
HAL Id: inria-00527732
https://hal.inria.fr/inria-00527732

Submitted on 20 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Virtual Sculpture
Eric Ferley, Marie-Paule Cani, Jean-Dominique Gascuel

To cite this version:
Eric Ferley, Marie-Paule Cani, Jean-Dominique Gascuel. Virtual Sculpture. Short Papers Proceedings
of Eurographics ’99, Eurographics, Sep 1999, Milan, Italy. �inria-00527732�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50047933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00527732
https://hal.archives-ouvertes.fr


EUROGRAPHICS ’99 / M. A. Alberti, G. Gallo, I. Jelinek Short Papers and Demos

Virtual Sculpture

E. Ferley, Marie-Paule Cani and Jean-Dominique Gascuel

iMAGIS/GRAVIR-IMAG, 220 rue de la chimie BP53, 38041 Grenoble Cedex 9, France

Abstract
We propose here a sculpture metaphor for rapid shape prototyping. This metaphor makes the underlying surface
description transparent for the user, enabling him to focus only on the shape being modeled. Our approach is
based on implicit surfaces defined as iso-surfaces over a discrete field.

1. Introduction

We are seeking anintuitive modeling tool for designers
or sculptors creating digital 3D models. A huge amount
of work has been done in Computer Graphics to provide
an intuitive design metaphor. In practice, there are still a
lot of parameters to tune and limitations on the object’s
topology and geometry due to the underlying mathematical
description. The user’s attention then focuses on the model
decomposition into patches and the continuity relationship
between them, rather than on the shape itself.

With this in mind, asculpting approach where a user
could deposit material wherever he desires in space, and
then iteratively deform, carve or paint it with a tool, without
any consideration on its underlying description, seems more
adequate to us.

Bill and Lodha3 developed thissculptingmetaphor using
polygonal models. However, the user still had to worry
about the mesh representation, since he had to control its
resolution, delete some polygons to create holes or possibly
handle its reconnections.
A better approach, in our opinion, was initiated by Galyean
and Hughes4: the object is defined as the iso-surface of a
discrete field sampled on a grid. The tool alters the surface
by locally modifying the samples values. The surface is then
computed using anincremental marching cubesalgorithm,
which means that the marching process is only performed
in the modified region. This representation inherits the
facilities of implicit surfaces to handle arbitrary topologies.
Avila2 and Massie5 added some kinesthetic feedback to

similar sculpting systems†.

We consider the grid representation as a major limitation
in these approaches as it imposes limits in space to the model
extent in addition to its storage cost. Moreover, it seems use-
less to store a whole cubical-grid if we only want to model a
thin shape, such as a branch.
We present here an implementation based on balanced bi-
nary search trees to store the volume data only where neces-
sary.

2. Our Sculpting Metaphor

Figure 1 shows a typical screen snapshot of our application.
The user can move each object either with a mouse or with
a 3D input device such as the Spacemouse. The tool’s color
and shape can be modified. The tool’s action is selected ei-
ther by (function) keys, or Spacemouse buttons, or radio but-
ton in the interface. Pressing "space" applies the tool.

2.1. Classical tools

The tool cancreate some material, just as thetoothpaste
described by Galyean4, by cumulating the associated
field value into the grid samples. This added material is
consequently blended with the (possibly) existing one. The
tool can alsoremove some material, either progressively
(softEraser) or not (eraser). Similarly, the tool can alter the
color (softPainterandpainter).

† The former uses ray-cast rendering which differs from the march-
ing cubes used in the other approaches, but the principle is the same.

c iMAGIS/GRAVIR-IMAG, 1999.
Published by the Eurographics Association, ISSN 1017-4656.



Ferley, Cani and Gascuel / Virtual Sculpture

Figure 1: Sample screen snapshot of the application: we can
see a box representing the workspace, two lights (the yellow
spheres), a tool displayed in wireframe mode, and a sculpted
object environment-mapped.

These actions were both present in the papers from
Galyean4 and Avila2, but they were restricted to sphere-
shaped tools. Here the tool shape is a general ellipsoïd.
Instead of computing the image of each grid sample in the
tool local frame, we compute this image once for one point
(the lower-left-bottom corner of the axis-aligned tool bound-
ing box), and the three world axes. We thenwalk through
this bounding box both in world and local coordinates by
simply adding the corresponding displacement vector to join
the next grid point. This speeds up the update of the grid
samples covered by the tool, and enables any tool’s affine
transformation at no extra cost.

2.2. Local Deformation Tool

We are experimenting with new kinds of tools thatdeform
the existing material, just as if the user was pushing the clay
with his finger, or with a sculpting tool such as a gouge. We
want to avoid the computation cost of material displacement
simulation when a collision between the tool and the object
occurs. Consequently, we use a purely geometric approach,
adapted from the Opalach/Cani-Gascuel method6 which was
dedicated to skeleton based implicit surfaces.

We use a deformation function (see Figure 2) to compute
the ratio of the existing field that will be used to modify the
shape: at the center of the tool we add�1:0 times its own
value to the field; at its frontier we do not modify the field:
thus, the iso-surface won’t be altered; in a bounded region
around the tool, we increase the field, so that a bump will
appear. The zero-crossing of the function is imposed by the
tool shape, but both the slope at that point and theexterior
bump’s height, location and extent can be tuned. These pa-

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0 1 2 3 4

ratio

distance from
tool center

Figure 2: Shape of the deforming function. Horizontal axis
is the distance from the tool center. Vertical axis is the ratio.

rameters are not yet automatically deduced from the charac-
teristics of a given material. However, it’s possible to achieve
visually realisticdeformations (see Figure 3).

Known limitations: Since this deformation function is used
only as a ratio to modify the existing field, there will be no
expansion of this existing field in space. Problems may occur
when a huge bump appears, and is limited only by the field
extent. This can be seen as a field definition problem, and
handled as a field conditioning step.

2.3. Undo-Redo Handling

Each time a tool is applied, the coveredgrid points are
markeddirty , and their previous state is dumped into an
undo-file in a temporary directory. We arbitrarily limited
the number of these undo-files to 200, but in fact the real
limitation to this is disk space. These files allow us to
browse among the UNDO/REDO history.

3. Tree Structure

We only store in the treefield valuesthat are greater than an
arbitraryminVal. The values are symmetrically clamped to
a maxVal, and the displayed surface corresponds to a given
iso. Since we store fewer field samples than in a classical
grid, we can store more information per sample. This avoids
useless re-computations (such as world coordinates, field
gradients, . . . ) and speeds up surfaceupdate.

We call the points where the field is sampledcorners .
Corners store their value as one float, their location and
gradient as three floats, and their color as four unsigned
bytes. ThecornersTree balanced binary search tree we
build from thesecorners is ordered according to theirkey ,
i.e. theirgrid indices(i; j ;k). Two keys are compared in lex-
icographical order, that is: firstly on theiri component, then
(if i1 = i2), on their j component, and finally (ifi1 = i2 and
j1 = j2) on theirk component. After each insertion/deletion,
the tree equilibrium is checked to preserve theO(nlogn)
operation time on it.

To polygonize the surface, we then need to examine the

c iMAGIS/GRAVIR-IMAG, 1999.



Ferley, Cani and Gascuel / Virtual Sculpture

cubes. A cube is made up of eightcorners , twelveedges

and anindex representing the surface configuration inside
it. We store another tree for the cubes, also ordered with an
(i; j ;k) key. ThiscubesTree stores all the existing cubes.
A cube is removed when all its corners are deleted, i.e. their
value has become lower thanminVal.
When a cube appears to cross the iso-surface, it is inserted
into another simplified tree storing only pointers to these
crossing cubes. At the time of this insertion, the cube’s
index is computed from the values of its eightcorners .
The edges intersected by the surface are created and inserted
into another binary search treeEdgesTree . An edge

stores this intersection point, i.e. its location and normal,
as three floats, and its color as four unsigned bytes. This
intersection is actually computed by linearly interpolating
the corresponding fields of the twocorners involved,
according to their respective field value.

Surface update is interactive, since we only examine the
corners (and related cubes) that weredirtied by the tool.

4. Visual Quality

With this test platform, we realized how crucial the visual
quality is for the user’s comfort, but also for the tool’s
position perception, and for the object’s shape estimation.

One advantage of theInfinite Realitygraphics card we
use is its ability to antialias OpenGL primitives atno cost
thanks to its hardware support of the multisample extension.
We also tried some stereo rendering using someStere-
ographics shutter-glasses (Crystal Eyes model), and a
virtual-IO HMD using interlaced rendering (i-Glasses
model). Both are still in an early stage of development since
we do not correctly handle the convergence/zero-parallax
problem, and we do not track the head position. Even in this
simple configuration, this proved very helpful for the tool
placement in space.
Another feature which greatly enhances the shape perception
is the use of environment textures that aresphere-mapped
onto the object. This looked particularly useful if the surface
had degenerated triangles, which is a typical drawback of
the Marching Cubes algorithm. We used classical sphere-
mapping with adjustable transparency to be able to see the
surface color under the texture layer. We also implemented
simplified ClearCoat‡ like effect, i.e. simulating a paint
layer, using a texture transparency varying accordingly to
the incidence angle between the viewer and the surface.

‡ information concerning SGI’sClearCoatproduct may be found
at http://www.sgi.com/newsroom/press_releases/
1998/september/clearcoat.html

5. Results

We obtain interactive response times without the need of
any dedicated/specific volume rendering hardware. At the
expense of reduced performances and visual quality (no
multisampling antialiasing, and slower frame rates), our
application also runs on a standard PC using OpenGL under
WindowsNT.

Galyean4 used grids from 303 up to 603, while Avila2 re-
ports the use of grids up to 2563. Pfister7 uses special pur-
pose hardware based on hisCube-4ASIC to render a 2563

volume with ray-casting up to 30 frames per second. Here
the user is free to resize the workspace’s box at any moment,
and extend his model wherever he wants, providingvirtually
unlimitedgrid size. Since the field sampling is regular, two
kinds of limitation appear in the current implementation:

� small tool: the sampling points become too distant rela-
tively to the tool size. The tool isn’t correctly sampled,
and artifacts due to noise appear.

� large tool: the tool covers so many sample points that their
update is no longer possible at interactive rates.

We report in the following table some statistics concern-
ing three differently sizedtoothPastetools adding some ma-
terial to the object represented in Figure 1. This object cor-
responds to 15;573 values stored andcornersTree , cube-

sTree andedgesTree of respective depth of 14, 16 and 13.
The iso-surface displayed has 4;200 vertices and 8;392 tri-
angles. The application runs on an SGIOnyx2/IRwith 1Gb
RAM and a 195MHz R10k processor. For each tool size, we
report:

� an average frame rate (wall-clock time).
� some results concerning the number of corners and cubes

covered in abestandworstcase, depending of the tool’s
local bounding box orientation.

– the cornersvisited are the corners covered by the axis-
aligned tool’s bounding box.

– the cornerscomputed are the corners covered by the
oriented tool’s bounding box but lying outside the tool,
i.e. having anull contribution from the tool.

– the cornersdirtied are the corners having anon-null
contribution from the tool.

– the cubestreated are the cubes which had at least one
corner dirtied, and hence were updated. This means
that we recomputed their configurationindex , and the
edges intersected where updated, if needed.

c iMAGIS/GRAVIR-IMAG, 1999.



Ferley, Cani and Gascuel / Virtual Sculpture

frames/s #corners
visited

#corners
computed

#corners
dirtied

#cubes
treated

19-23 216 125 93 184
small 1331 203 110 209

7-8 1452 887 501 751
medium 4352 975 508 771

3-4 2744 2197 1021 1424
large 8316 1919 1003 1407

This shows that as we are able to rapidly reject the corners
lying outside of the local tool’s bounding box, the tool ori-
entation isn’t affecting the field update performance.

6. Future work

There are still some improvements to conduct concerning
the visual quality, such as enhancing the stereo display,
or adding some visual cues such as shadows (either with
textures, or volumes) or depth of field.
Another key feature that will definitely improve the im-
mersion of the application into reality is force feedback: a
first idea was proposed by Avila2; 1, but we foresee that it
will add more constraints on the field conditioning (such as
mentioned in 2.2).
An important limitation in our current implementation is the
fixed sampling resolution. At the moment, we are planning
to use octrees instead of binary search trees to store field
values, but a multigrid approach also looks promising.

Acknowledgments

This work is supported by Renault and CNRS. We would
like to thank Andras Kemeny for making the whole project
possible. Many thanks to Frédo Durand for valuable discus-
sions and intuitions concerning the one-pass rendering of an-
gular dependant environment textures. This work is done in
a great atmosphere thanks to the iMAGIS team (many thanks
to the many people who did reread this paper!). We would
also like to thank the many people who contributed to de-
velop GLUT, and Paul Rademacher for providing GLUI§.
Both are really helpful to develop cross-platform OpenGL-
based application.

References

1. R.S. Avila. Volume haptics.Computer Graphics, pages
103–123, July 1998. SIGGRAPH’98 Course Notes
#01.

§ The GLUI User Interface to GLUT can be downloaded from
http://www.cs.unc.edu/ r̃ademach/glui

2. R.S. Avila and L.M. Sobierajski. A haptic interaction
method for volume visualization.Computer Graphics,
pages 197–204, October 1996. Proceedings of Visual-
ization’96 (San Francisco).

3. J.-R. Bill and S.K. Lodha. Sculpting polygonal mod-
els using virtual tools. InGraphics Interface’95, pages
272–278, 1995.

4. T.A. Galyean and J.F. Hughes. Sculpting: An interac-
tive volumetric modeling technique.Computer Graph-
ics, 25(4):267–274, July 1991. Proceedings of SIG-
GRAPH’91 (Las Vegas, Nevada, July 1991).

5. T. Massie. A tangible goal for 3d modeling.IEEE Com-
puter Graphics and Applications, 3:62–65, May 1998.

6. A. Opalach and M.-P. Cani-Gascuel. Local deforma-
tion for animation of implicit surfaces.Proceedings
of SCCG’97 (Bratislava, Slovakia), June 1997. can be
found athttp://www-imagis.imag.fr/ .

7. H.P. Pfister and A. Kaufman. Cube-4 - a scalable ar-
chitecture for real-time volume rendering.Computer
Graphics, pages 47–55, October 1996. Proceedings of
Visualization’96 (San Francisco).

Figure 3: Sample screen snapshot of an object deformed
with our local deformation tool.

c iMAGIS/GRAVIR-IMAG, 1999.


