 = �00 =�1=2 = diag(�1=21 ; �1=22 ; �1=23 ; �1=24 ).
3 The Algorithm

Based on the observations made above, we have developed a practical algorithm for projective reconstruction from
multiple views. Besides the major two steps, determinationof the scale factors�ip and factorization of the rescaled
measurement matrix, the outline of our algorithm is based onsome numerical considerations.

3.1 Normalization of Image Coordinates

To ensure good numerical conditioning of the method, we workwith normalized image coordinates, as described in
[Har95]. This normalization consists of applying a similarity transformation (translation and uniform scaling)T i to
each image, so that the transformed points are centered at the origin and the mean distance from the origin is

p2.

All of the remaining steps of the algorithm are done in normalized coordinates. Since we actually compute projective
motion and shape for the transformed image pointsT iqip, P̂ iQ̂p = �ipT iqip � T iqip, the resulting projection

estimatesP̂ i must be corrected :P̂ i0 = T�1i P̂ i. The P̂ i0 and Q̂p then represent projective motion and shape
corresponding to the measured image pointsqip.

Our results show that this simple normalization drastically improves the results of the projective reconstruction.



3.2 Balancing the Rescaled Measurement Matrix

Consider the factorization of the rescaled measurement matrix W in projective motion and shape :W = 0BBB@ �11q11 �12q12 � � � �1nq1n�21q21 �22q22 � � � �2nq2n
...

...
...

...�m1qm1 �m2qm2 � � � �mnqmn1CCCA = 0BBB@ P̂ 1P̂ 2
...P̂m1CCCA�Q̂1 Q̂2 � � � Q̂n�

Multiplying column l of W by a non zero scalar�l corresponds to multiplyinĝQl by �l. Analogously, multiplying
the imagek rows (3k � 2; 3k � 1; 3k) by a non zero scalar�k corresponds to multiplying the projection matrix̂P k
by �k. Hence, point-wise and image-wise rescalings ofW do not affect the recovered projective motion and shape.

However, these considerations are only valid in the absenceof noise. In presence of noise,W will only be approximately
of rank 4, and scalar multiplications ofW as described abovewill affect the results. We therefore aim to improve the
results of the factorization by applying appropriate point- and image-wise rescalings toW . The goal is to ensure good
numerical conditioning by rescaling so that all rows and columns ofW have on average the same order of magnitude.
To do this we use the following iterative scheme :

1. Rescale each columnl so that
P3mr=1(wrl)2 = 1.

2. Rescale each triplet of rows(3k � 2; 3k� 1; 3k) so that
Pnl=1P3ki=3k�2w2il = 1.

3. If the entries ofW changed significantly, repeat 1 and 2.

Note that, since we work with normalized image coordinatesqip, it would be sufficient to balance only them � n
matrix (�ip) instead ofW .

3.3 Outline of the Algorithm

The complete algorithm is composed of the following steps.

1. Normalize the image coordinates, by applying transformationsT i.
2. Estimate the fundamental matrices and epipoles with the method of [Har95].

3. Determine the scale factors�ip using equation (3).

4. Build the rescaled measurement matrixW .

5. BalanceW by column-wise and “triplet-of-rows”-wise scalar mutliplications.

6. Compute the SVD of the balanced matrixW .

7. From the SVD, recover projective motion and shape.

8. Adapt projective motion, to account for the normalization transformationsT i of step 1.

4 Experimental Evaluation of the Algorithm

4.1 Experiments with Simulated Images

We conducted a large number of experiments with simulated images to quantify the performance of the algorithm.
The simulations used three different configurations : lateral movement of a camera, movement towards the scene, and
a circular movement around the scene (see figure 1). In configuration 2, the depths of points lying on the line joining
the projection centers can not be recovered. Reconstruction of points lying close to this line is extremely difficult, as
was confirmed by the experiments, which resulted in quite inaccurate reconstructions for this configuration.

For the circular movement, the overall trajectory of the camera formed a quarter circle, centered on the scene. For each
specific experiment, the trajectory length was the same for all three configurations. Them different viewing positions
were equidistantly distributed along the trajectory.
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Fig. 1. The 3 configurations for simulation.(1) Lateral movement.(2) Translation towards the scene.(3) Circular movement.

In order to simulate realistic situations, we adopted the following parameters : the camera’s calibration matrix was
diag(1000; 1000; 1). The scene was composed of points distributed uniformly in asphere of radius 100. The distance
between the camera and the center of the sphere was 200 (for configuration 2 this was the distance with respect to the
viewm).

For each configuration, the following experiment was conducted 50 times :

1. Determine at random 50 points in the sphere.

2. Project the points into them views.

3. Add Gaussian noise of levels0:0; 0:5; : : : ; 2:0 to the image coordinates.

4. Carry out projective reconstruction with our algorithm.

5. Compute the image distance error of the backprojected points (2D error) :1mnPmi=1Pnp=1 kP̂ iQ̂p � qipk, wherek:k means the Euclidean vector norm.

6. Align the projective reconstruction with the Euclidean model and compute the distance error in the Euclidean
frame (3D error).

The results of these experiments were analyzed with respectto several variables, as reported in the following subsec-
tions. All values represented in the graphs are the mean result over 50 trials. To monitor the effect of outliers on the
results, we also computed the median values. These gave graphs similar to those for the means, which we will not
show here.

2D errors are given in pixels, whereas 3D errors are given relative to the scene’s size, in percent.

Sensitivity to Noise Graphs 1 and 2 show the behavior of the algorithm with respectto different noise levels for the
three configurations. For this experiment, reconstructionwas done from 10 views.
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Graphs 1 and 2 : Sensitivity to noise.The 2D error curves for the configurations 1 and 3 are nearly undistinguishable.
3D error for configuration 2 goes rapidly off scale.

The algorithm performed almost equally well for configurations 1 and 3, whereas the 3D error for configuration 2



exceeds 100 % for 2.0 pixels noise. Considering the graphs ofconfiguration 2, we also see that 2D and 3D error are
not always well correlated. For configurations 1 and 3, the 2Derror is of the same order as pixel noise. Note also the
linear shape of the graphs.

Number of Views The image noise for this experiment was 1.0 pixel.
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Graphs 3 and 4 : Behavior with respect to number of views.The 2D error curves for the configurations 1 and 3 are
nearly undistinguishable. The 3D error for configuration 2 lies above 5 %. The curve is thus not visible in the graph.

The graphs show the expected behavior : when more views are used for reconstruction, the structure is recovered more
accurately. Secondly, 2D error augments with increasing number of views, but shows a clearly asymptotic behavior. 1.
Note that the use of 20 views reduces the 3D error to 50 % of thatfor 2 views.

Importance of Normalization and BalancingThe error values in the previous graphs were obtained with the
algorithm as described in subsection 3.3. To underline the importance of using normalized image coordinates, we
also ran the algorithm using unnormalized ones. The effectsof not balancing the rescaled measurement matrix before
factorization were also examined.
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Graphs 5 and 6 : Influence of normalization and balancing.The results presented here were obtained for configu-
ration 1. The 2D error curve for “only balancing” goes off scale even for 0.5 pixels noise and the 3D curve is so steep
that it is not even visible.

When the image coordinates are not normalized, the error is already off scale for 0.5 pixel noise. An explanation for
this is the bad conditioning of the rescaled measurement matrix (see also next paragraph). As for balancing, we see
that this improves 3D errors up to 20 %, and hence should always be part of the algorithm.



Robustness of the FactorizationThe applicability of our factorization method is based on the rank 4-ness of the
rescaled measurement matrixW (in the noiseless case). To test the robustness of this property, we evaluated how
closeW is to rank 4 in practice. To be close to rank 4, the ratio of the 4th and 5th largest singular values ,�4 : �5,
should be large with respect to the ratio of the 1st and 4th largest,�1 : �4. In the following graphs, these two ratios are
represented, for configurations 1 and 2 and for 2 and 20 views.Note that the y-axes are scaled logarithmically.
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Graphs 7 and 8 : Ratios of singular values for configuration 1.The graph on the left shows the situation for 2 views,
on the right for 20 views.
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Graphs 9 and 10 : Ratios of singular values for configuration 2. The graph on the left shows the situation for 2
views, on the right for 20 views.

We see that for configuration 1, the matrix is always very close to rank 4 :(�1 : �4) is lower than 2, whereas(�4 : �5)
lies clearly above 100. As for configuration 2, the graphs reflect the bad performance in 3D reconstruction.(�1 : �4)
is about 10, while for high noise levels or many views(�4 : �5) is close to 1.

4.2 Evaluation with Real Images

The algorithm has also been tested on several sequences of real images. For 2 of them we show results.

The House SequenceFigure 2 shows the first and last image of a sequence of 6 imagesof a scene with a wooden
house. 38 points were tracked over the whole sequence, but only extracted with�1 pixel accuracy.

To estimate the quality of the projective reconstruction,we aligned it with an approximate Euclidean model of the scene
obtained from calibrated views (see figure 3). Lines have been drawn between some of the points to aid visualization.

In the side and front views we see that right angles are approximately conserved, and that the windows are coplanar
with the wall. The bumpiness on the left side of the roof is dueto the fact that the roof stands out slightly from the
house’s front wall (see figure 2), thus causing occlusion in the last view of the edge point between roof and wall.



Fig. 2. First and last image of the house sequence.

Fig. 3. Three views of the reconstructed house.(1) “General view”. (2) Side view.(3) Front view.

The Castle Sequence28 points have been tracked through the 11 images of the sceneshown in figure 4. 3D ground
truth is available, and the reconstruction errors have beenevaluated quantitatively. The projective reconstructionwas
aligned with the Euclidean model and the resulting RMS errorwas4:45 mm for an object size of about220mm�210mm�280mm. The RMS error of the reprojected structure with respect to the measured image points was less than0:02 pixels.

We also applied a Levenberg-Marquardt nonlinear least-squares estimation algorithm, with the results of our method
as initialization. This slightly improved the 2D reprojection error, however the 3D reconstruction error was not
significantly changed.

Fig. 4. One image of the castle sequence.



5 Discussion and Further Work

In this paper, we have proposed a method of projective reconstruction from multiple uncalibrated images. The method
is very elegant, recovering shape and motion by factorization of one matrix, containing all image points of all views.
This factorization is only possible when the image points are correctly scaled. We have proposed a very simple way to
obtain the individual scale factors, using only fundamental matrices and epipoles estimated from the image data.

The algorithm proves to work well with real images. Quantitative evaluation by numerical simulations shows the
robustness of the factorization and the good performance with respect to noise. The results also show that it is essential
to work with normalized image coordinates.

Some aspects of the method remain to be examined. In the current implementation, we recover projective depths by
chaining equation (2) for pairs of views(12); (23); : : : ; (m�1;m). However, it would be worth investigating whether
other kinds of chaining are not more stable. Furthermore, uncertainty estimates on the fundamental matrices should be
considered when choosing which of the equations (2) to use. To run the algorithm in practice, it should also be able to
treat points which are not visible in all images. Finally themethod could be extended to use trilinear and perhaps even
quadrilinear matching tensors.

Acknowledgements.This work was partially supported by INRIA France and E.C. projects HCM and SECOND.
Data for this research were partially provided by the Calibrated Imaging Laboratory at Carnegie Mellon University,
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