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Abstract

We investigate here the Central Limit Theorem of the Increment Ratio Statistic of a

multifractional Brownian motion, leading to a CLT for the time varying Hurst index. The

proofs are quite simple relying on Breuer-Major theorems and an original freezing of time

strategy. A simulation study shows the goodness of fit of this estimator.

Keywords: Increment Ratio Statistic, fractional Brownian motion, local estimation,

multifractional Brownian motion, wavelet series representation.

Introduction

The aim of this paper is a simple proof of Central Limit Theorem (CLT in all the sequel) for
the convergence of Increment Ratio Statistic method (IRS in all the sequel) to a time varying
Hurst index.
Hurst index is the main parameter of fractional Brownian motion (fBm in all the sequel),
it belongs to the interval (0, 1) and it will be denote by H in all the following. For fBm,
the Hurst index drives both path roughness, self-similarity and long memory properties of
the process. FBm was introduced by Kolmogorov [20] as Gaussian "spirals" in Hilbert space
and then popularized by Mandelbrot & Van Ness [22] for its relevance in many applications.
However, during the two last decades, new devices have allowed access to large then huge
datatsets. This put in light that fBm itself is a theoretical model and that in real life situation
the Hurst index is, at least, time varying. This model, called multifractional Brownian motion
(mBm) has been introduced, independently by Lévy-Véhel & Peltier [21] and Benassi et al [9].
Other generalizations of fBm remain possible, for e.g. Gaussian processes with a Hurst index
depending of the scale, so-called multiscale fBm [5], when H is piecewise constant as in the Step
Fractional Brownian Motion see [3], or a wide range of Gaussian or non-Gaussian processes
fitted to applications (see for example [14, 4]). However, for simplicity of the presentation, in
this work we restrict ourselves to mBm.
In statistical applications, we estimate the time varying Hurst index through a CLT. Actually,
CLT provides us confidence intervals. Different statistics can be used to estimate the Hurst
index. Among the popular methods, let us mention quadratic variations, generalized quadratic
variations, see [8, 15, 16], and wavelet analysis, see e.g [1] or [6]. Above methods can be
expansive in term of time complexity. For this reason, Surgailis et al [27] and Bardet & Surgailis
[7] have proposed a new statistic named increment ratio which can be used for estimating the
Hurst index H and is faster than the wavelet or the quadratic variations methods, at the price
of a slightly larger variance.
CLT for the different estimators of Hurst index are presently standard in the case of fBm, but
became very technical in the case of mBm. The main novelty of our work is the simplicity of
the proofs. In our point of view, mBm is a fBm where the constant Hurst index H has been
replaced by time varying Hurst index. It is well known that the random field (H, t) 7→ B(H, t)
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is irregular with respect to time t, actually with regularity H which belongs to (0, 1). It is
less kown that this field is infinitely differentiable with respect to H, see Meyer-Sellan-Taqqu
(1999) and Ayache and Taqqu (2005). Thus, for all time t0, we can freeze the time varying
Hurst index, and the mBm behaves approximatively like a fBm. Eventually, CLT for mBm
follows from CLT for fBm combined with a control of "freezing error". This new and natu-
ral technology allows us to go further and obtain for example a CLT for the Hurst function
evaluated at a finite collection of times and also quantitative convergence speed in the CLT.
Note that, up to our knowledge, the "freezing Hust index" strategy for estimation in mBm
was introduced, without further proof, in Bertrand et al [10].

The remainder of this paper is organized as follows. In Section 1, we recall a definition of fBm
and the definition of the Increment Ration Statistic. Next, in section 2, we review definitions of
fBm and mBm and precise the localization procedure (or freezing). The main result is stated
in Section 3 and some numerical simulations are presented in Section 4. All technical proofs
are postponed in Section 5.

1 Recall on fBm and Increment Ratio Statistic

In this section, we present the Increment Ratio Statistic (IRS) method obtained by filtering
centered Gaussian processes with stationary increments. Before, we recall definition of the
processes under consideration.

1.1 Definition of fBm and Gaussian processes with stationary increments

We describe fBm through its harmonizable representation. However, it is simpler to adopt a
more general framework and then specify fBm as a particular case. Let X = (X(t), t ∈ [0, 1]) be
a zero mean Gaussian process with stationary increments, the spectral representation theorem
(see Cramèr and Leadbetter [18] or Yaglom [28]), asserts that the following representation is
in force

X(t) =

∫

R

(1− eitξ) · f1/2(ξ) dW (ξ), for all t ∈ [0, 1],

where W (dx) is a Wiener measure with adapted real and imaginary part such that X(t) is real
valued for all t. The function f is a Borelian even, positive and is called spectral density of X.
To insure convergence of the stochastic integral, f should satisfies the condition given by

∫

R

(
1 ∧ |ξ|2

)
· f(ξ) dξ <∞. (1)

Example: Fractional Brownian motion with Hurst parameter H ∈ (0, 1) and scale parameter
σ > 0 corresponds to a spectral density given by

f(ξ) = σ2|ξ|−(2H+1) for all ξ ∈ R. (2)

In this paper, we denote fBm by B(H, t) when σ = 1. Stress that this choice is not the
conventional one. But, IRS is homogeneous and does not depends on a multiplicative factor.
Thus, in sake of simplicity, we can impose the extra condition σ = 1.

1.2 Definition of the a-Generalized increments

In all the sequel, we consider the observation of the process X at discrete regularly spaced
times, that is the observation of (X(t0), . . . ,X(tn)) at times tk = k/n. Secondly, we consider
a filter denoted by a of length L + 1 and of order p ≥ 1, where p ≤ L are two integers.
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It corresponds to an arbitrary finite fixed real sequence a := (a0, . . . , aL) ∈ R
L+1 having p

vanishing moments, i.e.,

L∑

l=0

all
i =





0 if i ∈ {0, . . . , p − 1}
L∑

l=0

all
p 6= 0 if i = p.

(3)

Consequently, it is easy to prove, for any integer m, that

L∑

l1=0

L∑

l2=0

al1al2 |l1 − l2|m =





0 if m ∈ {0, . . . , 2p − 1}(
L∑

l=0

all
p

)2

6= 0 if m = 2p.
(4)

The family of such filters will be denotes A(p, L). Then, the a-Generalized increments of the
discrete process (X(tk))0≤k≤n are defined, for all 0 ≤ k ≤ n− L− 1, as follows

∆aX(tk) =
L∑

k=0

alX(tk+l) (5)

and their harmonizable representations are given by

∆aX(tk) =

∫

R

eitkξga(−ξ/n)f1/2(ξ) dW (ξ)

where ga(·) is specified as follows

ga(u) :=

L∑

l=0

ale
ilu. (6)

Examples: In the simple case where a := (a0 = 1, a1 = −1), the operator ∆a corresponds
to a discrete increment of order 1, and when a := (a0 = 1, a1 = −2, a2 = 1), the operator ∆a

represents the second order differences.

1.3 Definition of the Increment Ratio Statistic

Let (∆aX(tk))0≤k≤n−L−1 be the a-Generalized increments sequence defined by (5) from the
discrete observation (X(tk))0≤k≤n. Then, the IRS introduced by Bardet and Surgailis [7] is
given by

IRSa,n(X) =
1

n− L

n−L−1∑

k=0

ψ (∆aX(tk),∆aX(tk+1)) (7)

where ψ(·, ·) is described as follows

ψ(x, y) :=





|x+ y|
|x|+ |y| if (x, y) ∈ R

2\{(0, 0)}
1 if (x, y) = (0, 0).
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IRS of fractional Brownian motion

In the case of the fBm with Hurst parameter H ∈ (0, 1), i.e X(t) = BH(t), Bardet and
Surgailis have established in [7, Corollary 4.3, p.13], under some semi-parametric assumptions,
the following CLT for the statistics IRSa,n

√
n (IRSa,n(BH)− Λa(H))

D→ N (0,Σ2
a(H)) with

{
H ∈ (0, 3/4) if a = (1,−1)
H ∈ (0, 1) if a = (1,−2, 1)

(8)

where the sign
D→ means convergence in distribution,

Λa(H) := Λ0 (ρa(H)) (9)

Λ0(r) :=
1

π
arccos(−r) + 1

π

√
1 + r

1− r
log

(
2

1 + r

)
(10)

ρa(H) =





22H−1 − 1 if a = (1,−1)
−32H + 22H+2 − 7

8− 22H+1
if a = (1,−2, 1)

(11)

and the asymptotic variance Σ2
a(H) is given by

Σ2
a(H) =

∑

j∈Z

cov (ψ (∆aBH(t0),∆aBH(t1)) , ψ (∆aBH(tj),∆aBH(tj+1))) .

The graphs of Λ0(ρ), ρa(H) and Λa(H), with a = (1,−1) or a = (1,−2, 1), are given in Fig-
ure 1, Figure 2 and Figure 3 below. It is easy to prove that the function H 7→ Λa(H), with
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Figure 1: The graph of Λ0(ρ).
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Figure 2: The graphs of ρa(H) with a = (−1, 1)(left) and a = (1,−2, 1) (right).

a = (1,−2, 1), is a monotonic increasing function in the interval (0,1), see Figure 3. Therefore,
Ĥn = Λ−1

a (IRSa,n(BH)) provides an estimator of the Hurst parameter H with convergence
rate O (

√
n). Moreover, we refer to Stoncelis and Vaičiulis [26] for a numerical approximation

of the variance Σ2
a(H) with a = (1,−1) or a = (1,−2, 1), needed for construction of confidence

intervals, see [7, Corollary 4.3, p.13 and Appendix, p.32].
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Figure 3: The graphs of Λa(H) with a = (−1, 1)(left) and a = (1,−2, 1) (right).

2 Going from fBm to mBm and return by freezing

The main goal of this section is to present different representations for the FBm and the mBm
enabling us to present the time freezing strategy we will use to prove our main theorems.

FBm and its different representations

Fractional Brownian motion was introduced by Kolmogorov [20] and then made popular by
Mandelbrot & Van Ness [22]. This process has been widely used in applications to model data
that exhibit self-similarity, stationarity of increments, and long range dependence. FBm with
Hurst parameter H ∈ (0, 1), denoted by (BH(t), t ∈ [0, 1]), is a centered Gaussian process with
covariance function defined for s, t ∈ [0, 1] by

E [BH(t)BH(s)] =
1

2

(
t2H + s2H + |t− s|2H

)
. (12)

This process is characterized by its Hurst index which drives both pathwise regularity, self-
similarity and long memory, see e.g. the overview in Bertrand et al (2010). Before going
further, let us precise notations: in all the sequel we will denote by BH the fBm and B(H, t)
the random field depending on both Hurst index and time. Up to a multiplicative constant the
two notions coincide, more precisely we have BH(t) = C(H)×B(H, t) for C(H) a non-negative
constant depending on H.
Fractional Brownian motion, (BH(t), t ∈ [0, 1]), can be represented through its harmonizable
representation (1, 2), or its moving-average representation (see Samorodnitsky & Taqqu [25,
Chapter 14]). A third representation is the wavelet series expansion introduced by Meyer et al
[23], and then nicely used by Ayache and Taqqu (2003 and 2005). In this case, it is judicious
to shift to the random field representation defined as follows

B(H, t) =
∑

j∈Z

∑

k∈Z

ajk(t,H) ǫjk, for all t ∈ [0, 1] (13)

where (ǫjk)(j,k)∈Z2 is a sequence of standard Gaussian random variables N (0, 1), the non-

random coefficients ajk(t,H) are given by ajk(t,H) =

∫

R

(1− eitξ) · |ξ|−(H+1/2)ψ̂j,k(ξ) dξ, and

ψ̂j,k is the Fourier transform of the Lemarié-Meyer wavelet basis ψj,k. Let us refer to Ayache
and Taqqu (2003) for all the technical details. To put it into a nutshell, by using the Meyer
et al ’s Lemma ([23]), we can prove the existence of an almost sure event Ω∗, that is such
that Pr(Ω∗) = 1, such that for all ω ∈ Ω∗ the series (13 ) converges uniformly for (H, t) ∈ K
where K is any compact subset of (0, 1) × R. Moreover, the field is infinitively differentiable
with respect to H with derivatives bounded uniformly on every compact subset of (0, 1) × R

by a constant C∗(ω) > 0 where C∗ is a positive random variable with finite moments of every
order.
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MBm and its different representations

To be short, mBm is obtained by plugging a time varying Hurst index t 7→ H(t) into one of
the three representations of the fBm given above, that is the moving average representation,
the harmonizable one ((1, 2)) or the wavelet series expansion (13 ). The function t 7→ H(t)
should be at least continuous, and if the Hölder regularity of the function t 7→ H(t) is greater
than max(H(t), t ∈ [0, 1]) (the so-called condition (C) in Ayache and Taqqu (2003)), then for
every time t ∈ [0, 1] the roughness of mBm is given by H(t). Les us also refer to Cohen [17]
where he proves that the moving average representation and the harmonizable representation
of mBm are equivalent up to a multiplicative deterministic function, and to Meyer et al. to
the almost sure equality of harmonizable representation and wavelet series expansion.

With this tools, we are now in order to precise our "freezing" technology:

MBm behaves locally as a fBm

By applying Taylor expansion of order 1 around any fixed time t∗ ∈ [0, 1], we obtain the
following formula

B(H(t), t)IΩ∗ = B(H∗, t)IΩ∗ +R(t)IΩ∗ (14)

where R(t) refers to the Taylor rest which satisfies

sup
s∈[0,1]

|R(s)IΩ∗ | ≤ C∗(ω)|H(t)−H∗| (15)

with C∗ > 0 a positive random variable with finite moments of every order. Noting that H∗

corresponds to the value of the Hurst function H(·) at t∗, i.e., H∗ = H(t∗) and IΩ∗ represents

the indicator function of a subset Ω∗ defined by: IΩ∗(ω) =

{
1 if ω ∈ Ω∗

0 else
. Next, if we know

that the Hurst function H(·) has a Hölder regularity of order η > 0, so we obtain immediately
that

sup
s∈[0,1]

|R(s)IΩ∗ | ≤M∗
IΩ∗ |t− t∗|η (16)

with M∗ = c× C∗ > 0 a positive random variable with finite moments of every order.

3 Main results

This section is dedicated to the CLT of the IRS localized version for the mBm. Let us how-
ever first give a simple result on the CLT for the IRS of Gaussian processes with stationary
increments, which, applied to the fractional Brownian motion, gives with a simple proof the
result of Bardet-Surgailis [7].
We thus consider a process X observed through the knowledge of (X(t0), . . . ,X(tn)) with
tk = k/n for k = 1, . . . , n. The corresponding increment ratio statistic IRSa,n(X) is defined
by (7), with a filter a ∈ A(p, L), that is satisfying (3).

Theorem 1 (Fractional Brownian motion)
i) Let X be a zero mean Gaussian process with stationary increments. We assume that

∑

j∈Z

|ra(j)|2 < +∞ (17)

where ra(j) := cov (∆aX(t0),∆aX(tj)) for j ∈ Z is supposed independent of n. Then

√
n (IRSa,n(X) − Λ0(ρa))

D→ N (0,Σ2
a) (18)
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where Λ0(·) is defined by (10), ρa represents the correlation between two successive a-
Generalized increments, and the asymptotic variance Σ2

a is given by

Σ2
a :=

∑

j∈Z

cov (ψ (∆aX(t0),∆aX(t1)) , ψ (∆aX(tj),∆aX(tj+1)))

and is well defined and belongs to [0,+∞).

ii) In particular, let X be a fBm, that is X = BH with Hurst parameter H ∈ (0, 1).
Moreover, in the case p = 1 assume the extra assumption H ∈ (0, 3/4). Then CLT (18)
is in force where Λa(·) = Λ0(ρa(·)) is a monotonic increasing function of H with Λ0(·),
resp. ρa(·) described by (10), resp. (25), and the asymptotic variance Σ2

a is given by

Σ2
a :=

∑

j∈Z

cov (ψ (∆aBH(t0),∆aBH(t1)) , ψ (∆aBH(tj),∆aBH(tj+1)))

which is well defined and belongs to [0,+∞). �

Remark:

1. In the sequel, in order to could inverse function Λa(·), we will assume that the filter
a ∈ A(p, L) satisfy L = p ≥ 1 and al = (−1)p−l

(
p
l

)
for all l ∈ {0, . . . , p}. The class of such

filters will be denoted B(p) and named binomial filters. This restriction is motivated by
the fact that in the particular case where a ∈ B(p), the correlation function ρa(·) defined
by (25), is a monotonic increasing function of H, instead of in the general case where
a ∈ A(p, L) it is not always true.

2. The regularity of Λa(H) enables us then to get via the well known Delta-method the
CLT for the Hurst parameter. However no closed formulae for Λa(H)−1 is available so
that the limiting covariance will be no further explicit.

3. We stress once again that the proof of the theorem is quite simple. Note also that using
recent results of Nourdin et al [24, Th. 2.2], we even have that there exists a sequence
γ(n) decaying to zero such that for all h ∈ C2 and N ∼ N (0,Σ2

a)
∣∣E
[
h
(√
n (IRSa,n(X)− Λ0(ρa))

)
− h(N)

]∣∣ ≤ ‖h′′‖∞ γ(n).

The precise estimation of γ(n) is however out of the scope of the present paper and will
be found in [19]. Using [24, Cor. 2.4], we also have that the previous CLT may be
reinforced to a convergence in 1-Wasserstein distance or in Kolmogorov distance.

4. The reader will have noticed that the assumption ra(j) := cov (∆aX(t0),∆aX(tj)) in-
dependent of n for all j ∈ Z is a quite strong one. Indeed, for the multiscale Brownian
motion, this not true. However, in a sense, it is asymptotically true and it may then
be applied to prove the convergence of the IRS to the Hurst parameter related to the
highest frequency. See [19] for further details.

To achieve our final goal, we state by presenting a Lemma where we prove that the localized
version of IRS for mBm converges in L2(Ω) to the IRS of fBm with a certain rate.

Localized version of the IRS for multifractional Brownian motion
Let us consider a multifractional Brownian motion with Hurst function H(·) denoted by X =
(B(H(t), t), t ∈ [0, 1]). Secondly, let t∗ ∈ (0, 1) be an arbitrary fixed point, then we denote by
νn (γ, t

∗) the set of indices around t∗, given by

νn (γ, t
∗) = {k ∈ {0, . . . , n− L− 1} : |tk − t∗| ≤ n−γ} (19)

= {⌊nt∗ − n1−γ⌋, . . . , ⌊nt∗ + n1−γ⌋} (20)
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where ⌊x⌋ is the integer part of x and γ ∈ (0, 1) is a fixed parameter which allows to control
the size of νn (γ, t

∗) which cardinal is equal to vn(γ) := 2n1−γ + 1. Finally, for any n large
enough, we denote by IRSγ,t∗

a,n

(
BH(·)

)
the localized version of IRS defined as follows

IRSγ,t∗
a,n

(
BH(·)

)
=

1

2n1−γ + 1

⌊nt∗+n1−γ⌋∑

k=⌊nt∗−n1−γ⌋

ψ
(
∆aBH(tk)(tk),∆aBH(tk+1)(tk+1)

)
. (21)

With these notations, we are in order to state our main result:

Theorem 2 (Multifractional Brownian motion)
i) Let X be a mBm, its localized IRS be defined by (21) and assume that γ(1 + η) > 1.

Then

n(1−γ)/2
(
IRSγ,t

∗

a,n

(
BH(·)

)
− Λa(H

∗)
)

D→ N (0,Σ2
a) with

{
H∗ ∈ (0, 3/4) if p = 1
H∗ ∈ (0, 1) if p ≥ 2

(22)

where Λa(·) = Λ0(ρa(·)) is a monotonic increasing function of H∗ with Λ0(·) & ρa(·)
described by (10) & (25), and the asymptotic variance Σ2

a is given by

Σ2
a :=

∑

j∈Z

cov (ψ (∆aBH∗(t0),∆aBH∗(t1)) , ψ (∆aBH∗(tj),∆aBH∗(tj+1)))

and is well defined and belongs to [0,+∞).

ii) Let now consider 0 < t0 < t1 < ... < tm for a finite m then under the same assumption
we can enhance the previous CLT to the vector

n(1−γ)/2
(
IRSγ,t1a,n

(
BH(·)

)
− Λa(H(t1)), ..., IRSγ,tm

a,n

(
BH(·)

)
− Λa(H(tm))

)

with a well defined limiting covariance S. �

Remark:

1. Here again, one can use results of [24] to get explicit estimates on the speed of convergence
for this CLT.

2. It is highly interesting to upgrade the previous CLT to the trajectory level, needing then
a tightness result, for example to test if the Hurst coefficient is always greater than 1/2,
or to perform other test. Such kind of result will be developed in [19].

4 Numerical results

In this section, for numerical estimation of the Hurst index by IRS, one has chosen a binomial
filter of order 2, i.e. a = (1,−2, 1), insuring the convergence of the estimator Ĥn for any
H ∈ (0, 1). At first, we analyze through Monte-Carlo simulations the efficiency of the Hurst
parameter of fBm estimator given by IRS. Then, we study the estimators of some Hurst
functions of mBm obtained by localized version of IRS, and we compare it with the estimators
given by Generalized Quadratic Variations (GQV) method, see e.g Coeurjolly [16].

Estimation of the Hurst index of fBm

At first, by using Wood and Chan [13] algorithm, for n = 10000 we have simulated three repli-
cations of the fBm sequences BH = (BH(t0), . . . , BH(tn)), at regularly spaced times such that
tk = k/n with k = 0, . . . , n , for three values of the Hurst parameter H, denoted {H1,H2,H3},
and given by



Pierre, R. BERTRAND, Mehdi FHIMA and Arnaud GUILLIN 9

(C1) H1 = 0.3 < 1/2 for short range dependent case,

(C2) H2 = 1/2 for standard Brownian motion,

(C3) H3 = 0.7 > 1/2 for long range dependent case,

see Figure 4 below.
Then, for each sample (Ci) with i ∈ [1, 3], we have computed the increment ratio statistic
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Figure 4: Simulated fBm process with H = 0.3 (left), H = 0.5 (middle) and H = 0.7 (right).

IRS2,n(BHi
) and estimated the Hurst index given by Ĥn,i = Λ−1

2 (IRS2,n(BHi
)). We remark

that the IRS methods provide good results given in Table 1 below.
These examples are plainly confirmed by Monte Carlo simulations. Indeed, for each case (Ci)

Exact values of H 0.3 0.5 0.7

Estimated values of H 0.3009 0.4993 0.7000

Table 1: Estimated values of H.

with i ∈ [1, 3], we have made M = 1000 simulations of independent copies of fBm sequences

B
(k)
Hi

=
(
B

(k)
Hi

(t0), . . . , B
(k)
Hi

(tn)
)
, for k = 1, . . . ,M . We find also good results illustrated by

the following histograms, see Figure 5, which represent the distribution of the estimator Ĥn,i,

for i ∈ [1, 3]. Thus, we have computed the standard deviation E|Ĥ−H|2 given in Table 2 below.
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Figure 5: Distribution of the estimated values of H in the case H = 0.3 (left), H = 0.5 (middle)
and H = 0.7 (right).
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Different values of H 0.3 0.5 0.7

Standard deviation 8.1865 × 10−5 7.6914 × 10−5 6.9837 × 10−5

Table 2: Standard deviation.

Local estimation of the Hurst function of mBm

To synthesis a sample path of a mBm, one has used the Wood and Chan circulant matrix
improved with kriging interpolation method, which is faster than Cholesky-Levinson factoriza-
tion algorithm. In fact, both methods are not exact but provide good results. For, n = 10000,
we have simulated three samples of the mBm sequences BH(·) =

(
BH(t0)(t0), . . . , BH(tn)(tn)

)
,

at regularly spaced times such that tk = k/n with k = 0, . . . , n , for three types of the Hurst
function H(·), namely

(C4) Linear function: H4(t) = 0.1 + 0.8t,

(C5) Periodic function H5(t) = 0.5 + 0.3 sin(πt),

(C6) Logistic function: H6(t) = 0.3 +
0.3

(1 + exp(−100(t− 0.7)))
,

see Figure 6 below.

Then, for each sample (Ci) with i ∈ [4, 6], we have estimated the Hurst function Ĥn,i by using
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Figure 6: Simulated mBm process with H(·) linear function (left), H(·) periodic function (mid-
dle) and H(·) logistic function (right).

the localized version of IRS with γ = 0.3 and the GQV method. We note that both methods
provide correct results represented by Figure 7 below.

These results are plainly confirmed by Monte Carlo simulations. Actually, for each case (Ci)
with i ∈ [4, 6], we have made M = 1000 simulations of independent copies of mBm sequences

B
(k)
Hi(·)

=
(
B

(k)
Hi(t0)

(t0), . . . , B
(k)
Hi(tn)

(tn)
)
, for k = 1, . . . ,M . Then we have computed the Mean

Integrate Square Error (MISE) defined as MISE = E


 1

n+ 1

n∑

j=0

∣∣∣Ĥ(tj)−H(tj)
∣∣∣
2


 = E‖Ĥ −

H‖2L2(0,1) which is a criterion widely used in functional estimation, see Table 3 below.
We observe through Table 3 that both methods provide globally the same results when the

function H(·) varies slowly (see linear and periodic cases), whereas in the case where H(·)
presents the abrupt variation it appears that the GQV is a bit more precise compared to the
IRS method.
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Figure 7: Estimation of the Hurst function H(·) with H(·) linear function (left), H(·) periodic

function (middle) and H(·) logistic function (right). The graphs of function H(·), Ĥ(IRS)
n (·)

its estimation by IRS, and Ĥ
(GQV )
n (·) its estimation by GQV, are represented in green, red and

blue respectively.

H(·) Linear H(·) Periodic H(·) Logistic

MISE by IRS 2.6743 × 10−4 1.4743 × 10−4 5.3546 × 10−3

MISE by GQV 8.9547 × 10−4 5.4743 × 10−4 8.9743 × 10−4

Table 3: MISE given by IRS method and GQV method

5 Proofs of the main results

This section contains the proof of the results of Section 3. Note that we have divided the
proof of Theorem 1 in two parts: first we consider the general case of Gaussian processes with
stationary increments and then in a second part we investigate the application to fractional
Bronwnian motion.

5.1 Proof of localization

First, we can deduce as a corollary that the a-Generalized increments sequence (∆aX(tk))0≤k≤n−L−1

form a family of stationary identically distributed centered Gaussian r.v. with variance

σ2a,n = cov (∆aX(tk),∆aX(tk))

=

∫

R

|ga(ξ/n)|2 · f(ξ) dξ

= 2

∫

R+

|ga(ξ/n)|2 · f(ξ) dξ, ,

covariance given, for all 0 ≤ k1, k2 ≤ n− L− 1, by

cova,n(tk1 , tk2) = cov (∆aX(tk1),∆aX(tk2))

=

∫

R

ei(k1−k2)ξ/n|ga(ξ/n)|2 · f(ξ) dξ

= 2

∫

R+

cos ((k1 − k2)ξ/n) |ga(ξ/n)|2 · f(ξ) dξ,

and correlation between two successive a-Generalized increments defined by

ρa,n =
cov (∆aX(tk+1),∆aX(tk))

[cov (∆aX(tk+1),∆pX(tk+1))]
1/2 · [cov (∆aX(tk),∆pX(tk))]

1/2
=

cova,n(tk+1, tk)

σ2a,n
,
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where ga(·) is described by (6). Therefore, for a fixed 0 ≤ k ≤ n− L− 1, it is easy to remark

that there exist two independent standard Gaussian r.v. Zk, Zk+1
D∼ N (0, 1) such that

∆aX(tk) = σa,nZk (23)

∆aX(tk+1) = σa,n

(
ρa,nZk +

√
1− ρ2a,nZk+1

)
, (24)

where the sign
D∼ means equal in distribution.

Remark: In the particular case of the fBm, the correlation between two successive a-Generalized
increments, ρa,n, does not depend on n. Indeed, we know that the spectral density of the fBm
is given by (2), then we have

ρa,n(H) =

∫
R+

cos(ξ/n)|ga(ξ/n)|2 · ξ−(2H+1) dξ
∫
R+

|ga(ξ/n)|2 · ξ−(2H+1) dξ
.

And after, we can change variable ξ/n to u. So this implies that

ρa,n =

∫
R+

cos(u)|ga(u)|2 · u−(2H+1) du
∫
R+

|ga(u)|2 · u−(2H+1) du
= ρa(H),

which is independent of n.

5.2 Proof of CLT for Gaussian Processes with stationary increments

The proof uses the notion of Hermite rank and Breuer-Major theorem, see for e.g Arcones [2,
Theorem 4, p.2256] or Nourdin et al [24, Theorem 1, p.2].

Definition 1 (Hermite rank)
Let G be a R

d Gaussian vector and φ : Rd → R be a measurable function such that E |φ(G)|2 <
+∞. Then, the function φ is said to have Hermite rank equal to the integer q ≥ 1 with
respect to Gaussian vector G, if (a) E [(φ(G) − E (φ(G)))Pm(G)] = 0 for every polynomial Pm(
on R

d
)

of degree m ≤ q − 1; and (b) there exists a polynomial Pq

(
on R

d
)

of degree q such
that E [(φ(G)− E (φ(G)))Pq(G)] 6= 0.

We first give the proof of Theorem 1 in the general case of Gaussian processes with stationary
increments and then in a separate part the application to fractional Brownian motion.

Proof of Theorem 1
First, in the sequel we denote by G = (Gk, Gk+1) = (∆aX(tk),∆aX(tk+1)) these two successive
stationary a-Generalized increments defined by ((23), (24)). Then, according to Bardet and
Surgailis [7, Appendix, p.31], we know that

E [ψ (Gk, Gk+1)] = Λ0(ρa), and E |ψ (Gk, Gk+1)|2 < +∞,

where Λ0(.) is defined by (10) and ρa is the correlation between Gk and Gk+1. To achieve our
goal, we start by defining a new function φ : R2 → R such that

φ(X,Y ) = ψ(X,Y )− Λ0(ρa).

Then, φ is in fact a Hermite function with respect to Gaussian vector G = (Gk, Gk+1) with
rank equal to 2. Therefore, by applying Breuer-Major theorem, see e.g Arcones [2, Theorem
4, p.2256] or Nourdin et al [24, Theorem 1, p.2], we get directly the CLT (18). So, the key
argument of our proof is to determine the Hermite rank of φ. We include here the proof of
the fact that the Hermite rank is 2 as the proof does not seem to appear elsewhere. Let
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P0(X,Y ) = c0, P1(X,Y ) = c11X + c12Y + c10 and P2(X,Y ) = X2 be three polynomials (on
R
2) with degree respectively 0, 1 and 2. First, it is easy to see that E [φ(G)P0(G)] = 0. Now,

we must to show that E [φ(G)P1(G)] = 0. We have

E [φ(G)P1(G)] = c11E [φ(G)Gk ] + c12E [φ(G)Gk+1] + c10 E [φ(G)]︸ ︷︷ ︸
=0

.

Then,

E [φ(G)P1(G)] = c11E [ψ(Gk, Gk+1)Gk]− c11Λ0(ρa)E[Gk]︸ ︷︷ ︸
=0

+c12E [ψ(Gk, Gk+1)Gk+1]− c12Λ0(ρa)E[Gk+1]︸ ︷︷ ︸
=0

,

because Gk and Gk+1 are zero-mean r.v. and due to the fact that the r.v Gk and Gk+1 have
a symmetric function, we can write without any restrictions that

E [φ(G)P1(G)] = (c11 + c12)E [ψ(Gk, Gk+1)Gk] .

By using definition of (Gk, Gk+1) = (∆aX(tk),∆aX(tk+1)) given by ((23), (24)), we get

(c11 + c12)
−1

E [φ(G)P1(G)] = σaE
[
ψ
(
σaZk, σa

(
ρaZk +

√
1− ρ2aZk+1

))
Zk

]

where Zk and Zk+1 are two independent standard Gaussian r.v. Zk, Zk+1
D∼ N (0, 1). Thus,

by using homogeneity property of ψ(·, ·) specified by: ψ(aX, aY ) = ψ(X,Y ), we obtain

(c11 + c12)
−1

E [φ(G)P1(G)] = σaE
[
ψ
(
Zk,

(
ρaZk +

√
1− ρ2aZk+1

))
Zk

]
.

Next, we have

(c11 + c12)
−1

E [φ(G)P1(G)] =
σa,n
2π

∫

R2

ψ
(
z1, ρaz1 +

√
1− ρ2az2

)
z1 exp

(
−z

2
1 + z22
2

)
dz1dz2.

And after, we can change variables (z1, z2) to polar coordinates (r cos(θ), r sin(θ)). So, this
implies that

2πσ−1
p (c11 + c12)

−1
E [φ(G)P1(G)] =

∫ π

−π
ψ
(
cos(θ), ρa cos(θ) +

√
1− ρ2a sin(θ)

)
cos(θ)dθ

×
∫ +∞

0
r2 exp

(
−r

2

2

)
dr

︸ ︷︷ ︸
=
√

π/2

.

Then, we remark that
∫ 0

−π
ψ
(
cos(θ), ρa cos(θ) +

√
1− ρ2a sin(θ)

)
cos(θ)dθ =

∫ 0

−π

∣∣∣cos(θ) + ρa cos(θ) +
√
1− ρ2a sin(θ)

∣∣∣

|cos(θ)|+
∣∣∣ρa cos(θ) +

√
1− ρ2a sin(θ)

∣∣∣
cos(θ)dθ =︸︷︷︸

u=θ+π

∫ π

0

∣∣∣cos(u− π) + ρa cos(u− π) +
√

1− ρ2a sin(u− π)
∣∣∣

|cos(u− π)|+
∣∣∣ρa cos(u− π) +

√
1− ρ2a sin(u− π)

∣∣∣
cos(u− π)du =

−
∫ π

0

∣∣∣cos(u) + ρa cos(u) +
√

1− ρ2a sin(u)
∣∣∣

|cos(u)|+
∣∣∣ρa cos(u) +

√
1− ρ2a sin(u)

∣∣∣
cos(u)du =

−
∫ π

0
ψ
(
cos(θ), ρa cos(θ) +

√
1− ρ2a,n sin(θ)

)
cos(θ)dθ.
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Thus, we deduce directly that E [φ(G)P1(G)] = 0. In the similar way, it is easy to prove that
E [φ(G)P2(G)] 6= 0. So, by using Definition 1, we can say that φ is a Hermite function with
rank equal to 2. Therefore, Theorem 1 becomes an application of Breuer-Major theorem which
gives directly the proof of CLT (18). �

Proof of CLT for FBm

Next, we present the correlation function properties of the a-Generalized increments sequence
of a fBm.

Property 1 (Correlation function of the a-Generalized increments)
Let (BH(t), t ∈ [0, 1]) be a fBm with Hurst parameter H ∈ (0, 1) and let (∆aBH(tk))0≤k≤n−L−1

its a-Generalized increments sequence defined by (5), with a ∈ A(p, L) a filter given by (3).
Then, for all j ∈ Z, we have

ra,n(j) = − 1

2 · n2H × Ca(j)

where ra,n(j) := cov (∆aBH(t0),∆aBH(tj)) and Ca(j) is given by

Ca(j) :=
L∑

l1,l2=0

al1al2 |j + l2 − l1|2H

∼
j→+∞

(
2H

2p

)
·
(

L∑

l=0

all
p

)2

× j2H−2p with

(
2H

2p

)
=

∏2p−1
k=0 (2H − k)

(2p)!
.

And the correlation between two successive a-Generalized increments, is specified by

ρa(H) =

∑L
l1,l2=0 al1al2 |1 + l2 − l1|2H
∑L

l1,l2=0 al1al2 |l2 − l1|2H
. (25)

�

Proof of Property 1
To compute the covariance function of the a-Generalized increments sequence, we start by
using the initial formula of the covariance function of a fBm defined by (12). Then, we obtain

ra,n(j) := cov (∆aBH(t0),∆aBH(tj))

=

L∑

l1,l2=0

al1al2E [BH(tl1)BH(tj+l2)]

=
1

2

L∑

l1,l2=0

al1al2t
2H
l1

︸ ︷︷ ︸
=0

+
1

2

L∑

l1,l2=0

al1al2t
2H
j+l2

︸ ︷︷ ︸
=0

−1

2

L∑

l1,l2=0

al1al2 |tj+l2 − tl1 |2H

= − 1

2 · n2H × Ca(j)

where Ca(j) =
∑L

l1,l2=0 al1al2 |j+l2−l1|2H . Now, we give an equivalent of Ca(j) when j → +∞.
To do this, we use the Taylor expansion as follows

Ca(j) = j2H ×
L∑

l1,l2=0

al1al2

∣∣∣∣1 +
l1 − l2
j

∣∣∣∣
2H

= j2H ×




L∑

l1,l2=0

al1al2 · 1
︸ ︷︷ ︸

=0

+
+∞∑

k=1

(
2H

k

)
j−k

L∑

l1,l2=0

al1al2 |l2 − l1|k



.
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Next, by using (4), we know that when we sum over k, every term in the expansion gives a
zero contribution for any integer k < 2p. So this implies that

Ca(j) =

(
2H

2p

)
·
(

L∑

l=0

all
p

)2

× j2H−2p + o
(
j2H−2p

)

∼
j→+∞

(
2H

2p

)
·
(

L∑

l=0

all
p

)2

× j2H−2p.

This finishes the proof of Property 1. �

And after, we note that the function ψ(·, ·) satisfies the homogeneity property specified by:
ψ(aX, aY ) = ψ(X,Y ). So, this allows us to rewrite IRSa,n(BH) as follows

IRSa,n(BH) =
1

n− L

n−L−1∑

k=0

ψ
(
∆aB

std

H (tk),∆aB
std

H (tk+1)
)

where ∆aB
std

H represents the standardized version of ∆aBH described, for all 0 ≤ k ≤ n−L−1,
as

∆aB
std

H (tk) =
∆aBH(tk)√

V ar [∆aBH(tk)]

and its covariance function is given by

ra(j) := cov
(
∆aB

std

H (t0),∆aB
std

H (tj)
)

=
ra,n(j)

ra,n(j)

=
Ca(j)

Ca(0)

∼
j→+∞

1

Ca(0)
·
(
2H

2p

)
·
(

L∑

l=0

all
p

)2

× j2H−2p

which is independent of n. So, according to Theorem 1, the key argument is to prove that

∑

j∈Z

|ra(j)|2 < +∞.

Thus, by using a Riemman sum argument, we can deduce immediately that this condition is
verified if and only if 4H − 4p < −1, i.e H < p − 1/4, and this implies that H ∈ (0, 3/4) if
p = 1 and that H ∈ (0, 1) if p = 2. Therefore, the assumption (17) of Theorem 1 is satisfied
and so we obtain a simple intuitive proof of the CLT (18) applied to the IRS of fBm. This
finishes the proof of Theorem 1. �

End of The proof of Theorem 1

5.3 Proof of CLT for mBm

The proof of Theorem 2 relies on a localization argument given in the following Lemma

Lemma 1
First, we consider t∗ ∈ (0, 1) be an arbitrary fixed point, γ (0, 1) a fixed parameter which
allows to control the size of the indices set around t∗, and a ∈ B(p) a binomial filter.
Let BH(.) = (BH(t)(t), t ∈ [0, 1]) be a mBm with Hurst function H(·) ∈ Cη ([0, 1], [H⋄,H

⋄]) and
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BH∗ = (BH∗(t), t ∈ [0, 1]) a fBm with Hurst index H∗ = H(t∗).
Moreover, we consider IRSγ,t∗

a,n

(
BH(·)

)
the localized version of IRS for mBm defined by (21),

and IRSa,n (BH∗) a modified version of the IRS for fBm described as follows

IRSa,n (BH∗) =
1

2n1−γ + 1

⌊nt∗+n1−γ⌋∑

k=⌊nt∗−n1−γ⌋

ψ (∆aBH∗(tk),∆aBH∗(tk+1)) .

Then

E

∣∣∣IRSγ,t
∗

a,n

(
BH(·)

)
− IRSa,n (BH∗)

∣∣∣
2
= O

n→+∞

(
n−γη

)
. (26)

Proof of Lemma 1
For n large enough, we have

|∆IRSγ,ηn |2 :=
∣∣∣IRSγ,t

∗

a,n

(
BH(·)

)
− IRSa,n (BH∗)

∣∣∣
2

=
1

2n1−γ + 1

∣∣∣∣∣∣

⌊nt∗+n1−γ⌋∑

k=⌊nt∗−n1−γ⌋

ψ
(
∆aBH(tk)(tk),∆aBH(tk+1)(tk+1)

)
− ψ (∆aBH∗(tk),∆aBH∗(tk+1))

∣∣∣∣∣∣

2

.

Then, by using Cauchy-Schwarz inequality, we get

|∆IRSγ,ηn |2 ≤ 1

2n1−γ + 1

⌊nt∗+n1−γ⌋∑

k=⌊nt∗−n1−γ⌋

∣∣ψ
(
∆aBH(tk)(tk),∆aBH(tk+1)(tk+1)

)
− ψ (∆aBH∗(tk),∆aBH∗(tk+1))

∣∣2 .

This implies that,

E |∆IRSγ,η
n |2 ≤ 1

2n1−γ + 1

⌊nt∗+n1−γ⌋∑

k=⌊nt∗−n1−γ⌋

E
∣∣ψ
(
∆aBH(tk)(tk),∆aBH(tk+1)(tk+1)

)
− ψ (∆aBH∗(tk),∆aBH∗(tk+1))

∣∣2 .

Now, we recall that Ω∗ represents the event with probability 1 introduced in Subsection 2.3.
Then, according to Bružaitė & Vaičiulis [12, Lemma 1, formula 3.3, p. 262] and our Taylor
expansion (14), we deduce that

E

{∣∣ψ
(
∆aBH(tk)(tk),∆aBH(tk+1)(tk+1)

)
− ψ (∆aBH∗(tk),∆aBH∗(tk+1))

∣∣2 IΩ∗

}

≤ C (ρa(H
∗)) · E {(|∆aR(tk)|+ |∆aR(tk+1)|) IΩ∗} .

where the constant C (ρa(H
∗)) > 0 depend only on ρa(H

∗) and (∆aR(tk)) corresponds to
a-Generalized increments at tk of the rest (R(t), t ∈ [0, 1]) defined by (15). Next, by using
(16), we deduce that there exist a constant κ > 0 such as

E
∣∣ψ
(
∆aBH(tk)(tk),∆aBH(tk+1)(tk+1)

)
− ψ (∆aBH∗(tk),∆aBH∗(tk+1))

∣∣2 IΩ∗ ≤ κn−γη.

Therefore, we obtain

E

{
|∆IRSγ,ηn |2 IΩ∗

}
≤ κn−γη.

Moreover, we know that

E |∆IRSγ,ηn |2 = E

{
|∆IRSγ,ηn |2 IΩ∗

}
+ E

{
|∆IRSγ,ηn |2 IΩ\Ω∗

}

︸ ︷︷ ︸
=0

,

by applying Cauchy-Schwarz inequality. Then, we get directly

E |∆IRSγ,ηn |2 ≤ κn−γη.

This finishes the proof of Lemma 1. �
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Proof of Theorem 2
First, according to our Lemma 1, we have

E

∣∣∣IRSγ,t
∗

a,n

(
BH(·)

)
− IRSa,n (BH∗)

∣∣∣
2
= O

n→+∞

(
n−γη

)
.

Next, it is easy to see that

E

∣∣∣n(1−γ)/2
(
IRSγ,t

∗

a,n

(
BH(·)

)
− Λa(H

∗)
)
− n(1−γ)/2 (IRSa,n (BH∗)− Λa(H

∗))
∣∣∣
2
= O

n→+∞

(
n1−γ(1+η)

)
.

After, by applying Theorem 1, we know that

n(1−γ)/2 (IRSa,n (BH∗)− Λa(H
∗))

D→ N (0,Σ2
a) with

{
H∗ ∈ (0, 3/4) if p = 1
H∗ ∈ (0, 1) if p ≥ 2

Therefore, CLT (22) is satisfied if and only if γ(1 + η) > 1.
Let us now sketch how to extend it to the multidimensional case: first we may operate a
multidimensional freezing of time in the sense that there exists an almost sure event Ω∗ such
that

∀i, B(H(t), t)1Ω∗ = Bi(H(ti, t)1Ω∗ +Ri(t)1Ω∗ , sup
s∈[0,1]

∣∣Ri(s)IΩ∗

∣∣ ≤ C∗(ω)|H(t) −H∗|

and the process Bi are defined using wavelet expansion so that the correlations between them
are well described. We may then consider fractional Brownian motions rather than mBm.
Secondly we use Cramer-Wold device (see e.g. Th. 7.7 in Billingsley [11]) : it is sufficient to
get the CLT for every real numbers b1, ..., bm for

n(1−γ)/2
m∑

i=1

bi

(
IRSγ,tia,n (B

i
H(ti)

)− Λa(H(ti))
)

which is obtained exactly as before. �
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