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Une approche de la résilience pour les workflows a
haute performance

Résumé:Ce rapport présente une approche pour conceailiser et déployer des workflows
distribués et résilients. Elle permet l'intégratides logiciels de simulation numérique, par
exemple Matlab, Scilab, Python, OpenFoam, Para¢iesies codes d'applications. La contribu-
tion de ce rapport est une nouvelle fonctionnajité permet la résilience, c’est-a-dire la tolé-
rance aux pannes des applications et le traitedierteptions. Le lien est également fait avec
les besoins des futures applications exascale.éCritdin prototype basé sur le systéme de wor-
flow YAWL.

Mots clés: workflows ; tolérance aux pannes; résiliencemusation ; systemes distribués.
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A Resilience Approach to High-Performance Workflows 3

1 Introduction

This paper explores the design, implementationusedof fault-tolerant and resilient simulation
platforms. It is based on distributed workflow gyss and distributed computing resources [3].
Aiming petascale computing environments, this istinacture includes heterogeneous distrib-
uted hardware and software components. Furthemphécation codes interact in a timely, se-
cure and effective manner. Additionally, becaugedbupling of remote hardware and software
components are prone to run-time errors, sophisticeechanisms are necessary to handle un-
expected failures at the infrastructure, systemagplication levels [20]. This is also critical for
the coupled software that contribute to exascalenéworks [19]. Consequently, specific ap-
proaches, methods and software tools are requirdthidle unexpected faults and errors fir
large-scale distributed applications.
As mentioned in the Exascale IESP report [19],enircheckpoint/restart and rollback recovery
techniques will not fulfill the exascale computiregjuirements, due in part to their large over-
head: “Because there is no compromise for resiietite challenges it presents need to be ad-
dressed now for solutions to be ready when Exasyateems arrive” (Section 4.4.1 Resilience
in [19]).
More precisely (Section 4.5 Summary of X-stack mpties in [19]): “Resilience is an issue for
many efforts. Historically, resilience has not riegqd applications to do anything but check-
point/restart. Presently, there is a general ageeéthat the entire software stack, including user
and library code, will need to explicitly addregsitience beyond the checkpoint/restart ap-
proach. We believe this is a uniquely exascale @onand of critical importance.”
Among the targets emphasized by the report [19]{%eetion 4.4.1 Resilience):

fault confinement and local recovery

. avoid global coordination towards more local recgve
. reducing checkpoint size

. language support and paradigm for resilience

. dynamic error handling by applications

. situational awareness

. fault oblivious applications

This paper addresses three of these issues:
e promoting situational awareness using high-levedrenandlers defined by the users in-
side the application workflows
« significantly reducing checkpoint size used for laggtion recovery, using appropriate
heuristics
e dynamic error handling by executing ad-hoc workfloemponents that can be dynami-
cally added to the workflow original definitions
Section Il is an overview of related work. Sectltnis a general description of a sample ap-
plication, infrastructure, systems and applicasoftware. Section IV addresses resilience and
asymmetric checkpointing. Section V gives an owawbf the implementation, extending the
YAWL workflow management system for distributedilieat computations [4]. Section VI is a
conclusion.

2 Related Work

Simulation is nowadays a prerequisite for prodwegigh and scientific breakthroughs in most
application areas, ranging from pharmacy, metealpy to climate modeling, that all require
extensive simulations and testing [6, 8]. They mfteeed large-scale experiments, including
long-lasting runs in the orders of weeks, testetiresy petabytes volumes of data and will soon
run on exascale supercomputers [10, 11, 19].

In such environments, various teams usually colatigoon several projects or part of projects.
Computerized tools are shared and tightly or lgoselipled. Some codes may be remotely lo-
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4 Toan Nguyén, Laurentiu Trifan

cated and non-movable. This requires distributatb@nd data management facilities. Unfortu-
nately, this is also prone to unexpected errorstardkdowns, e.g., communications, hardware
and systems failures.

Data replication and redundant computations hawen Eoposed to prevent from random
hardware and communication failures, as well asliiteaxdependent scheduling [9].

Hardware and system level fault-tolerance in spepifogramming environments are also pro-
posed, e.g. Charm++ [5]. Also, middleware and iisted computing systems usually support
mechanisms to handle fault-tolerance. They callnugata provenance [12], data replication,
redundant code execution, task replication andnjdration, e.g., ProActive [17], VGrADS
[15].

However, erratic application behaviors are seldaltr@ssed, due to programming errors, bad
application specifications, poor accuracy and peréoce. They also needs to be taken into
account and handled. This implies evolutions ofdimeulation processes in the event of unex-
pected data values or unexpected control flowsleLitas been done in this area. The primary
concern of the application designers and userdbas indeed on efficiency and performance.
Therefore, application erratic behavior is usuaiindled by re-designing and re-programming
pieces of code and adjusting parameter values andds. This usually requires the simulations
to be stopped and rebuilt [15]. This approach &léguate when simulation runs last several
days and weeks.

Departing from these solutions, a dynamic appraagiresented in the following sections. It
supports the evolution of the application behauising the introduction of new exception han-
dling rules at run-time by the users, based orotieerved (and possibly unexpected) data val-
ues. The running workflows do not need to be aldprés new rules can be added at run-time
without stopping the executing workflows [13]. Abrgt, they need to be paused.

This allows on-the-fly management of unexpectechevdt allows also a continuous evolution
of the applications, supporting their adaptatiortite occurrence of unforeseen situations. As
new situations arise and new data values appearrules can be added to the workflows that
will permanently be taken into account in the faturhese evolutions are dynamically plugged-
in to the workflows, without the need to stop thaning applications [13]. The overall applica-
tion logics is therefore unchanged. This guaranteesntinuous adaptation to new situations
without the need to redesign the existing workflpthisis promoting situational awareness.
Further, because exception-handling codes are teessdefined by new specific workflows
plug-ins, the user interface to the applicatiomsais unchanged [14].

Also, checkpoint/restart procedures are addreseesl thy reducing significantly the number of
necessary checkpoints, using a new scheme caldgthtfaetric checkpoints”. This addresses the
critical concern for the checkpoint sizes in lasgale and exascale applications [19] (Section
IV.D.)

3 Application Testcase

3.1 Example testcase

An overview of a running tescase is presented hHedeals with the optimization of a car air-
conditioning duct. The goal is to optimize thefemw inside the duct, maximizing the through-
put and minimizing the air pressure and air spascrepancies inside the duct. This example is
provided by a car manufacturer and involves ingusarrtners, e.g., software vendors, as well as
optimization research teams (Figure 1).

The testcase is a dual faceted 2D and 3D exampleh Eacet involves different software for
CAD modeling, e.g. CATIA and STAR-CCM+, numeric goatations, e.g., Matlab and Scilab,
and flow computations, e.g., Open FOAM and visadion, e.g., ParaView (Figure 1).
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A Resilience Approach to High-Performance Workflows 5

The testcase is deployed using the YAWL workflownagement system [4]. The goal is to
distribute the testcase on various partners’ looatiwhere the different software are running
(Figure 2). In order to support this distributednputing approach, an open source middleware
is used, namely: ProActive [17].

A first prototype was achieved using extensively tirtualization technologies (Figure 3), in
particular Oracle VM VirtualBo% formerly called Sun VirtualB&k[7]. This allowed experi-
ments connecting virtual guest computers runnirtgrbgeneous software. These include Linux
Fedora Core 12, WindoWs? and Window3 XP on a range of local workstations and laptops
(Figure 2).

Figure 1. Pressure flow in an air-conditioning duct(ParaView screenshot).

3.2 Application workflow

In order to provide a simple and easy-to-use iaterfto the computing software, the YAWL
workflow management system is used (Figure 2)ujipsrts high-level graphic specifications
for application design, deployment, execution arahitoring. It also supports the modeling of
business organizations and interactions amongdggaeous software components. Indeed, the
example testcase described above involves sevedalscwritten in Matlab, OpenFOAM and
displayed using ParaView. The 3D testcase facailweg CAD files generated using CATIA
and STAR-CCM+, flow calculations using OpenFOAM thdn scripts and visualization with
ParaView. Future testcases will also require tleeaighe Scilab toolbox [16].

This work is performed for the OMD2 project, anagm for Optimisation Multi-Disciplinaire
Distribuée, i.e., Distributed Multi-Discipline Opiization, supported by the French National
Research Agency ANR.

Because proprietary software are used, as welpags-source and in-house research codes, a
secured network of connected computers is maddadlaito the users, based on the ProActive
middleware (Figure 5).

This network is deployed on the various partnesgations throughout France. Web servers
accessed through the ssh protocol are used foprihy@rietary software running on dedicated
servers, e.g., CATIA v5 and STAR-CCM+.

A powerful feature of the YAWL workflow system ikat composite workflows can be defined
hierarchically [4]. They can invoke external softejai.e., pieces of code written in whatever
language is used by the users. They are callediftpim YAWL services or local shell scripts.
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6 Toan Nguyén, Laurentiu Trifan

Web Services can also be invoked. Although custeriices need Java classes to be imple-
mented, all these features are natively supponté&tAWL.

results_visualization

B YAWLEdor - C:\Program Files\ YAWLStudy-2.0.1\Examples\ distributed _codelet.yawl - U] ﬂ
Specification Net Edt Elements Tools Yiew Help
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Figure 2. The YAWL workflow for the 2D testcase.

YAWL thus provides an abstraction layer that helpers design complex applications that may
involve a large number of distributed componenigufe 3). Further, the workflow specifica-
tions allow alternative execution paths which maychosen automatically or manually, depend-
ing on data values, as well as parallel branch@gjitional branching and loops. Also, multiple
instance tasks can execute in parallel for diffedata values. Combined with the run-time addi-
tion of code using the corresponding dynamic selegbrocedures, as well as new exception
handling procedures (see Section 1V), a very pawerivironment is provided to the users [4].

4 Resilience

4.1 Fault tolerance

The fault-tolerance mechanism provided by the ugihgy middleware copes with job and
communication failures. Job failures or time-oute handled by reassignment of computing
resources and re-execution and of the jobs. Conuation failures are handled by re-sending
appropriate messages. Thus, hardware breakdowrgaadéed by re-assigning running jobs to
other resources, which imply possible data movesnemthe corresponding resources. This is
standard for most middleware [17].

4.2 Resilience

Resilience is commonly defined as “the ability tubce back from tragedy” and as “resource-
fulness” [18]. It is defined here as the ability fbe applications to handle correctly unexpected
run-time situations, possibly — but not necessarilyith the help of the users.

Usually, hardware, communication and software fasuare handled using hard-coded fault-
tolerance software [15]. This is the case for comication software and for middleware that

take into account possible computer and networlalutewns at run-time. These mechanisms
use for example data and packet replication andichte code execution to cope with these
situations [5].

However, when unexpected situations occur at mestivhich are due to unexpected data val-
ues and application erratic behavior, very few ampiare offered to the users: ignore them or
abort the execution, analyze the errors and latelifnand restart the applications.
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A Resilience Approach to High-Performance Workflows 7

Optimized approaches can be implemented in su@sdagng to reduce the amount of compu-
tations to be re-run, or anticipating potentiacdépancies by multiplying some critical instances
of the same computations. This latter approachrefnon statistical estimations of failures.

Another approach for anticipation is to preventalkdbss of computations by duplicating the

calculations that are running on presumably faitioges [9].

Linux
Fedora Core 12

|

irtualBag

Network |

\ YAWL Shell Scripts interface & Custom Services |

@ python

MATLAB]
Figure 3. The virtualized distributed infrastructur e.

While these approaches deal with hardware andmyfstdures, they do not cope with applica-
tion failures. These can originate from:

» Incorrect or incomplete specifications.

» Incorrect or hazardous programming.

* Incorrect anticipation of data behavior, e.g., olabounds data values.

» Incorrect constraint definitions, e.g., approximateindary conditions.
To cope with this aspect of failures, we introdaceapplication-level fault management that we
call resilience. It provides the ability for thepdipations to survive, i.e., to restart, in spite o
their erroneous prevailing state. In such cases, hendling codes can be introduced dynami-
cally by the users in the form of specific new camgnt workflows.
This requires a roll-back to a consistent stateithdefined by the users at critical checkpoints.
In order to do this efficiently, a mechanism is lempented to reduce the number of necessary
checkpoints. It is based on user-defined ruleseéddthe application designers and users are the
only ones to have the expertise required to dedpgropriate corrective actions and character-
ize the critical checkpoints. No automatic mechagisan be substituted for them, as is the case
in hardware and system failures. It is generally meressary to introduce checkpoints system-
atically, but only at specific locations of the &pation processes, e.g., only before parallel
branches of the applications. We call this appraegimmetric checkpoint$his is described in
Section D, below.

4.3 Exception handling

The alternative used proposed here to cope witpewted situation is based on the dynamic
selection and exception handling mechanism featoyedAWL [13].

It provides the users with the ability to add at-time new rules governing the application be-
havior and new pieces of code that will take cdrh® new situations.

RR n°® 7421



8 Toan Nguyén, Laurentiu Trifan

For example, it allows for the runtime selectioratiernative workflows, called worklets, based
on the current (and possibly unexpected) data salliee application can therefore evolve over
time without being stopped. It can also cope latigh the new situations without being altered.
This refinement process is therefore lasting oivee and the obsolescence of the original work-
flows reduced.

The new worklets are defined and inserted in thgral application workflow using the stan-
dard specification approach used by YAWL (Figure 2)

Because it is important that monitoring long-rumgnagpplications be closely controlled by the
users, this dynamic selection and exception hagdirechanism also requires a user-defined
probing mechanism that provides with the abilitystespend, evolve and restart the code dy-
namically.

For example, if the output pressure of an air-ciimaing pipe is clearly off limits during a
simulation run, the user must be able to suspead #oon as he is aware of that situation. He
can then take corrective actions, e.g., suspernttimgimulation, modifying some parameters or
value ranges and restarting the process immedidtbse actions can be recorded as new exe-
cution rules, stored as additional process desgnigind invoked automatically in the future.
These features are used to implement the appliatoratic behavior manager. This one is in-
voked by the users to restart the applicationd@tctosest checkpoints after corrective actions
have been manually performed, if necessary, egdifying boundary conditions for some pa-
rameters. Because they have been defined by tie atseritical locations in the workflows, the
checkpoints can be later chosen automatically antbegavailable asymmetric checkpoints
available that are closest to the failure locatiothe workflow.

4.4 Asymmetric checkpoints

Asymmetric checkpoints are defined by the userwitital execution locations in the applica-
tion workflows. They are used to avoid the systémiaisertion of checkpoints at all potential
failure points. They are user-defined at specifications, depending only on the application
logic. Clearly, the applications designers and sisge the only ones that have the domain ex-
pertise necessary to insert appropriately thesekgoénts. In contrast with middleware fault-
tolerance which can re-submit jobs and resend pkat&ets, no automatic procedure can be im-
plemented here. It is therefore based on a dyndisnmaolving set of heuristic rules.
This approach significantly reduces the numberesfessary checkpoints to better concentrate
on only those that have an impact on the applinatians [3].
For example (Figure 4):

* The checkpoints can be chosen by the users amosg that follow long-running com-

ponents and large data transfers.

» Alternatively, those that precede sequences oflsraaiponents executions.
The base rule set on which the asymmetric checkpane characterized is the following:

* R1: no output backup for specified join operations.

* R2: only one output backup for fork operations.

* RS3: no intermediate result backup for user-spetifiequences of operations.

* R4: no backup for user-specified local operations.

* R5: systematic backup for remote inputs.
This rule set can be evolved by the user dynanyicall any time during the application life-
time, depending on the specific application requiats. This uses the native rule mechanism in
YAWL [13].
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A Resilience Approach to High-Performance Workflows 9
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5 Implementation

5.1 The YAWL workflow management system

Workflows systems are the support for many e-Seepplications [1, 6, 8]. Among the most
popular systems are Taverna, Kepler, Pegasus,8anid many others [11, 15]. They comple-
ment scientific software environments like Dak@&ailab and Matlab in their ability to provide
complex application factories that can be sharedsed and evolved. Further, they support the
incremental composition of hierarchic composite li@ptions. Providing a control flow ap-
proach, they also complement the usual dataflowagmh used in programming toolboxes. An-
other bonus is that they provide seamless usetrfactss, masking technicalities of distributed,
programming and administrative layers, thus allgwihe users and experts to concentrate on
their areas of interest.

The OPALE project at INRIAKttp://www-opale.inrialpes.fris investigating the use of the
YAWL workflow management system for distributed trdikcipline optimization [4]. The goal
is to develop a resilient workflow system for laigmale simulation applications. It is based on
extensions to the YAWL system to add resilience amdote computing facilities for deploy-
ment on high-performance distributed infrastructurehis includes large-PC clusters connected
to broadband networks. It also includes interfasith the Scilab scientific computing toolbox
[16] and the ProActive middleware [17]. A prototypaplementation is underway for the
OMD?2 project (‘Optimisation Mutlidiscipline Distribué® supported by the Frenchgence
Nationale de la RechercHANR).

Provided as an open-source software, YAWL is imgeted in Java. It is based on an
Apache server using Tomcat and Apache's Derbyioakdt database system for persistence.
YAWL is developed by the University of EindhovenlL(Nand the University of Brisbane (Aus-
tralia). It runs on Linux, Windows and MasOS 32 a&@wtbits platforms. It allows complex
workflows to be defined and supports high-levelstaicts (e.g., XOR- and OR-splits and joins,
synchronized merge, loops, conditional control flbased on application variables values,
composite tasks, parallel execution of multipletanses of tasks, etc) through high-level user
interfaces (Figure 5). It supports over forty binltdatatypes and user-defined complex data
types for application-specific requirements.

Formally, YAWL is based on a sound and proved dpmral semantics using extended
"workflow patterns” of the Workflow Management ditan [21] and implemented by colored
Petri nets. This allows deep syntactic and semanstiifications on the workflow processes de-
fined by the users.

RR n°® 7421



10 Toan Nguyén, Laurentiu Trifan

Designed as a open platform, YAWL supports intéoastwith external and existing software
and application codes written in any programmingglaages, through shell scripts invocations,
as well as distributed computing through Web Sewid-igure 6).

Besides a native Web Services interface, YAWL supaustom services invocations
through "codelets", as well as rules, powerful @tiom handling facilities, and monitoring of
the workflow executions [13].

Further, it supports dynamic evolution of the apgions by extensions to the existing work-
flows through "worklets", i.e., on-line inclusiori mew workflow components during execution
[14].

It supports also automatic and step-by-step exatutf the workflows, as well as persistence
of (possibly partial) executions of the workflowa flater resuming, using its internal database
system. It also features extensive event loggimdaier analysis, simulation, configuration and
tuning of the application workflows.

Additionnally, YAWL supports extensive organizattomodeling features allowing complex
collaborative projects and user teams to be defividithe appropriate access rights and grant-
ing capabilities to the various members on theqmtsj workflows and processing tools by the
project administrators.

YAWLLG1 ~ [Usersi adamsmj/ Documents/ research ftemp) gsd.yewl v I"""“'""l = o 1 L | o) ‘
Bl (o= : i =
-
| (5 Simple Credit Application |
-
o b -

uuuuu
. ] o ‘ Pe—

g {arge Crec

i Apgroval

— . Requirements .
& K Al ) -
nd ™ 7 se -

8" Apache

Apache Derby = Software Foundation
http://www.apache.org/

Figure 5. YAWL interfaces.

5.2 Resilience

Resilience is the ability for applications to handinexpected behavior, e.g., erratic computa-
tions, abnormal result values, etc. It is inhetenthe applications logic and programming. It is

therefore different from systems or hardware errangl failures. The usual fault-tolerance

mechanisms are therefore inappropriate here. Thigycope with late symptoms, at best.

New mechanisms are therefore required to handie kigcrepancies in the applications, most
of which are only discovered incrementally durihg tpplications life-time, whatever projected

exhaustive details are included at the applicadiesign time.

It is therefore important to provide the users vgtiwerful monitoring features and to comple-

ment them with dynamic tools to evolve the applaa specifications and behavior according

to the future erratic behavior that will be obselrdeiring the application life-time.
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A Resilience Approach to High-Performance Workflows 11

This is supported here using the YAWL workflow gystso-called “dynamic selection and ex-
ception handling mechanism” [4]. It supports:

* Application update using dynamically added rulescdying new worklets to be exe-
cuted, based on data values and constraints.

e The persistence of these new rules to allow apjdics to handle correctly the future
occurrences of the new cases.

» The dynamic extension of these sets of rules.

* The definition of the new worklets to be executesing the native framework provided
by the YAWL specification editor: the new workletee new component workflows at-
tached to the global composite application work8d3].

* Worklets can invoke external programs written ity @nogramming language through
shell scripts, custom service invocations and WetviSes [14].

YAWL Engine
Event [ ®
I.Tn:l:s @ = 3 —
= (l"' ™ inte B
Persisted * ¥ I--\_ domiltchd S
Data —] - ?_% o = =
| § Interfacs A i | { .-’_Ir torface l%-_. ) [ ..-‘Ir'lnﬂ aca P&-_-M ¥
‘ . | 2 '
o T N
[\ J:i : LS R T
— “%/ ’J 3 s )
SO =l . X
Process Designer Resource Sarvice Web Service Worklet Service
. Invoker
e ] L&Y =
Process Event Rubss
Repository Logs e
S
Interfoce R Evil
Logs
r: — Intarface O .__ . - .-. w:l_:l_‘
z QYo mEE
datirar U Aggm & Codelets ity Servces
- imeiface W
——From-YAWL 21 Technical- Manual, July 264

Figure 6. YAWL archiitecture.

5.3 Distributed workflows

The distributed workflows rely on the interface voe¢n the YAWL engine and the ProActive

middleware (Figure 7). Users provide a specifigatid the simulation applications using the
YAWL Editor. It supports a high-level abstract déston of the simulation processes (Figure
2).

These processes are decomposed into componenth wéit be other workflows or basic

workitems. The basic workitems invoke executab$ks, e.g., shell scripts or so-called “custom
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12 Toan Nguyén, Laurentiu Trifan

services”. These custom services are specific ¢ecunits that call user-defined YAWL ser-
vices. They support interactions with external esiote codes. In this particular platform, the
remote external services are invoked through tbé&tive middleware interface (Figure 8).

This interface delegates the distributed executibthe remote tasks to the ProActive middle-
ware [17]. The middleware is in charge of the distied resources allocation to the individual
jobs, their scheduling, and the coordinated exenuwind result gathering of the individual tasks
composing the jobs. The scheduler default policibest-effort”. However, users can imple-
ment their own policy, if desired. The middlewalgoatakes in charge the fault-tolerance related
to hardware, communications and system failure®e Tésilience, i.e., the application-level
fault-tolerance is handled using the rules desdribéhe previous sections.

Monitoring Scripting Construction

Distribution Execution Publication
Scheduling Testing Reuse & Sharing
Execution I

Comparison
— SCILAB geipts«

PROACTIVE

REMOTE LOCAL

Figure 7. OMD2 distributed simulation platform.

The remote executions invoke the middleware funetities through ProActive’s Java API.
The various modules invoked are the ProActive Saleedthe Jobs definition module and the
Tasks which compose the jobs. The jobs are alldcetethe distributed computing resources
based upon the scheduler policy. The tasks aratdispd based on the job scheduling and re-
source allocation. They invoke Java executablessiply wrapping code written in other pro-
gramming languages, e.g., Matlab, Scilab, Pytheorgatliing other software, e.g., CATIA v5,
STAR-CCM+, ParaView, etc.

Optionally, the workflow can invoke local tasksngishell scripts and remote tasks using Web
Services. These options are standard in YAWL [4]llig the ProActive middleware is how-
ever necessary to run tasks on large multi-coretets. ProActive is here in charge of the
scheduling and resource allocation in these highhallel environments, which YAWL does not
support natively.
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Figure 8. YAWL workflow / ProActive middleware interface.

6 Conclusion

This report presents an experiment for designimglémenting and deploying distributed simu-
lation platforms. It uses a network of high-perfarme computers connected by a middleware
layer. Users interact dynamically with the applieas using a distributed workflow manage-
ment system, i.e., YAWL. It allows them to defideploy, evolve and control the applications.
A significant bonus of this approach is that besifiilt-tolerance provided by the middleware,
which handles communication, hardware and systdlorda, the users can define and handle
dynamically, i.e., at run-time, the applicationldaés at the workflow specification level. This
addsresilienceto the applications.
This report also addresses four major concernsirtifzdct exascale application frameworks, as
pointed out by the Exascale Software Project [19]:

e reduced checkpoint size

» language support and paradigm for resilience

e dynamic error handling

+ situational awereness
A new abstraction layer is introduced to anwserrtbed forsituational awarenesfl9], in or-
der to cope with the application errors at run-titmeleed, these errors do not necessarily result
from programming and design errors. They may asolt from unforeseen situations, data val-
ues and boundary conditions that could not be ageid at first. This is often the case for simu-
lations due to the experimental nature of the apfibns, e.g., discovering the behavior of the
system being simulated, like unusual flight dynaaniharacterization of the stall behavior of an
aircraft for various load and balance profileshat limits of its flight envelope [2].
To answer the requirement foeduced checkpoint siza [19], the approach presented here
supports resilience using an asymmetric checkpongshanism. This feature allows for effi-
cient handling mechanisms to restart only thosésparan application that are characterized by
the users as critical for overcoming erratic aneixpected behaviors.
Further, this approach can evolve dynamically, iden applications are running. This uses the
native dynamic selection and exception handlinghaeism in the YAWL workflow system
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[4]. Should unexpected situations occur, it alldasnew rules and new exception handlers to
be plugged-in at run-time. This answer the neediymamic error handlingt run-time.
Additionally, the requirement folanguage support and paradigm for resiliend®] is also
addressed , using the error handlers plugged i@pplication workflows by new component
workflows thus providing a uniform, homogeneous aigh-level user interface.

New testcases are currently being set-up that wevalrge-scale simulations (50x10**6 vertices
CFD meshes, 1000 CPU hours), e.g., car aerodynaraimsing on networks of multi-core clus-
ters.
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Figure 9. The 3D testcase visualization (ParaViewcseenshot).
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