
HAL Id: inria-00526671
https://hal.inria.fr/inria-00526671

Submitted on 15 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tiji, a Generic Trajectory Generation Tool for Motion
Planning and Control

Vivien Delsart, Thierry Fraichard

To cite this version:
Vivien Delsart, Thierry Fraichard. Tiji, a Generic Trajectory Generation Tool for Motion Planning
and Control. IEEE-RSJ Int. Conf. on Intelligent Robots and Systems, Oct 2010, Tapei, Taiwan.
�inria-00526671�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50048866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00526671
https://hal.archives-ouvertes.fr

Tiji, a Generic Trajectory Generation Tool

for Motion Planning and Control

Vivien Delsart and Thierry Fraichard

Abstract— Trajectory generation consists in computing a
feasible trajectory between a start and a goal state-time, for
a given robotic system. We presented in our previous works
a trajectory generator called Tiji, geared towards complex
dynamic systems subject to differential constraints. Moreover,
it is able to handle a final time constraint, ie an interval of
time during which the goal state must be reached, and to
provide an admissible trajectory that ends close to the goal
state-time if no solution exists to connect both states. This
paper is a natural extension of these works, and presents
several applications of our trajectory generator. Arbitrary
robotic systems may be handled. Furthermore, the control-
oriented nature of Tiji and its ability to handle a final
time constraint makes it a useful tool to embed into various
reactive approaches (trajectory tracking, obstacle avoidance).
Simulation and experimental results illustrate the different
systems and navigation approaches in which Tiji has been
embedded.

Index Terms— Trajectory generation; Differential con-
straints; Dynamic environments.

I. INTRODUCTION

A. Motivation

The motion planning problem is a key question for an

autonomous system to evolve in its environment. It has been

largely addressed during the past forty years (see [1] for a

review). To compute a motion, a robotic system must first

consider its own dynamics and prevent any collision with the

obstacles of its environment in the future. Motion safety may

not be ensured if the system only tries to avoid collision at

the current time, it must anticipate the obstacles’ motion in

the future.

This paper addresses the problem of trajectory generation,

ie determining a feasible trajectory for a given robotic sys-

tem(that respects the system’s dynamics) between an initial

and a final state-time. From the preliminary works of [2] to

the recent methods used by the Carnegie Mellon University

during the Darpa Urban Challenge ([3]), many trajectory

generation methods have been proposed. While primitive

combination [2], [4], [5], [6] approaches concatenate fixed

geometric primitives to constitute a path up to the goal, two-

point boundary value problems [7], [8], [9], [10], [11] try to

find a high-degree specific type of curve connecting both start

and goal states. Finally, variational approaches [12], [13],

[14], [3] try to modify an initial parametric representation of

a curve until both initial and goal states are connected and

the constraints of the system are respected.

Among all these approaches, it is interesting to note

that, in no circumstances, have people tried to compute a

INRIA, CNRS-LIG & Grenoble University, France.

trajectory reaching the goal state at a specific time instant or

during a fixed time interval. We presented in [15] a trajectory

generation scheme called Tiji taking into account a final

time constraint restricting the time at which a goal state

may be reached. Many applications may be handled more

easy with such an approach. A simple intersection problem

requires taking into account a time interval fixed by the

urban traffic to the robotic system to cross the intersection.

Recent obstacle avoidance schemes [16], [17], [18] suppose

a forecast model of the future of the environment to compute

the next control to apply on the robotic system to anticipate

the obstacles motion. From such a model of the future

one may be interested to determine a trajectory reaching

a temporary obstructed region during a collision-free time

interval.

Multiple-robot coordination [19], [20] may require plan-

ning trajectories ending at fixed times too: If the different

agents acting together cross their paths, a consensus algo-

rithm may be used to decide priorities, nevertheless they

may only be granted fixed time to obstruct a concurrent way

without disturbing the other agents.

B. Contribution

The trajectory generator Tiji, based on a constraint

optimization method, has been designed to handle the final

time constraint, ie an interval of time during which the goal

state must be reached. This constraint further increases the

complexity of the trajectory generation problem since time

now becomes an additional dimension to the problem. If it

has not been well defined the goal state may be unreachable.

Should this case appear, Tiji returns a trajectory that ends

as close as possible to the goal state and guarantees its

feasibility.

This paper is a natural extension of the works presented

in [15] and presents Tiji as a generic tool for motion

planning and control. We illustrate here different reactive

motion determination approaches (computation of the motion

to apply during the next time step) in which Tiji has

been implemented. The control-oriented nature of Tiji, its

efficiency (real-time computation) and above all, its ability

to compute an alternative feasible trajectory when the goal

state-time is unreachable, allow for example to perform

obstacle avoidance in a trajectory deformation scheme, or

to compute a control law in a trajectory tracking method.

Furthermore, Tiji has been designed to handle arbitrary

robotic systems. Results of the implementation of Tiji for

several robotic systems and its integration in the applications

cited above constitute the main content of this paper.

C. Outline of the Paper

The trajectory generator Tiji is briefly presented in Sec-

tion II. The different robotic systems studied are presented

in III and simulation results of the trajectory generation for

such systems are given in Section IV. Several applications

of our algorithm are presented in Section V. Conclusions are

finally presented in Section VI.

II. OVERVIEW OF THE APPROACH

A. Notations and Definitions

Let A denote a robotic system operating in a workspace

W (IR2or IR3). The dynamics of A are described by:

ṡ = f(s, ũ) (1)

where s ∈ S is the state of A, ṡ its time derivative and u ∈ U

a control. S and U respectively denote the state space and

the control space of A. Let ũ : [0, tf [−→ U denote a control

trajectory, ie a time-sequence of controls. Starting from an

initial state s0 (at time 0) and under the action of a control

trajectory ũ, the state of A at time t is denoted by ũ(s0, t).
A couple s̃ = (s0, ũ) defines a state trajectory for A, ie a

curve in S × T where T denotes the time dimension.

B. Trajectory Generation Problem

Given two states s0 and sg, trajectory generation consists

in finding the control trajectory ũ to apply from state s0 in

order to reach the goal state sg . Let us note sf the final state

reached by a candidate trajectory ũ applied from s0 during

a time tf .

sf = ũ(s0, tf) (2)

The first condition the candidate trajectory ũ must fulfill to

be a solution of the trajectory generation problem is:

c(s0, ũ, tf , sg) = |sg − sf | = 0 (3)

These constraint are named in the literature as the state

constraints.

The control trajectory ũ determined must nevertheless

fulfill two other constraints: First, A is subject to a set

of motion constraints ie bounds over its control and state

parameters:

h(s0, ũ) ≤ 0 (4)

Second, we want to take into account a final time constraint,

ie a range of time [tmin; tmax] during which the trajectory

may end. The final time tf of the control trajectory ũ must

thus belong to this range of time:

tmin ≤ tf ≤ tmax (5)

C. Variational Trajectory Generation

We used a variational method to answer our trajectory

generation problem. It consists in solving a minimization

problem as follows :

minimize : J(s0, ũ, tf , sg) =
∑n

j=1 λj(sg
j − sf

j)2

subject to : h(s0, ũ) ≤ 0
tmin ≤ tf ≤ tmax

(6)

where sg
j (resp. sf

j) represents the j-th feature of the goal

state (resp. final state) and λj its associated weight. The cost

function J(s0, ũ, tf) represents thus a Mahalanobis distance

between the final and the goal states. It is minimal when

both states are equals. Bt applying iterative corrections on

the input control, the cost function is minimized to help the

final state of the trajectory to converge to the goal state while

satisfying the motion and final time constraints.

Algorithm 1: Tiji

Input: s0, sg, [tmin; tmax]
Output: p, success flag

i = 0;1

(p, tf) = InitialGuess(s0, sg, [tmin; tmax]);2

repeat3

step 1: Compute an admissible control trajectory4

ũ∗

(p,tf);

step 2: Update the parameters p to converge to the5

goal state;

i = i + 1;6

until J(s0, ũ, tf , sg) ≤ ε or i = imax ;7

return (p, tf , sf = sg?);8

A solution to perform the minimization process is pro-

posed in [15]. Algorithm 1 recall the main stages of this

process and additional details are provided below.

1) Parametrization of the control trajectory: To find

a control trajectory ũ that minimize J, we first use a

parametrization of its profiles to reduce the search space. We

note then ũ(p,tf) the parametrization of the control trajectory

for a fixed vector of parameters p = (p1, . . . , pk) and a fixed

final time tf . Note that both p and tf may be modified during

the optimization process, however the final time constraint

prevent tf from taking a value outside [tmin; tmax].

At the first step of the algorithm 1, an initial guess of

parameters must be provided. Convergence to the goal

greatly depends on the choice of the initial guess, it shall

not be neglected. A look up table ie a recording of a

sampling of the state space and the associated parameters

to reach them may be a good option to compute them.

2) Computation of an admissible trajectory: A state tra-

jectory s̃(p,tf)(s0) is then determined by integrating the

dynamics of the system given in Eq. 2. Successive mod-

ifications of the parameters (p,tf) during the optimization

process may render s̃(p,tf)(s0) unfeasible ie. no guarantee

is provided that the motion constraints given in Eq. 4 are

fulfilled. Furthermore, the final time constraint may prevent

the goal state from being reachable. If it appears, we would

like to provide a trajectory that ends as close as possible to

the goal state but that guarantee to be feasible.

A saturation of the control and state profiles is proceeded

to ensure it (see [15] for details). It consists in determining

intervals Iu and Is where the control and state constraints

are respectively overreached. Piecewise parametric profiles

are thus used to represent the feasible control trajectories

ũ∗

(p,tf)(t, Iu, Is) given by:

ũ∗

(p,tf)(t, Iu, Is) =

uextl(t) if t ∈ Iu

0 if t ∈ Is

ũ(p,tf)(t) otherwise

(7)

where uextl(t) is the extremal (minimal or maximal) control

value that fulfill the motion constraints at time t.

3) Correction computation: Once a feasible trajectory has

been computed, its final state sf is easily determined as

follows:

sf = s̃∗(p,tf)(s0, tf) (8)

If this final state sf is enough close to the goal state sg ,

ie if J(s0, ũ, tf , sg) ≤ ε, where ε is a fixed threshold, the

variational approach has converged, and a solution has been

found. In the other case, we have to apply a correction over

the set of parameters (p, tf).
A local minimum of the cost function is found when

its partial derivative
[

∂J
∂(p,tf)

]

wrt. (p, tf) are equals to 0.

A root of
[

∂J
∂(p,tf)

]

may thus be found by linearizing its

expression as follows :
[

∂J

∂(p, tf)

]

≃

[

∂2
J

∂(p, tf)2

]

∆(p, tf) (9)

where ∆(p, tf) is the supposed error made over the set

of parameters and
[

∂2J
∂(p,tf)2

]

are the 2nd order partial

derivatives of the cost function wrt. parameters. To minimize

the cost function J, a correction over the set of parameters

may thus be computed:

cor(p,tf) = −τ

[

∂2
J

∂(p, tf)2

]

−1 [

∂J

∂(p, tf)

]

(10)

where τ ∈ [0; 1] is the gain of the correction. The inverted

matrix of the 2nd order partial derivatives represents then

the direction of the correction applied, and τ
[

∂J
∂(p,tf)

]

represents the step length of the newton descent method.

From that point, a new trajectory can be computed. The

process is repeated until convergence or failure (after a fixed

number of steps if for instance, the algorithm is blocked in

a local minimum).

III. CASE STUDIES

We introduce briefly in the section two robotic system for

which the trajectory generator Tiji has been implemented.

Samples of trajectories generated for each system are pre-

sented in section (IV).

A. Differential Drive System

To illustrate the trajectory generation process Tiji, it has

been first applied to the case of a planar differential drive

system Add. A state of a differential drive system Add is

defined by a 5-tuple s = (x, y, θ, ωL, ωR) where (x, y) are

the coordinates of the center of the wheels, θ is the main

orientation of Add and ωL (resp. ωR) is the angular velocity

of the left (resp. right) wheel. A control of Add is defined by

the couple u = (ηL, ηR) where ηL (resp. ηR) is the angular

acceleration of the left (resp. right) wheel.

So knowing the velocities of the wheels, the main linear and

angular velocities v and ω of Add are given by :

v(t) =
ωR(t) + ωL(t)

2
ω(t) =

ωR(t) − ωL(t)

2 ∗ b
(11)

where b is the length between the center of the differential

drive system and the wheels.

Then the motion of Add is governed by the following

differential equations:

ẋ
ẏ

θ̇
ω̇L

ω̇R

=

v cos(θ)
v sin(θ)

ω
ηL

ηR

(12)

We will consider then the followings constraints over the
differential drive system :

(ω
L

, ω
R

) ∈ [−ωmax; ωmax]2, (η
L

, η
R

) ∈ [−ηmax; ηmax]2 (13)

B. Car-Like System

A state of a car-like system Acl is defined by a 5-tuple s =
(x, y, θ, φ, v) where (x, y) are the coordinates of the rear

wheel, θ is the main orientation of A, φ is the orientation of

the front wheels (steering angle), and v is the linear velocity

of the rear wheel. A control of Acl is defined by the couple

u = (a, ζ) where a is the rear wheel linear acceleration and

ζ the steering velocity. The motion of A is governed by the

following differential equations:

ẋ
ẏ

θ̇

φ̇
v̇

=

v cos(θ)
v sin(θ)

v tan(φ)/L
ζ
a

(14)

where L is the wheelbase of A and:

v ∈ [0, vmax], |φ| ≤ φmax, |a| ≤ amax and |ζ| ≤ ζmax (15)

IV. SIMULATION RESULTS

Tiji has been implemented in C++ and tested on a desk-

top computer (Core-i7@3.4GHz, 6GB RAM, Linux OS).

It has been evaluated in different scenarios featuring both

reachable and unreachable goal state-times. The maximum

number of iterations was heuristically set to 20.

A. Reachable Goal State-times

To evaluate performances of the trajectory generator

Tiji, sampling trees have been implemented for each

robotic system. Sampling trees consist in determining the

topology of the reachable space for a given robotic system in

computing a tree of feasible trajectories from a sampling of

available controls at each time step. All target states defined

(XxY)

(x ,y ,th)0 0 0

(a) Sampling tree (x × y view)

(x ,y ,th)
0 0 0

(XxY)

(b) Trajectories generated (x × y view)

(XxY)

(s ,t)
0 0

V

(c) Unreachable final states (x × y × v view)

Fig. 1: Sampling tree describing a subset of the available trajectories for a differential drive system, trajectories generated

by Tiji to reach its end state-times (leaves), and examples of generated trajectories when the goal state-times (crosses)

are not reachable.

(XxY)

(x ,y ,th)
0 0 0

(a) Sampling tree (x × y view)

(x ,y , th)
0 0 0

(XxY)

(b) Trajectories generated (x × y view) (c) Unreachable final states (x × y view)

Fig. 2: Sampling tree describing a subset of the available trajectories for a car-like system, trajectories generated by Tiji to

reach its end state-times (leaves) and examples of generated trajectories when the goal state-times (crosses) are not reachable.

Robotic system Differential Car-like
Drive System Vehicle

number of evaluated
states-times 327680 393216

success
rate (%) 98.80 96.52

average required steps
(in case of success) 3.23 7.08

average time
by trajectory (ms) 2.84 5.12

TABLE I: Performances of the trajectory generation for

each case study in the case where all goal state-times are

reachable.

by the leaves of the tree are consequently reachable. The

trajectory generator Tiji has been used to try to reach all

final states (leaves) of the sampling trees computed for each

robotic system defined in Section III. Figures 1 and 2 present

respectively the sampling trees and generated trajectories for

a differential drive and a car-like system.

From a complexity point of view, the trajectory gener-

ation algorithm depends on the number of required steps

to converge to the goal state. Table I sum up the average

number of required steps and the resulting computation time

in the three different cases study. Thanks to look-up tables

of initial guesses of parameters, quite good success rates of

convergence to the goal state-times have been obtained, while

computational times are very low.

B. Unreachable Goal State-times

As Tiji is aimed at computing feasible trajectories that

end “as close as possible” to the goal state-time when it is

not reachable, we propose some results here to show the rele-

vance of the alternative trajectories computed. Figures 1c and

2c present respectively samples of the trajectories computed

for a differential drive and a car-like systems.

To conclude on the relevance of the alternative trajectories,

we computed an evaluation coefficient µ for each state

trajectory s̃ starting from s0 that does not reach the goal

state sg at a fixed final time tf : We propose to compare

the distance from the goal state sg to the closest state sRS

of the reachable set R(s0, tf) with the distance ‖sg − sf‖.

We compute thus the evaluation coefficient µ defining below

to conclude on the quality of the alternative trajectories

computed:

µ =
‖sg − sf‖

‖sg − sRS‖
(16)

Robotic system Differential Car-like
Drive System Vehicle

number of evaluated
state-times 10000 10000

average time
by trajectory (ms) 13.56 10.41

average evaluation
coefficient µ 1.14 1.15

TABLE II: Performances of the trajectory generation for each

case study in the case where the goal state-times are not

reachable.

Note than a metric is needed to compute distances between

these states. This coefficient tend to 1 if the final state sf

found is exactly the best solution wrt. the metric used.

The performances obtained for unreachable cases are

summarized in table II. The computation times remains really

low while the average error between final and goal states

(described by the average evaluation coefficients) seems

satisfactory.

V. APPLICATIONS

The method presented in section II is highly constrained

and aimed at solving complex motion planning problems.

However, fixing or freeing the state and final time constraints

allows to use the trajectory generator Tiji in a large

selection of motion planning and control applications. This

section presents two applications of Tiji : a trajectory

deformation method and a trajectory tracking process.

A. Trajectory Deformation

Trajectory deformation is a technique that was introduced

to generate robot motion wherein a trajectory, that has been

computed beforehand, is continuously deformed on-line in

response to moving and unforeseen obstacles. We proposed

in [21] a trajectory deformation approach named Teddy.

Its principle is simple: a complete motion to the goal is

computed first using a priori information. It is then passed

on to the robotic system for execution. During the course

of the execution, the still-to-be-executed part of the motion

is continuously deformed in response to sensor information

acquired on-line, thus accounting for the incompleteness and

inaccuracies of the a priori world model.

The deformed trajectory is sampled as a sequence of

nodes in the state-time space S × T. Two types of forces are

thus applied on each node: external forces (imposed by the

obstacles) and internal forces (to maintain the connectivity of

the trajectory). External forces move each node away from a

priori model of the future behavior of obstacles. During this

process, the connectivity of the trajectory may be lost: there

is no guarantee that a feasible trajectory still exists between

each couple of state-times (nodes). Our trajectory generator

Tiji is aimed to restore the connectivity of the trajectory in

such a case. Consider three successive state-times (s−, t−),
(s, t) and (s+, t+). A feasible trajectory is computed by

Tiji between (s−, t−) and (s+, t+) if it exists. In the other

case, Tiji provide a trajectory from (s−, t−) that ends as

close as possible to (s+, t+). The intermediate state-time

(s, t) is thus brought back to the middle state-time (given

at time (t+ − t−)/2) of the generated trajectory. Obstacle

avoidance is thus performed while the connectivity of the

trajectory is kept.

The need of the final time constraint is well illustrated

here: the guarantee of the temporal consistency of the tra-

jectory deformed, and maintaining its connectivity impose

to fix the time or at least an interval of time in which each

intermediate node may be moved.

Figure 3 depicts an example of the trajectory deformation

process for a diffenrential drive.

B. Trajectory Tracking

Trajectory tracking is the problem of reaching and follow-

ing a trajectory of the state-time space S × T (ie a geometric

path with an associated timing law) starting from a given

initial configuration. A robotic system with perfect sensor

and control models does not require a trajectory tracking

model. It is aimed to compensate for the possible derivation

from an initial trajectory to follow due to sensor and actuator

errors. It consists then in trying to determine at each time

instant the input control to apply on the robotic system, given

the current robot’s state perception.

The main problems of such an approach is first, to choose

at each time instant a state-time of the trajectory followed

to reach, and second to find the appropriate control to move

as close as possible to it. By choosing a fixed look-ahead

time to select the state-time to reach and using Tiji at

each time step from the current position of the robot to

reach the select goal with a fixed final time constraint,

our approach limits the instability of the trajectory tracking

process. Figure 4 presents an application of our trajectory

tracker using Tiji on an automated wheelchair. The look-

ahead time is fixed here to 0.5 second. Fast computation

of the trajectory generation process allows to compensate

for errors on the control applied and on the localization.

The resulting derivation from the reference trajectory never

exceed 0.25 meters whatever the speed used to follow the

trajectory.

VI. CONCLUSION AND FUTURE WORK

The paper has presented Tiji, a new trajectory generation

scheme that can be used to efficiently compute feasible

trajectories for system with complex dynamics. Besides, it

can handle a final time constraint, ie reaching a goal at a

prescribed time instant. When the goal is unreachable, it

returns a trajectory ending as close as possible to the goal.

Tiji can handle arbitrary robotic systems, and may be

used in many reactive navigation applications. Its efficiency

has been illustrated by simulation results in a trajectory

deformation process to keep the connectivity of the deformed

trajectory, and by experimental results on an automated

wheelchair in a trajectory tracking process to used determine

the control to apply at each time as input of the robotic

system.

(a) t = 0 (b) t = 10 (c) t = 25

Fig. 3: Differential drive evolving amongst static and moving obstacles : The different figures represent the deformed

trajectory at different time steps (x × y view).

(a) Automated wheelchair (b) Reference trajectory (c) Derivation of the position along the trajec-
tory (in meters) while following the reference
trajectory at different speeds

Fig. 4: Illustration of the trajectory tracking process using Tiji on an automated wheelchair. Fast computation of the

trajectory generation process allows to follow efficiently a reference trajectory at different speeds.

REFERENCES

[1] S. M. Lavalle, Planning Algorithms. Cambridge Univ. Press, 2006.

[2] L. Dubins, “On curves of minimal length with a constraint on
average curvature and with prescribed initial and terminal positions
and tangents,” American Journal of Mathematics, vol. 79, 1957.

[3] T. Howard and A. Kelly, “Optimal rough terrain trajectory generation
for wheeled mobile robots,” Int. Journal of Robotics Research, 2007.

[4] J. Reeds and L. Shepp, “Optimal paths for a car that goes forward
and backward,” Pacific J. Math., vol. 145, 1990.

[5] Y. Kanayama and N. Miyake, “Trajectory generation for mobile
robots,” in In Proc. of the Int. Symp. on Robotics Research, 1985.

[6] T. Fraichard and A. Scheuer, “From reeds and shepp to continuous
curvature paths,” Transactions on Robotics, vol. 20, 2004.

[7] K. Komoriya and K. Tanie, “Trajectory design and control of a wheel-
type mobile robot using b-spline curve,” in Proc. of the IEEE-RSJ Int.

Conf. on Intelligent Robots ans Systems, 1989.

[8] A. Takahashi, T. Hongo, and Y. Ninomiya, “Local path planning and
control for AGV in positioning,” in IEEE-RSJ Int. Conf. on Intelligent

Robots and Systems, 1989.

[9] Y. Kanayama and B. I. Hartman, “Smooth local path planning for
autonomous vehicles,” in IEEE Int. Conf. on Robotics and Automation,
1989.

[10] A. Piazzi and C. Guarino Lo Bianco, “Quintic G2-splines for trajec-
tory planning of autonomous vehicles,” in Proc. of the IEEE Intelligent

Vehicles Symp., 2000.

[11] F. Lamiraux and J.-P. Laumond, “Smooth motion planning for car-like
vehicle,” IEEE Trans. on Robotics and Automation, vol. 17, 2001.

[12] H. Delingette, M. Hébert, and K. Ikeuchi, “Trajectory generation with
curvature constraint based on energy minimization,” in IEEE-RSJ Int.

Conf. on Intelligent Robots and Systems, 1991.

[13] P. Gallina and A. Gasparetto, “A technique to analytically formulate
and to solve the 2-dimensional constrained trajectory planning problem
for a mobile robot,” Journal of Intelligent and Robotic Systems, 2000.

[14] A. Kelly and B. Nagy, “Reactive nonholonomic trajectory generation
via parametric optimal control,” in The International Journal of

Robotic Research, vol. 22, Jul.-Aug. 2003.
[15] V. Delsart, T. Fraichard, and L. Martinez-Gomez, “Real-time trajectory

generation for car-like vehicle navigating dynamic environments,” in
IEEE Int. Conf. on Robotics and Automation, 2009.

[16] L. Martinez-Gomez and T. Fraichard, “Collision avoidance in dynamic
environments: an ics-based solution and its comparative evaluation,”
in Proc. of the Intl Conf. on Robotics & Automation, May 2009.

[17] M. Seder and I. Petrovic, “Dynamic window based approach to mobile
robot motion control in the presence of moving obstacles,” in Proc.

of the Intl Conf. on Robotics & Automation, April 2007.
[18] F. Large, C. Laugier, and Z. Shiller, “Navigation among moving

obstacles using the nlvo : Principles and applications to intelligent
vehicles,” Autonomous Robots Journal, vol. 19, no. 2, September 2005.

[19] Y. Li, K. Gupta, and S. Payandeh, “Motion planning of multiple agents
in virtual environments using coordination graphs,” in IEEE Int. Conf.

on Robotics and Automation, Barcelona, Spain, april 2005.
[20] A. S. Oikonomopoulos, S. G. Loizou, and K. J. Kyriakopoulos, “Co-

ordination of multiple non-holonomic agents with input constraints,”
in IEEE Int. Conf. on Robotics and Automation, may 2009.

[21] V. Delsart and T. Fraichard, “Navigating dynamic environments using
trajectory deformation,” in IEEE-RSJ Int. Conf. on Intelligent Robots

and Systems, 2008.

