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Amaël Delaunoy1, Emmanuel Prados1, and Peter N. Belhumeur2
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Abstract. Helmholtz stereovision methods are limited to binocular stereovision
or depth maps reconstruction. In this paper, we extend these methods to recover
the full 3D shape of the objects of a scene from multiview Helmholtz stereopsis.
Thus, we are able to reconstruct the complete three-dimensional shape of objects
made of any arbitrary and unknown bidirectional reflectance distribution func-
tion. Unlike previous methods, this can be achieved using a full surface represen-
tation model. In particular occlusions (self occlusions as well as cast shadows)
are easier to handle in the surface optimization process. More precisely, we use
a triangular mesh representation which allows to naturally specify relationships
between the geometry of a point of the scene and its surface normal. We show
how to implement the presented approach using a coherent gradient descent flow.
Results and benefits are illustrated on various examples.

1 Introduction

Reconstructing shape and appearance of objects from images is still one of the major
problems in computer vision and graphics. In this work, we are interested in recov-
ering a full and dense representation of the object’s three-dimensional shape. Multi-
view reconstruction systems are commonly used to estimate such a model, as they pro-
vide information from many viewpoints around the object of interest. Among these
approaches, variational methods have been popular because they can be used to solve
a wide variety of vision problems. The idea is to minimize an energy functional that
depends on the considered object surface and on the input images, whose minima is
reached at the object of interest. Many methods have been proposed in order to solve
this problem, but these approaches are often limited in the kind of appearance they can
handle. To overcome these limitations, we exploit Helmholtz reciprocity and propose
a single framework for normal estimation and normal integration using a triangular
mesh-based deformable model.

1.1 Helmholtz Stereovision: a Reconstruction Approach for Real World Objects

Most of the multiview reconstruction algorithms rely on image correspondences (as
done for instance in multiview stereo [1]) or shading (using the normal information in
multiview shape from shading [2, 3] or multiview photometric stereo [4]). When tex-
ture information (stereo case) is good enough or Lambertian assumption is sufficiently
verified, those methods have been proved to give good results with surfaces that are
nearly. They then obtain either accurate correspondences or accurate normal estimates.
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But when the scene is not Lambertian, which is the case for most (if not all) real world
scenes, such cues are not valid and algorithms fail to reconstruct accurately the surface.
In order to solve this problem, many alternatives have been proposed. Some authors
consider specular highlights as outliers [4], and consider a large number of images in
order to compensate. Some others modify the input images to have specular free images,
and be photometric invariant [5, 6]. Another approach is to have a robust similarity mea-
surement [7, 8]. All these methods try to compensate the non-Lambertian components
in order to run reconstruction algorithms designed for the Lambertian case.

Some authors consider another strategy: they propose to use more general reflect-
ance / radiance parametric models. See for instance [9–11]. In practice, these approaches
suffer from several limitations. First of all the reflectance model has to be known in
advance and this constrains scene to be composed by materials consistent with the cho-
sen reflectance model. Such algorithms tend to solve non-linear systems of thousands
of variables (one reflectance / radiance model per surface point), or need additional as-
sumptions (single or fixed number of materials, single specular component, etc.). Those
models are difficult to be optimized and generally require to alternatively estimate the
reflectance and the shape. They are numerically unstable and easily tend to get stuck
in local minima [3]. Moreover, the algorithms are generally ill-posed, and then require
strong regularization which over-smooth the obtained results. Finally, the reflectance
and illumination models need also to be approximated. Although such algorithms show
reasonable results for perfect synthesized scenes, their application to real-world scenes
is complex and requires accurate camera and light calibration.

A different approach introduced by [12] uses radiance samples of reflectance ex-
emplars to match it with the observed images. A direct matching allows to estimate the
surface normal in order to reconstruct the shape by normal integration. Although it can
deal with many materials and anisotropic BRDF, material samples are needed. This can
be a restrictive assumption in concerned applications.

During the last decade, some authors have proposed to use Helmholtz reciprocity
in order to perform 3D reconstruction [13–17]. In practice, Helmholtz reciprocity is
exploited by taking a pair of images under a single light source, where camera centers
and light positions are exchanged at each shot. It uses the fact that in this particular
setup, for a single reciprocal pair, the relationship between two radiances of a single
surface point is independent of the reflectance. Contrary to works described in previ-
ous paragraphs, methods based on Helmholtz reciprocity [13–17] allow to accurately
estimate the normals at one point, independently of the reflectance model. This can be
used to obtain a 3D surface. In this context, modeling the reflectance, having material
samples or being photometric invariant is not required. Nevertheless, contrary to most
of multiview stereovision algorithms, the state of the art in Helmholtz reconstruction is
limited to depth map reconstructions. In this paper, we push the envelope by proposing
a Full 3D multiview Helmholtz stereovision method.

1.2 A Surface-Based Approach

Until now, all the previous Helmholtz reconstruction methods were camera-view cen-
tered. On the contrary, we propose to change the surface representation and to adopt an
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object-centered strategy. Thus, instead of using a 2.5D surface as it used to be done pre-
viously, we represent the object’s surface by a closed and dense 2D manifold embedded
in the euclidean 3D space. The interest of this choice is two-fold. First this allows to
naturally recover a full 3D surface when the other approaches only recover a depth map
(or a needle map). Secondly, this allow to easily and properly handle visibility (shadows
as well as self occlusions). Figure 1 sheds light on these advantages: the picture on the
left illustrates the case of conventional Helmholtz Stereovision methods, that recover
a surface based on a virtual view (here in red). The drawing on the right illustrates
the proposed approach which is surface-based instead of view-based reconstruction.
The red contours show the optimal surface each method can recover. Clearly, the con-
ventional approaches are confronted with difficulties with visibility since it generates
discontinuities in the depth maps and the needle maps. Also, this difficulty spreads at
the integration steps which behave badly in presence of discontinuities.

Centered-view camera

Camera or Light

Fig. 1. Recovered surfaces by conventional Helmholtz Stereopsis versus proposed approach (sur-
face in red). Left: case of conventional Helmholtz Stereo methods which recovers the shape based
on a virtual view (in red). Right: the proposed surface-based approach.

In this work, as we will discuss in section 3, we represent the 2D surface using a
triangle mesh. In our context, where the surface normals play a key role, this representa-
tion offers significant advantages. In particular, it intrinsically links a depth to its surface
normal which is, in the case of piecewise planar surfaces like triangular meshes, well
defined on each facet. Also, this allows us to naturally combine both the normal inte-
gration and normal estimation when these were two separate stages in most of previous
approaches [13–15].

1.3 Contributions

This article presents several improvements to state-of-the-art 3D reconstruction tech-
niques exploiting Helmholtz reciprocity. First, we model the problem as an energy min-
imization problem which is completely surface-based (when all previous methods were
camera based). Secondly, we present a method for solving this problem and show how
to implement it on triangular surface meshes by using a coherent discrete gradient flow.
Finally, since we optimize a full surface, the method is able handle visibility. This also
allows to fully reconstruct dense 3D surfaces of complex objects in a single framework.
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2 Helmholtz Stereopsis - Variational Formulation

As described previously, Helmholtz reciprocity exploits the fact that BRDFs are gen-
erally symmetric and therefore, for any incoming angle î and outgoing direction ô, we
have β(̂i, ô) = β(ô, î) where β is the BRDF function. By interchanging light and cam-
era positions, one can exploit the constraint on β in radiance equations in order to solve
3D reconstruction problems.

Given a camera – light pair, one can write the radiance equation Ic of a scene seen
from a camera c as:

Ic = αβ(vc,vl)
vl · n
|vl|3

, (1)

where vc is the vector from the camera center to the point, vl is the vector from the light
center to the view-point and α is a constant. n is the surface normal of the considered
point and β(vc,vl) is the BRDF at the surface point (See Figure 2). The same radiance
equation can be written for modeling the radiance Il with the BRDF β(vl,vc). Using
Helmholtz reciprocity allows us to write β(vc,vl) = β(vl,vc). This equality then
defines the Helmholtz stereopsis constraint for all the point of the surface S:[

Ic
vc

|vc|3
− Il

vl

|vl|3

]
· n = 0 . (2)

Now, we are going to formulate this constraint in the variational framework via a
weighted area functional defined over the surface of the object.
We denote by πc(x) (resp. πl(x)) the projection of a point in space x in the camera c
(light l respectively), and Ic (or Il) its corresponding intensity value in the image. For
more clarity, we also denote

h(x) =

[
Ic(π(x))

vc

|vc|3
− Il(π(x))

vl

|vl|3

]
. (3)

In this case, the surface that “best” verifies Equation (2) can be obtained by minimizing
the following energy functional defined over the surface, with respect to the surface
itself:

EHS(S) =
∫
S
(h(x) · n(x))2 νS,c,l(x) ds , (4)

where νS,c,l is the characteristic function such that νS,c,l(x) = 1 if x is visible from
both images, or 0 otherwise. ds is the element of area of the surface. This problem for-
mulation allows thus to naturally integrate both multiview geometry and normal con-
straint. The functional (4) constrains the surface normals to be on the orthogonal plane
of h(x). This is an ill-posed problem since there is an unlimited choice for the normal.
In this context several reciprocal pairs are needed in order to better pose the problem
and Energy (4) has to be adapted to multiview settings. At the end, we then consider the
energy to minimize as the sum of all energies for all Helmholtz pairs i:

EHS(S) =
∑
i

∫
S
(hi(x) · n(x))2 νS,ci,li(x) ds , (5)
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where i is the ith camera / light pair.
In the next section, we show how to minimize this energy via gradient descent when

the surface is represented by a triangle mesh. To simplify the notations, we will just
consider and compute the gradient of the functional (4). The gradient of (5) is then
obtained by summing the gradients of all the camera / light pairs.

3 Optimization for Triangle Mesh Representation

3.1 Choice of Representation

In section 1.2 we show the interest of using an intrinsic and full surface representation.
In practice, there exists several possibilities for such representation. We propose to min-
imize energy (5) using a gradient descent algorithm. The choice of the representation
must then be consistent with the surface evolution technique which is the base of gradi-
ent descent methods. Here we chose to use the Lagrangian framework and to represent
the surface by a triangle mesh. Several reasons motivate this choice. In recent years,
Lagrangian methods have taken advantage of significant advances in mesh processing
allowing these methods to enjoy practical properties such as topological changes [18,
19]. In Lagrangian methods, the gradient is computed directly from the discrete repre-
sentation, whereas in the Eulerian framework the continuous gradient is computed and
then discretized. Performing gradient descent in the context of discrete representations
allows to make the minimization coherent with the handled numerical object. In other
respects, the visibility of a point from a vantage point is well defined and easy to com-
pute with a mesh representation (by using graphic hardware). In practice, it is easier to
check the visibility with such a representation than with a level-set representation. All
these reasons make nowadays Lagrangian methods more and more popular. Also these
methods have recently proved their strong potential for 3D applications [8, 20, 21].

3.2 Shape Gradient and Evolution Algorithm

parametrizes 

Vc

Vl

Fig. 2. Notations. Parametrization of the discrete representation of the surface into a triangle
mesh.

From now, we consider that the surface is a piecewise planar triangular mesh. Let
X = {x1 . . .xn} be a discrete mesh, xk being the kth vertex of X, and let Sj be the
jth triangle of X. With such a representation, functional (4) can be rewritten as:

EHS(S) =
∑
j

∫
Sj

(h(x) · nj)
2
νS,c,l(x) dsj , (6)
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where nj is the normal to Sj and where the sum is over all the triangles of the mesh X.
Figure 2 illustrates these notations.

We propose to optimize EHS with respect to S using the shape gradient [22]. Let
V be a vector field defined on all the vertices x of the mesh X representing the surface
deformation. Let us consider the evolution of EHS according to the deformation V.
In other words, we assume that the vertices xk[t] of X[t] are moving according to
xk[t] = x0

k + tVk. The method for computing the gradient of EHS with respect to S
consists in computing the directional derivative of E(S) for this deformation V, i.e.,
d
dtE(S[t])

∣∣∣
t=0

, and then in rewriting it as a scalar product of V, i.e. as 〈V,G〉 =∑
k Vk ·Gk. The obtained vector G is called the gradient and the energy necessarily

decreases when deforming the surface according to its opposite direction −G. Indeed,
for xk[t] = x0

k − tG, we have d
dtE(S[t])

∣∣∣
t=0

= −〈G,G〉 ≤ 0, see [20].
To obtain the gradient of our energy EHS , we have then to calculate the expres-

sion of d
dtEHS(S[t])

∣∣∣
t=0

and express it as a scalar product of V. In appendix A, we

have detailed this calculus in the general case where a functional
∫
Sg(x,n(x))ds is

minimized. By replacing g(x,n(x)) by (hi(x) · n(x))2, we get:

d

dt
E(S[t])

∣∣∣
t=0

=
∑
j

∑
k∈Kj

Vk ·

{
ej,k
Aj
∧
∫
Sj

(
(h · nj)

2
nj − 2 (h · nj)h

)
dsj

−
∫
Sj
2(h · nj)∇x(h · nj) φk(x) dsj

}
, (7)

where Aj is the area of Sj , ej,k is the edge of Sj that is at the opposite of vertex k; Kj

is the set of the indexes of the three vertices of the triangle Sj and φk : S → R is the
piecewise linear interpolating basis function such that φk(xk) = 1 and φk(xi) = 0 if
i 6= k.
Then theL2 gradient descent flow using the triangular mesh uses the gradient∇E(X) =

M−1
∂E

∂X
(X), where M is the mass matrix and

∂E

∂X
(X) is directly given by the part in

braces of Equation (7). One classically approximates M by the diagonal mass lumping
M̃ , where M̃ii is the area of the Voronoi dual cell of xi times the identity matrix Id3;
for more details, see e.g. [20, 23]. The evolution algorithm used here is:

X[0] = X0 ,

X[t+ 1] = X[t]− dt M̃−1 ∂E
∂X

(X[t]) ,
(8)

where X0 is some initial mesh.

4 Experimental Results

In this section we present results using the gradient developed in section 3 (Equation
(7)) that directly corresponds to the minimization of our original Energy (Equation (6)).
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Let us emphasize here that the gradient descent flow used to obtain the result is
exactly the one described previously. In particular, it does not require additional terms
or parameters such as surface smoothing present in most variational formulations. Of
course, adding such a term would help in being more robust to noise and calibration er-
rors. The only parameters used by us are for numerical computations, like for instance
the numerical integration over the triangles. All those can be easily estimated automati-
cally. Since this is a gradient descent approach, one needs some reasonable initialization
of the surface such as the visual hull to avoid local minima.

The experiments were implemented in C++ and OpenGL using the CGAL library
for mesh computation running on a standard 2.4GHz linux machine – and the topology
adaptive meshes of [18]. The optimization starts from an initial condition which is the
visual hull in our case. A coarse-to-fine approach is applied to help prevent from local
minima. The rendered results use only one constant normal per facet (flat shading).

Fig. 3. A simple synthetic example. Top row: 2 camera / light pairs out of the 32. Middle row:
ground truth surface; ground truth mesh representation; Bottom row: final result; mesh represen-
tation of the result; details on the mesh.

We first apply our method to synthesized data. Figure 3 show an example of sim-
ple objects disposed on a plane, where images were generated using non-Lambertian
reflectance. This dataset is composed of 32 reciprocal pairs with images of resolution
800×600, placed all around the object of interest. This example shows that our method
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is able to recover the surface whereas previous Helmholtz stereo methods, where visi-
bility is not accounted for, would fail. In order to solve this problem, they would need
to cluster the camera positions to find several view-centered cameras, integrate multiple
normal maps and then merge the final reconstructions into a single surface. Our method
is simpler in the sense that it works without additional steps.

Even though the number of vertices is low, the gradient flows tends to place them in
their correct location. In particular triangle edges perfectly match the one in the images.
Again, this is made possible because the discrete gradient is computed with respect to
the discrete representation. Also the approach is suitable for reconstructing objects with
sharp edges, having depth discontinuities or self-occlusions.

Fig. 4. Buddha dataset. Top row: 2 camera – light pairs out of the 32. Bottom row: ground truth
surface; initial visual hull; estimated mesh; input image zoom and corresponding recovered mesh
details.

The example in figure 4 shows that our method can be applied to reconstruct full
and high quality object shapes. Even though the input resolution of the images is low
(1024×768), the recovered surface nicely matches the ground truth model. The images
were generated using a mixture of different specular models so that it looks realistic and
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non Lambertian. Details are well recovered, and the quality of the mesh is good enough
for further object relighting.

Following the evaluation presented in [24], we perform a quantitative evaluation of
examples from Figures 3 and 4 where we consider the object in a 2m diameter bounding
box. For Figure 3, the completeness at 10mm is 87.51%, and the accuracy at 95% is
9.301mm. For the Buddha, the completeness at 10mm is 95.766%, and the accuracy at
95% is 5.29mm.

Fig. 5. Small box data: results of the proposed method with different initial conditions and mesh
resolution. From left to right: 1 camera – light pair out of the 8 pairs; result from a small non-
encompassing initial surface; result from an encompassing initial surface; result from an encom-
passing initial surface with a more dense resolution.

The next two figures 5 and 6 show real data used in previous work [13, 14], that
have been capture only from one side. We then cannot reconstruct the full surface of the
object since images behind the object are missing. Figure 5 shows the 3D reconstruction
of a textured box. Since we can choose the mesh resolution, having large triangles
compared to the image resolution allows to integrate the gradient over the triangle and
have a correct gradient flow for the vertices of the triangle. Then we can reconstruct
objects with textured or rough surfaces using Helmholtz reciprocity similarly as in [15].
This figure also show different optimization taken from different initial conditions that
finally give similar results.

Figure 6 show results for two real datasets, the mask containing 18 reciprocal pairs,
and the mannequin containing 8 reciprocal pairs.

Finally, the approach was tested on real dataset on full 3D objects (Figure 7). It
consists of 18 reciprocal pairs (using 1104 × 828 resolution images) taken on a ring
around the object slightly on top of it. The two data show a ”Fish” reconstruction highly
specular with fine changing surface structure, whereas the second one ”Dragon” has
strong self-occlusions and complex shape. Starting from the visual hull, we are able to
recover details on the surface even though the input image resolution is not too high.
Results are illustrated in Figure 7 and present the recovered full 3D surface. Some parts
of the surface are not visible from the images and thus cannot be recovered. Camera
calibration was performed using a checker board without distortion corrections and
light positions were empirically positioned and calibrated. These datasets will be made
available for comparisons purposes. Images are taken around the object so some parts
are occluded from images and objects also contain self-occlusions. For those reasons,
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Fig. 6. Mannequin (8 reciprocal pairs) and Mask (18 reciprocal pairs) data: results of the proposed
method for two real dataset containing varying complex appearance. From left to right: 1 camera
/ light pair out of the 18 (respectively 8); final result; final mesh textured with the mean of the
reprojected colors from the cameras.

previous approaches using a camera-center view do not apply – since it requires depth
continuity – whereas our surface-based approach can recover the full 3D shape.

4.1 Discussion

All these examples illustrated the advantage of having a mesh representation. It allows
to preserve edges, and we show that having a coherent discrete gradient flow allows
vertices to be placed at their correct locations. Possible extensions to the approach may
use automatic adaptive meshes, where big triangles would fill planar surface parts and
high curvature would have a more dense mesh.

Second order minimization is known to recover well the higher frequency of the
surface, but poorly recover the lower ones. Also, due to the integration process, the
optimization might be slow if the surface is too far from the solution. A good initial
condition and a coarse to fine approach significantly help to prevent these problems, as
illustrated in the experiments. In particular, the gradient flow tends to shrink the surface
and introduce a minimal surface bias.

However, since the method minimizes a weighted area functional defined over the
surface, one of its global minima (in addition to the real surface) is the empty set. To
prevent from this choice, one can add an additional term, start closer to the solution, or
fix boundary conditions. A more elegant way is to see the problem as a reprojection er-
ror. Instead of minimizing a weighted area functional, one can reformulate the problem
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Fig. 7. Fish and Dragon data (18 reciprocal pairs of 1104×828): Results of the proposed method
for two full 3D real world datasets. Top and third row: 2 camera / light pairs out of the 36.
Second and last row: initial visual hull; recovered 3D mesh; final mesh textured with the mean of
the reprojected colors from the cameras; input image zoom and corresponding recovered mesh
details.

(2) by minimizing the following energy functional:

E(S) =
∫
Ic

Ic − (Il ◦ πS,Il ◦ π−1S,Ic) v̂l ·
(
n ◦ π−1S,Ic

)
v̂c ·

(
n ◦ π−1S,Ic

)
2

du , (9)

where π−1S,Ic(u) is the reprojection of an image point u of the image Ic on the surface S.
This formulation as been presented by [17], but has not been minimized as a reprojec-
tion error, like for instance in the case of [25] for continuous surfaces, and of [21] using
deformable meshes. In fact one may rewrite Equation (9) as an energy over the visible
surface [25] instead of the image in order to optimize the surface. Such formulation lets
appear an additional term, that turns out to behave like a visual hull constrain on the
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silhouette occluding contours, or as a contour matching term for self occlusions. Such a
term will give boundary conditions to prevent from shrinkage, and will help the method
to be more robust to initial conditions.

5 Conclusion

In this paper we have presented a surface-based method to estimate the 3D shape of
objects from multiview Helmholtz stereo pairs. As far as we know, this is the first time
Helmholtz stereopsis can be used to recover dense and full 3D models into a single
framework. This is made possible thanks to the compact surface representation that al-
low to easily compute surface point visibility. Moreover, the mesh based representation
allows to naturally exploit geometric relationships between a point of the scene and
its surface normal. Tests on synthetic and real datasets demonstrate the benefit of our
approach.

Acknowledgement. Research was supported by the Agence Nationale pour la Recherche
within the Flamenco project (Grant ANR-06-MDCA-007). The authors would like to
thank Todd Zickler for providing Helmholtz stereo data used in Figures 5 and 6.
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A Gradient Flows of Weighted Area Functionals using Triangular
Meshes

Let Sj be the jth triangle of the mesh and let us consider a parametrization of the triangle Sj such

that x(u) = xjk + u
−−→
xjkx

j
1 + v

−−→
xjkx

j
2 where xjk and xj1 and xj2 are the three vertices associated to

the triangle Sj and where u(u, v) ∈ T = {(u, v)|u ∈ [0, 1] and v ∈ [0, u]}. (See Figure 2)

In this appendix, we detail the calculus of d
dt
E(Sj [t])

∣∣∣
t=0

for energy functionals of the form:

E(S) =
∑
i

∫
Sj

g(x,n(x)) dσ =
∑
j

2Aj

∫
T

g(x(u),nj) du , (10)



14 A. Delaunoy, E. Prados, P. N. Belhumeur

where Aj is then the area of the triangle Sj and nj the outward surface normal of triangle Sj .
Let us focus on the evolution of E(S) under the induced velocity V on triangle Sj only (In other
words when a vertex xk is moved according to xk[t] = x0

k + tVk). We have:

E(Sj [t]) = 2Aj [t]

∫
T

g(x(u) + tV(x(u)),nj [t]) du , (11)

where Aj [t] is the area of the triangle Sj [t], nj [t] is its normal and V(x) is the piecewise linear
extension of the V vector field on the whole surface S. By simple derivation we get:

d

dt
E(Sj [t])

∣∣∣
t=0

=
A′

j [0]

Aj

∫
Sj

g(x,nj) dsj

+

∫
Sj

∇xg(x,nj) ·V(x) dsj +

∫
Sj

∇ng(x,nj) · n′
j [0] dsj ,

(12)

where A′
j [0] = d

dt
Aj [t]

∣∣∣
t=0

and n′
j [0] = d

dt
nj [t]

∣∣∣
t=0

are detailed below. In order to rewrite

d
dt
E(Sj [t])

∣∣∣
t=0

as a scalar production of V, we then need to detail A′
j [0] and n′

j [0]. Since for all

x ∈ Sj , V(x) =
∑

k∈Kj
Vkφk(x) (Kj , φk and ej,k being defined in section 3.2), one can show

that: A′
j [0] =

∑
k∈Kj

1
2
(nj ∧ ej,k) ·Vk , and

n′
j [0] =

1

2Aj

∑
k∈Kj

ej,k ∧Vk

−
(
∑
k∈Kj

ej,k ∧Vk) · nj

nj

 . (13)

It follows that

d

dt
E(Sj [t])

∣∣∣
t=0

=
∑
k∈Kj

Vk·

{
nj ∧ ej,k

2Aj

∫
Sj

g(x,nj) dsj

+

∫
Sj

∇xg(x,nj)φk(x) dsj −
ej,k
2Aj

∧
∫
Sj

gn(x,nj) dsj

}
.

(14)

Above, we have denoted gn = ∇ng(x,nj) − 〈∇ng(x,nj),nj〉 nj , where ∇ng(x,nj) is the
gradient of g with respect to the second variable (i.e. n ∈ R3).

It then immediately follows that:

d

dt
E(S[t])

∣∣∣
t=0

=
∑
k

Vk ·
∑
j∈Jk

{∫
Sj

∇xg(x,nj)φk(x) dsj

− ej,k
2Aj

∧
∫
Sj

g(x,nj)nj + gn(x,nj) dsj

}
,

(15)

where Jk is the set of triangles containing vertex xk. By replacing g(x,n(x)) by (hi(x) · n(x))2
in the equations below, where hi(x) is the vector defined in the paper, we have:

∇xg(x,nj) = 2(h(x) · nj)∇x(h(x) · nj) ,

g(x,nj)nj = (h(x) · nj)
2 nj ,

and gn(x,nj) = 2 (h(x) · nj)h(x)− 2 (h(x) · nj)
2 nj .

(16)


