
HAL Id: inria-00529332
https://hal.inria.fr/inria-00529332

Submitted on 25 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decoupled Zero-Compressed Memory
Julien Dusser, André Seznec

To cite this version:
Julien Dusser, André Seznec. Decoupled Zero-Compressed Memory. HiPEAC - International Confer-
ence on High-Performance and Embedded Architectures and Compilers, Jan 2011, Heraklion, Greece.
�10.1145/1944862.1944876�. �inria-00529332�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/50046511?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/inria-00529332
https://hal.archives-ouvertes.fr

Decoupled Zero-Compressed Memory

Julien Dusser
Université de Rennes 1

IRISA - UMR6074
Campus de Beaulieu, 263 av. du Général

Leclerc, 35042 Rennes Cedex, France
julien.dusser@irisa.fr

André Seznec
INRIA, Centre Inria Rennes – Bretagne

Atlantique
Campus de Beaulieu, 263 av. du Général

Leclerc, 35042 Rennes Cedex, France
andre.seznec@inria.fr

ABSTRACT
For each computer system generation, there are always ap-
plications or workloads for which the main memory size is
the major limitation. On the other hand, in many cases, one
could free a very significant portion of the memory space by
storing data in a compressed form. Therefore, a hardware
compressed memory is an attractive way to artificially in-
crease the amount of data accessible in a reasonable delay.

Among the data that are highly compressible are null data
blocks. Previous work has shown that, on many applications
null blocks represent a significant fraction of the working set
resident in main memory. We propose to leverage this prop-
erty through the use of a hardware compressed memory that
only targets null data blocks, the decoupled zero-compressed
memory, or DZC memory. Main memory is managed as a
decoupled sectored cache with physical pages treated as sec-
tors and 64-byte memory blocks treated as subblock. Null
memory blocks are represented through a single bit, thus
freeing physical memory space for the applications.

Our experiments show that for many applications, the
DZC memory allows to artificially enlarge the main mem-
ory, i.e. it reduces the effective physical memory size needed
to accommodate the working set of an application without
excessive page swapping. Moreover, through caching null
memory blocks in the memory controller, the DZC memory
also decreases the average access time to the main memory
for many applications.

Categories and Subject Descriptors
B.3.2 [Hardware]: Memory Structures—Design Styles

General Terms
Design

Keywords
Memory compression, Null block, Zero block

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HiPEAC2011 Heraklion, Crete, Greece
Copyright 2011 ACM 978-1-4503-0241-8/11/01 ...$10.00.

1. INTRODUCTION
Over the past 50 years, the progress of integration tech-

nology has allowed to build larger and larger memories as
well as to build faster and faster computers. This trend has
continuously triggered the development of new applications
and/or new application domains that demand for ever-more
processing power and for more memory space. For each new
generation of computers, some end-users are faced with the
limited size of the physical memory while swapping to disks
kills performance.

In order to artificially enlarge the physical memory space,
it has been proposed to compress data in memory. Both
software [7, 17, 22, 6] and hardware compressions [21, 3, 9]
have been considered.

In this paper, we propose a new organization of a hardware
compressed memory, the decoupled zero-compressed mem-
ory or DZC memory. Only null data blocks are compressed
since they represent a significant fraction of the data resident
in memory (30% are reported in [9]). Only non-zero blocks
are really stored in the compressed physical memory (CP

memory). Our compressed memory design is inspired by
the decoupled sectored cache [20] and the Zero Content Aug-
mented cache [8]. In the (N,P)-decoupled sectored cache, a
sector (i.e. P consecutive cache lines) can map cache blocks
belonging to P different cache sectors. Typically, the size
of the region that can be mapped by the tag array is larger
than the size of the cache. In the DZC memory, we borrow
the same principle. P being the size of a page in memory,
a region of the CP memory consisting of M ∗ P bytes will
map blocks of memory belonging to Q pages of the uncom-
pressed physical memory (UP memory) with Q ≥ M . The
memory controller is in charge of translating the UP mem-
ory address (the only address seen by the processor) towards
the CP memory address (or to return a null block). In order
to be efficient, the memory controller must implement an
UP to CP address translation cache, the UCT cache. In-
terestingly, the UCT cache also caches the null blocks and
is able to service requests to null blocks without effectively
accessing the memory.

Our simulations shows that the DZC memory is quite ef-
fective at enlarging the size of the working set that can reside
in the main memory. Moreover, when the working set fits in
the main memory, the UCT cache acts as an off-chip Zero-
Content cache [8], therefore it decreases the average effective
memory access time for many applications.

The remainder of this paper is organized as follows. In
Section 2, we review the previous works on memory com-
pression and point out the important issues that must be

addressed in the design of a hardware compressed memory.
Section 3 presents experiments confirming that a significant
amount of the memory blocks stored in memory are made
only of null values. In Section 4, we present the DZC mem-
ory principles, then we present a possible implementation.
Section 5 presents simulation results illustrating the benefits
of using a DZC memory in place of a conventional memory.
Section 6 concludes this study.

Throughout the paper, we will use the terms memory
blocks and memory lines:

memory block is a contiguous, aligned block of data in
physical memory the same size as a last-level cache
block.

memory line is the location in memory where a memory

block is stored.

2. RELATED WORK AND ISSUES

2.1 Software Compression
In previous approaches to compressed memory [7, 22, 17,

6, 4], it was proposed to dedicate part of the physical mem-
ory to store memory pages in a compressed form. The re-
mainder of the physical memory is left uncompressed. Only
this uncompressed memory is directly addressed by the pro-
cessor. On a page fault on the uncompressed memory, the
page is searched in the compressed memory. When found
the page is uncompressed. That is the memory is compres-
sed to hide the latency of swapping on disks. This approach
enlarges the memory space that applications can use with-
out swapping, but a high compression/decompression pen-
alty is paid on each page fault on the uncompressed memory.
Dimensioning the respective sizes of the compressed and un-
compressed memory is rather challenging.

Some other studies focus on compressing heap data inside
JAVA Virtual Machines. Sartor et al. [19, 18] notices an
important usage of zero blocks inside and at the end of ar-
rays. Compressing zero blocks with the method describe in
[5] allows to save up to 40% of heap size, with an average of
14%. This approach decreases memory usage but requires
an extra indirection on access that may impact performance.

2.2 Hardware Compressed Memories
Only a few studies have addressed using hardware com-

pressed memories and they face some issues.

2.2.1 IBM Memory eXpansion Technology (MXT)
In the early 2000’s IBM produced servers with MXT [11,

21, 10, 12]. The whole main memory is compressed with a
parallel variant [13] of LZ77 [23] applied on 1 KB physical
blocks. Blocks are stored up to four 256-byte compressed
physical blocks. Blocks are accessed through an indirect
access: one must first retrieve the address in the compressed
memory in a table, then access the compressed memory.

Compression/decompression latency (64 cycles) of such a
large block is a major issue. However the main issue with
this approach is the granularity of the main memory access:
the indirect access table must store an address per memory
block. In order to limit the volume of this table, the memory
block size is 1 KB. However using large L3 blocks may dras-
tically increase the memory traffic on read misses as well as
on write-backs.

Another issue is the frequent changes of the size of the
compressed blocks. On a write-back on memory, the size
of the compressed block can change. The solution adopted
on MXT is to free the previous allocation of the block and
allocate a new position in the memory.

2.2.2 Ekman and Stenström
Ekman and Stenström [9] try to address two issues as-

sociated with the MXT technology: indirect access and the
large block granularity. In order to address large block gran-
ularity, (i.e. the size of the indirect access table), Ekman

and Stenström propose to store compressed blocks from a
physical page in the uncompressed memory in consecutive
memory locations. They consider 64-byte memory blocks. A
simple compression scheme, FPC [6], resulting in only four
different sizes of compressed blocks is considered in order to
limit the decompression latency. A descriptor of the com-
pressed form is maintained for each physical page. Moreover,
since a descriptor is attached with the physical page, they
suggest to modify the processor TLB to retrieve the com-
pressed address, thus saving the indirection to access the
compressed memory.

The basic compression scheme suffers from an important
difficulty on write operations. On a write, the size of a mem-
ory block in the compressed memory may increase. When
the compressed physical blocks of a page are stored sequen-
tially, any size increase of block triggers the move of the
whole page. In order to prevent moving compressed blocks
and compressed pages in the memory, they propose to in-
sert gaps between blocks at the ends of sub-pages and pages.
This avoids moving all the pages on each block expansion,
but wastes free space and does not prevent all data move-
ments.

Moreover, the proposed implementation suffers from other
drawbacks. First the uncompressed to compressed address
translation is performed through TLB for access misses, but
write-backs need some other uncompressed to compressed
address translation mechanism (not described in the pa-
per [9]). A second difficulty is to maintain cache coherency
in a multiprocessor: the access to the main memory is done
using the address in the compressed memory while the cache
hierarchy is accessed with the address in the uncompressed
memory.

2.3 General Architecture of Hardware
Compressed Memory System

The difficulties mentioned above for the compressed mem-
ory scheme proposed by Ekman and Stenström have lead us
to better formalize the concept of a compressed memory.

We distinguish two address domains, the Uncompressed
Physical memory space, or UP memory space and the Com-
pressed Physical memory space, or CP memory space. All
the transactions seen by the processors or IOs are performed
in the uncompressed memory space. The memory compres-
sion controller performs the translation of the UP address
in the CP address.

Figure 1 illustrates this model for a bus-shared memory
multiprocessor. The model would also fit a distributed mem-
ory system, with pairs of associated CP memory space and
UP memory space.

Data

Uncompressed Physical Memory Space

UP addressUP address

Last level
WB cache

Last level
WB cache

CPU 1 CPU 2

Control
structures

Compressed data

Data

BusUncompressed
data

Compressed
data

CP address

UP address

Data
compressor

uncompressor
structures

Cache

ControlMemory
compression

controller

Figure 1: Hardware compressed main memory architec-
ture: the CP address is seen only by the com-
pressed memory.

3. NULL BLOCKS IN MEMORY
Several studies have shown that memory content [7, 22,

1, 17, 6, 16, 9, 14] and cache content [15, 2, 3, 14] are often
highly compressible. Ekman and Stenström [9] showed that
on many applications many data are null in memory and
that in many cases, complete 64-byte blocks are null. For
SPEC CPU 2000 benchmarks, they reported that 30% of 64-
byte memory blocks are null blocks with some benchmarks
such as 176.gcc exhibiting up to 80% of null blocks.

Our own simulation confirms this study. Using the Sim-
ics simulation infrastructure1 thus taking into account the
Linux operating system simulation, we took a snapshot of
the content of the physical memory pages touched by the
application after simulating 50 billion instructions; Figure 2
represents the proportion of null blocks in memory assum-
ing 64-byte blocks on SPEC CPU 2006 benchmarks. Exper-
iments on SPEC CPU 2000 presented similar trend. One
could note that, on many applications the ratio of null blocks
is quite high, exceeding 80% in several cases.

Others experiments, with the framework described in [8]
showed that the initialisation phase is less than 2 billions
instructions for SPEC CPU 2006. After this initialization
phase, the rate of null blocks in accesses tend to be relatively
stable and close to the static rate measured in Figure 2.

A compression scheme targeting only null memory blocks
might be considered as targeting only the low hanging fruits
in memory compression. However these null blocks repre-
sent a sizable portion of the compressible blocks on a hard-
ware compressed memory. As an argument for our thesis,
Figure 2 also reports the ratio of 64-byte blocks in mem-
ory that could be compressed in 32 bytes using FPC [6], a
word level compression algorithm. FPC is here applied with
four patterns: uncompressed, null, MSB-null and all ones.
In most cases, the null blocks represent the most significant
part of the compressible blocks.

1Simics is a Virtutech software.

4. DECOUPLED ZERO-COMPRESSED
MEMORY

As pointed out above, the ratio of null memory blocks is
quite high for many applications. In this section, we present
a hardware compressed memory that exploits this property,
the decoupled zero-compressed memory or DZC memory.
As Ekman and Stenström proposal [9], our proposition tar-
gets medium grain memory block sizes in the same range of
the cache block sizes, i.e. around 32-128 bytes.

The principle of the DZC memory is derived from the de-
coupled sectored cache [20] and the zero-content augmented
cache [8].

We divide the DZC memory in equal size regions, we will
call C-spaces, for compressed memory spaces. Typically the
size S of a C-space is about 64 to 512 times larger than the
size P of an uncompressed page, i.e. in the range of 512 KB
to 4 MB if one consider 8 KB physical pages.

E3

Ax

C3

A2

B1

D2

A3

CxBx

D3

B2

A1 E1

PagePagePage

Bx Cx

D3

D2

C3

B2

B1

0

0

0

0

0

Page

Ax

A1

A2

A3

Page

E1

E3

0

0

A B C D E
C−Space

Figure 3: Five uncompressed physical pages are stored in a
four-page C-space. Each non-null memory block
is stored in one of 4 possible memory lines

An uncompressed physical page, UP page, is mapped onto
a given C-space, i.e., the non-null blocks of the UP page
are represented in the C-space. The null blocks are not
represented in the DZC memory but are only represented
by a null bit. To store the non-null blocks, we manage the
main memory as a set-associative decoupled sectored cache.
Each page is treated as a sector and allocated within a C-
space. Each non-null block of the page has S/P possible line
positions in the C-space (see Figure 3).

NNNNN NWP WP WP WP WP WPCA

PA

N

N

N

N

N

N WP

WP

CA

WP

WP

WP

WP

N
true

Null Block
false

Return Address

Page Descriptor PA

WP

Poff

CA · S +

(

Poffset ·
S
P

+ WP

)

B

Figure 4: A page descriptor access in page descriptor ar-
ray. CA, the C-space address and a way-pointer
WP and a null bit N per block in the page. B is
the line size.

0%

20%

40%

60%

80%

100%

perlbench

bzip2

gcc
bw

aves

gam
ess

m
cf

m
ilc

zeusm
p

grom
acs

cactusAD
M

leslie3d

nam
d

gobm
k

dealII

soplex

povray

calculix

hm
m

er

sjeng

G
em

sFD
TD

libquantum

h264ref

tonto
lbm

om
netpp

astar

w
rf

sphinx3

xalancbm
k

Null 64B Blocks
FPC 64B-to-32B

Figure 2: Ratio of 64B blocks null and 64B blocks compressible to 32B using FPC after 50 billions instructions

Read access to an uncompressed memory block at UP
address PA + Poffset on the main memory is performed
as follows (Figure 4). A P-page descriptor, associated with
the uncompressed memory page at address PA, contains a
pointer CA on the C-space where the page is mapped. For
each blocks in the page, the P-page descriptor also contains
a null bit N to represent whether the block is null or not and
a way pointer WP to retrieve the block when it is non-null.
When N is set the memory block is null, otherwise the block
resides in the compressed memory at address:

CA · S +
“

Poffset ·
S
P + WP

”

B.

On the write of an uncompressed memory block, four situ-
ations must be distinguished depending on both the previous
and new status:

• write a null block in place of a null block: no action.
The P-page descriptor was already featuring a null bit
set for the block.

• write a non-null block in place of a non-null block: re-
trieve the address of the non-null block in the com-
pressed memory and update the block.

• write a null block in place of a non-null block: set the
null bit, and, as explained later, free the memory line
previously occupied in the C-space.

• write a non-null block in place of a null block: allocate
a memory line in the C-space and update the null bit
and the way pointer accordingly.

To manage these two last situations, a C-space descriptor
(Figure 5) is associated with each C-space. The C-space de-
scriptor consists of a set of validity bits v, one bit per mem-
ory line in the C-space. The validity bit indicates whether
or not a line is occupied.

Freeing a memory line in the DZC memory is then just
simply setting its validity bit to zero.

Allocating a line in the DZC memory for a physical mem-
ory line requires finding a free block in the set of possible
locations in the C-space. That is scanning the validity bits
of all the possible lines. When there is no free line for the
block, an exception must be raised and an action must be
taken: the overall physical page is moved from the C-space
to another C-space with enough free lines. If no such space
exists one or more page must be ejected.

V V V V V V V V

VVVVVVVV

V V V V V V V V

VVVVVVVV

V V V V V V V V

VVVVVVVV

CA

FL

FL

FL

FL

FL

FL

MINFL

Search for a
free line v

FL

Return
free line index

Return
exception

6= 0

Poffset

= 0

Figure 5: C-space descriptor and free line allocation.

While the validity bits are sufficient to manage the allo-
cation of pages in C-space, storing some redundant infor-
mation allows an easier management. Therefore, in order
to guide such a physical page move, the C-space descriptor
maintains a counter FL (free lines) per set of lines indicat-
ing the number of free lines in the set. Moreover MINFL,
the minimum of the FL counters on all the sets of memory
lines is also maintained.

On a write-back involving a state change of the memory
block, in the general case the FL counter and MINFL are
also updated. The exceptional case where a new block has to
be allocated and no free line is valid corresponds to FL = 0.
The physical page must then be moved to another C-space:
in order to guarantee that the chosen C-space will be able
to store the whole physical page, one has only to chose a
target C-space for which MINFL ≥ 0.

4.1 Improving Null Blocks Distribution
Unfortunately, experimental results showed that null blo-

cks are not distributed evenly on the pages. There are often
more null blocks at the end of pages than at the beginning.
Therefore the conventional set mapping would lead to more
saturation on sets corresponding to the beginning of pages.
In order to randomize the distribution of null blocks across
all sets, we use a exclusive-or index computation: the set
index in UP address is exclusive-ored with the lowest bits of
page number.

4.2 Benefits
Unlike IBM MXT, the DZC memory can handle small

blocks and has very short decompression latency. This trans-
lates in a finer memory traffic granularity and a shorter ac-
cess time to the missing data in memory.

As already mentioned, Ekman and Stenström approach [9]
faces a difficulty on write-backs when the size of a block
increases. This often necessitates to move the data in the
page or to reallocate and move the overall memory page.
Such data movements are rare events on the DZC memory
as illustrated in the experimental section.

4.3 Control Structure Overhead
The control structures needed in a DZC memory are re-

spectively the P-page descriptors associated with the phys-
ical pages of the uncompressed memory and the C-space
descriptors.

The P-page descriptor (Figure 4) contains a C-space poin-
ter, a way-pointer and a null bit for each memory block.
For instance, if the respective sizes of the C-space and of
the physical page are 4 MB and 8 KB, the way-pointer will
be 9-bit wide. Assuming 64-byte memory blocks, 128 way-
pointers are needed per physical page. A 4-byte C-space
pointer would allow to map pages anywhere in a 252 bytes
compressed memory. That is a P-page descriptor represents
164 bytes.

The C-space descriptor features a validity bit per memory
line in the C-space, i.e. assuming 4 MB C-space and 64-byte
memory block, 8 KB per C-space. The FL and MINFL
counters could be represented on 10 bits. That is a C-space
descriptor represents 8353 bytes.

The storage requirement for the control structures of the
DZC memory depends on the size of the physical memory
mapped onto the DZC memory. Assuming that this size is
1.5 times the size of the DZC memory and the parameters
used in the example above, this storage requirement would
be 1.5 ∗ 512 ∗ 164 + 8353 = 134, 305 bytes in average per C-
space, i.e. around 3.2 % of the memory. For a large physical
memory, these control structures should be mapped onto the
physical memory.

4.4 Memory Compression Controller: Bypas-
sing Memory Reads on Null Blocks

In any system, the memory controller is in charge of man-
aging the access to the memory. The memory compression
controller can be integrated in this memory controller.

The memory compression controller is in charge of deter-
mining whether a block is null or not. On a read, when
the block is non-null, the memory compression controller
also determines its CP address. On a write-back changing
a null block in a non-null block, the memory compression
controller is in charge of allocating a free block in the DZC
memory. When no free block is available in targeted set,
the memory compression controller is in charge of moving
the physical page to another C-space in the DZC memory.

All these tasks require the access to the control structures
of the DZC memory. While page moves and free block al-
locations are quite infrequent, UP address to CP address
translation must be performed on every access. In order
to allow fast UP address to CP address translation, P-page
descriptors must be cached within the memory compression
controller as illustrated in Figure 1.

P-page descriptors are cached in the UP address to CP

address Translation cache, the UCT cache. The read ac-
cesses to null blocks can be directly serviced by the UCT
cache, thus the round-trip to the memory chips is saved and
the access time to the main memory is shortened. That is
when servicing a request on null block, the UCT cache acts
as an off-chip Zero-Content cache [8].

5. PERFORMANCE EVALUATION

5.1 The Two Objectives
The performance evaluation of a compressed memory must

address two very different objectives. First, we must evalu-
ate to which extent the compressed memory ”enlarges” the
main memory. Second, we must evaluate the performance
loss or increase associated with the use of the compressed
memory when the application fits in the memory system
since the computer will also be used on that type of appli-
cations.

5.1.1 Page faults and page moves
The main interest of using a compressed memory is to

enlarge the memory footprint that the system may accom-
modate without swapping on the external disks. Access time
to hard-drive is in the 10ms range thus representing about
30 000 000 cycles for current processor technology, therefore
even a very small page fault rate in the order of one hun-
dred per billion instructions is unacceptable. Therefore as
the main metric of the behavior of the memory system, we
will present the page fault rate of the applications. We will
present this metric for a large spectrum of memory sizes
in order to characterize how the use of DZC memory can
artificially “enlarge” the memory space available for the ap-
plication.

However, our DZC memory system may also suffer from
C-space saturation on write-back accesses (see Section 4).
Such a C-space saturation forces to move the physical page
to another C-space, thus leading to some performance pen-
alty. Ekman and Stenström [9] pointed out that moving
pages in the compressed memory are local to the memory
and can be performed in the background. They are unlikely
to really impact the performance of the system if they re-
main sufficiently rare.

As our second performance metric, we will present statis-
tics on these page moves in order to ensure that such page
moves are quite rare when the page fault rate is acceptable
to envisage realistic execution.

5.1.2 Average memory access time
When the working set of a computer workload fits in the

main memory, using a compressed memory does not directly
result in any performance benefit. Normally, it even results
in a performance loss due to the extra memory latency as-
sociated with the UP address to CP address translation and
with the decompression latency algorithm.

In our particular case, there is no hardware decompres-
sion algorithm. Therefore the extra memory access latency
is only associated with the UP to CP address translation
latency. This UP to CP address translation is performed
through the UCT cache. When the P-page descriptor hits
in the UCT cache, the UP to CP address translation la-
tency only adds a few cycles to the overall latency of the
memory controller. It might even be performed in parallel
with other activities in the memory controller. As pointed

out by Ekman and Stenström [9], such extra 2-3 cycles on a
main memory latency has very limited impact on the overall
performance of the system.

However, when a P-page descriptor is missing, the P-page
descriptor must be brought back in the UCT cache from the
memory, thus resulting in a significant longer memory access
time. On the other hand, on a read on a null block hitting
in the UCT cache, the null block can be returned directly to
the processor without reading the memory, thus resulting in
a shorter memory access time.

To reflect these two opposite contributions to performance,
we will illustrate the average memory access time on a DZC
memory and an uncompressed main memory. To provide
the impact of the contribution on the effective performance,
we will use the average contribution of the main memory
access time per instruction.

5.2 Experimental Methodology
As explained in section 3 simulation environment was de-

rived from Simics. Simics is a full system simulator that
allows to monitor the processor to memory transfers, and
to plug a memory hierarchy simulator. We choose a stan-
dard memory hierarchy configuration as illustrated in Table
1. Both DZC memory and uncompressed memory were sim-
ulated for sizes ranging from 8 MB to 1 GB on the first
50 billions of instructions of each application. We choose
the well known SPEC CPU 2006 for their great variability,
presenting very different behaviors.

CPU x86 processor
L1 Cache 32 KB, 64 B line-size, 4-ways,

LRU, write allocate
L2 Cache 256 KB, 64 B line-size, 4-ways,

LRU, write allocate
L3 Cache 1 MB, 64 B line-size, 8-ways, LRU,

write allocate
O.S. Linux Red Hat - Linux 2.6
Benchmarks SPEC CPU 2006 - ref data set
Compressed
Memory

4 MB C-spaces, 8 KB pages, 64 B
blocks

Total Memory
access time

250 cycles (25 + 200 + 25)
see Section 5.4

Table 1: Baseline simulator configuration.

5.2.1 Simulated Page Replacement Policy
On a page fault, the page must be brought into main

memory. If no free memory space is available then some
pages must be swapped on the disk.

We simulated a simple LRU replacement for the conven-
tional memory. For the DZC memory, the page must be
allocated in some C-space. We simulated a policy derived
from the LRU policy. At a first step, we look for a C-space
able to store the whole page, i.e., featuring at least a free
line in each set (in other words MINFL ≥ 1). If no C-
space is available then we eject the LRU page. However,
this ejection does not guarantee that there is room for the
whole missing page in the corresponding C-space (if there
was some null block in the ejected page, some sets can still
be full). In this case we eject extra pages from this C-space
until we guarantee that the whole missing page can fit in the
memory (i.e., MINFL ≥ 1).

5.2.2 Moving Pages on Write-backs
As already mentioned, on the DZC memory, the write-

back of a non-null block in place of a null block may create an
overflow in the corresponding set of the C-space. In this case,
the page is moved to another C-space featuring available free
storage (i.e., with MINFL ≥ 1). When needed, space in
memory is freed for the page using the same deallocation
policy described above.

5.3 Page Faults and Page Moves
Figure 6 illustrates the page fault rates and the page move

rates for several representative benchmarks. Note that first
touch (the allocation) of a page is not counted as a page fault
since it does not trigger a disk access. Results are illustrated
in page fault occurrences per billion instructions. Typically,
the application would run at an unacceptable poor perfor-
mance if the page fault rate is higher than a hundred per
billion instructions. Then the interesting points on Figure 6
are the points where the number of page faults nearly vanish.

5.3.1 Page Faults on the DZC Memory
We would like to mention that there is a very strong cor-

relation between the interest of using a DZC memory and
the ratio of static null blocks in the pages manipulated by
the application (see Figure 2). In practice, for 14 out of the
29 SPEC CPU 2006 benchmarks, our simulations show that
the DZC memory is able to accommodate the application
with a smaller size than an uncompressed memory.

On a first class of benchmarks, such as 410.bwaves, 470-

.lbm, 483.xalancbmk, 429.mcf, there is no visible benefit of
using the DZC memory instead of an uncompressed mem-
ory. These applications feature a very small rate of static
null blocks in allocated pages (less than 15-20 %). There-
fore to accommodate their working set requirements, the
DZC memory requires approximately the same size that the
uncompressed memory.

For the other benchmarks with more significant null block
rates in their working set, our simulations essentially con-
firm that, the DZC memory of size S can accommodate an
application with a working set larger than S. This ”enlarge-
ment” of the memory size increases naturally with the static
null block rate.

This can be observed for instance for applications with
about 30-50 % of null blocks, such as 403.gcc. A 128 MB
DZC memory is needed to accommodate the application
against 256 MB for an uncompressed memory. 437.leslie3d

or 464.h264ref have a very similar behavior.
As expected, applications featuring a very high ratio of

null blocks benefit the most from the DZC memory. For
instance, 481.wrf features about 85 % of null blocks. While
it requires a 368 MB of uncompressed memory to accom-
modate it, a 64 MB DZC memory is sufficient. Similar be-
haviors are encountered for all benchmarks with very high
null block ratios, for instance 459.GemsFDTD, 473.astar,
436.cactusADM and 434.zeusmp.

5.3.2 Page Moves on the DZC Memory
As illustrated in Figure 6, the page move rate associated

with saturated sets of non-null blocks in a C-space are never
a performance issue. In practice a large number of such page
moves occur when the rate of page faults is very high and
would prevent any reasonable execution of the application.
When the workload just fit in the DZC memory, some page

10

100

1 000

10 000

100 000

8 16 32 64 128 256 512 1024
Memory size (MB)

483.xalancbmk

Baseline page-fault
DZC Memory page-fault

DZC Memory page-move

10

100

1 000

10 000

100 000

8 16 32 64 128 256 512 1024
Memory size (MB)

429.mcf

10

100

1 000

10 000

100 000

8 16 32 64 128 256 512 1024
Memory size (MB)

403.gcc

10

100

1 000

10 000

100 000

8 16 32 64 128 256 512 1024
Memory size (MB)

437.leslie3d

10

100

1 000

10 000

100 000

8 16 32 64 128 256 512 1024
Memory size (MB)

464.h264ref

10

100

1 000

10 000

100 000

8 16 32 64 128 256 512 1024
Memory size (MB)

436.cactusADM

10

100

1 000

10 000

100 000

8 16 32 64 128 256 512 1024
Memory size (MB)

434.zeusmp

10

100

1 000

10 000

100 000

8 16 32 64 128 256 512 1024
Memory size (MB)

481.wrf

Figure 6: Page Faults and Page Moves per billion instructions.

moves might be encountered (a few tens per billion instruc-
tions), but as the penalty for a page move is several orders
of magnitude lower than the one on a page fault, page moves
induced by writes will not be a major performance issue on
a DZC memory.

Note that these simulation results point out that there is
no need for optimizing page moves in the cache controller.

5.4 Main memory average access time
In this section, we assume that the main memory size is

sufficient to accommodate the complete working set of the
application. As pointed out in Section 5.1, two contradictory
phenomena influence the average memory access time on the
DZC memory, potential misses on the UCT cache and direct
servicing of null blocks.

For estimating the main memory access time, we consider
here that the main memory read access time can be roughly
divided in three consecutive phases, processor-to-memory-
controller, round-trip from memory controller to DRAM
components and memory-controller-to-processor. When us-
ing DZC memory, on a UCT cache miss, an extra round-trip
to the DRAM components is needed to load the P-page de-
scriptor in the UCT cache. On the other hand, on a read
access on a null block hitting on the UCT cache, the round-
trip to the DRAM components is saved.

In the simulation results presented in this section, we con-
sider that processor to memory controller path and memory-
controller to processor path both lasts 25 cycles and that the
round-trip to memory components lasts 200 cycles. That is
a hit on a null block in the memory controller is serviced in
50 cycles, a hit on a non-null block in the memory controller
is serviced in 250 cycles and a miss on the controller is ser-
viced in 450 cycles. In practice, when the rate of accesses to
null blocks is four times higher than the rate of misses on
the UCT cache, the average memory access time is lower on
the DZC memory than on the uncompressed memory.

Table 2 illustrates the relative memory access time for
the DZC memory and the uncompressed memory for vari-
ous UTC cache sizes. Figure 7 illustrates the average main
memory access time contribution per instruction, i.e. the
number of main memory cycles used per instruction for re-
spectively the DZC memory and the uncompressed memory
with a reasonable UTC Cache size of 328 KB (2K entries).

For most applications, the use of 328 KB DZC memory
reduces the average memory access time. The reduction is
spectacular for some benchmarks, in particular 459.Gems-

FDTD, even a 20 KB UCT cache divide average access
latency by 3. For applications exhibiting a high dynamic
null-block ratio (Figure 8), many round-trips to the DRAM
components are saved. It should be noted that the static
null-block rates (Figure 2) may be quite different from the
dynamic null-block rate e.g. 401.bzip2.

Among our benchmarks, five applications 429.mcf, 433-

.milc, 458.sjeng, 471.omnetpp and 483.xalancbmk exhibit a
higher memory access time when using DZC than when
using an uncompressed memory. 429.mcf, 433.milc, 471-

.omnetpp and 483.xalancbmk exhibit very low null block
rates (Figure 8) and a significant miss rate on the UCT
cache. 458.sjeng exhibits a quite high dynamic null-block
rate (38 %), but also a very high UCT cache miss rate
(around 30 %).

In order to avoid such possible performance losses on ap-
plications exhibiting a very low null block rate or a very high

UCT Cache Size (in KB)
Application 20 41 82 164 328 656 1312
400.perlbench 1.12 1.08 1.03 0.99 0.96 0.95 0.95

401.bzip2 0.95 0.87 0.85 0.85 0.85 0.85 0.85

403.gcc 0.92 0.91 0.90 0.89 0.87 0.85 0.84

410.bwaves 0.90 0.90 0.90 0.90 0.90 0.90 0.90

416.gamess 0.78 0.76 0.73 0.72 0.72 0.72 0.72

429.mcf 1.20 1.16 1.11 1.05 1.03 1.02 1.01
433.milc 1.07 1.06 1.03 1.02 1.01 1.01 1.01
434.zeusmp 0.58 0.52 0.47 0.44 0.43 0.43 0.43

435.gromacs 0.95 0.94 0.94 0.93 0.93 0.93 0.93

436.cactusADM 0.58 0.57 0.56 0.55 0.55 0.55 0.55

437.leslie3d 0.86 0.85 0.85 0.85 0.84 0.84 0.84

444.namd 0.86 0.84 0.83 0.82 0.82 0.82 0.82

445.gobmk 1.01 0.96 0.88 0.83 0.82 0.82 0.82

447.dealII 0.90 0.90 0.89 0.88 0.88 0.88 0.88

450.soplex 1.32 1.27 1.17 1.04 0.96 0.93 0.93

453.povray 0.81 0.78 0.74 0.72 0.72 0.72 0.72

454.calculix 0.95 0.94 0.94 0.93 0.93 0.93 0.93

456.hmmer 1.01 1.00 1.00 1.00 1.00 1.00 1.00

458.sjeng 1.19 1.18 1.15 1.12 1.06 0.97 0.84

459.GemsFDTD 0.32 0.29 0.27 0.25 0.25 0.25 0.24

462.libquantum 1.00 0.99 0.99 0.99 0.99 0.99 0.98

464.h264ref 1.04 1.01 0.99 0.98 0.98 0.98 0.98

465.tonto 0.97 0.94 0.90 0.88 0.88 0.88 0.88

470.lbm 1.00 1.00 1.00 1.00 1.00 1.00 1.00

471.omnetpp 1.24 1.23 1.22 1.20 1.17 1.13 1.00
473.astar 1.45 1.36 1.19 1.04 0.99 0.98 0.97

481.wrf 0.37 0.36 0.35 0.34 0.34 0.34 0.34

482.sphinx3 0.98 0.98 0.98 0.98 0.97 0.97 0.97

483.xalancbmk 1.13 1.12 1.11 1.10 1.08 1.05 1.01

Table 2: Relative access time on DZC memory and uncom-
pressed memory for different UCT cache sizes.
Bold values are faster accesses.

UCT cache miss rate, a possible solution would be to disable
compression at run-time when the ratio of number of null
blocks serviced by the UCT cache on the number of UCT
cache misses falls below some threshold.

6. CONCLUSION
Main memory size will always remain a performance bot-

tleneck for some applications. The use of a hardware com-
pressed memory can artificially enlarge the working set that
can reside in main memory.

For many applications, null data blocks represent a signif-
icant fraction of the blocks resident in memory. The DZC
memory leverages this property to compress the main mem-
ory. As in zero-content augmented caches [8], null blocks are
only represented by a single bit. For representing non-null
blocks, the main memory is treated as a decoupled sectored
cache [20].

Unlike the IBM MXT technology [21], the DZC memory is
compatible with a conventional cache block size since it can
manage 64 bytes memory blocks. The compression / decom-
pression algorithm is trivial and is very efficient. Compared
with the scheme proposed by Ekman and Stenström [9], the
DZC memory allows a smooth management of compressed
data size changes on writes.

Our experimental simulations have shown that the DZC
memory allows to enlarge the size of the working set that
can reside in the main memory for many applications, thus
avoiding costly page faults when the size of the working set
is close to the size of the main memory.

Memory compression hardware generally results in some
performance loss when the working set of the application

 0

 2

 4

 6

 8

 10

perlbench

bzip2

gcc
bw

aves

gam
ess

m
cf

m
ilc

zeusm
p

grom
acs

cactusAD
M

leslie3d

nam
d

gobm
k

dealII

soplex

povray

calculix

hm
m

er

sjeng

G
em

sFD
TD

libquantum

h264ref

tonto
lbm

om
netpp

astar

w
rf

sphinx3

xalancbm
k

C
y
c
le

s
/I

n
s
tr

u
c
ti
o

n Uncompressed
DZC memory

Figure 7: Average main memory access time contribution per instruction with a 328 KB UTC Cache

0%

20%

40%

60%

80%

100%

perlbench

bzip2

gcc
bw

aves

gam
ess

m
cf

m
ilc

zeusm
p

grom
acs

cactusAD
M

leslie3d

nam
d

gobm
k

dealII

soplex

povray

calculix

hm
m

er

sjeng

G
em

sFD
TD

libquantum

h264ref

tonto
lbm

om
netpp

astar

w
rf

sphinx3

xalancbm
k

Figure 8: Dynamic null block access rate on main memory

already fits in the memory. An artifact of the DZC memory
is the use of a translation cache, the UCT cache, in the
memory controller. This UCT cache translates the address
in uncompressed memory in the address in the compressed
memory. The UCT cache is able to serve read accesses to
null blocks without effectively reading the main memory.
For most applications, this results in a reduced average main
memory access time.

7. ACKNOWLEDGEMENTS
This work was partially supported by an Intel research

grant and by the European Commission in the context of
the SARC integrated project #27648 (FP6).

8. REFERENCES
[1] B. Abali, H. Franke, X. Shen, D. E. Poff, and T. B.

Smith. Performance of hardware compressed main
memory. In HPCA ’01: Proceedings of the 7th annual

international symposium on High-Performance

Computer Architecture, pages 73–81, Monterrey, NL,
Mexico, Jan. 2001. IEEE Computer Society.

[2] A. R. Alameldeen and D. A. Wood. Adaptive cache
compression for high-performance processors. In ISCA

’04: Proceedings of the 31st annual International

Symposium on Computer Architecture, pages 212–223,
Munich, Germany, June 2004. IEEE Computer
Society.

[3] A. R. Alameldeen and D. A. Wood. Frequent pattern
compression: A significance-based compression scheme
for L2 caches. Technical Report 1500, Computer

Sciences Department, University of

Wisconsin-Madison, Apr. 2004.

[4] V. Beltran, J. Torres, and E. Ayguadé. Improving web
server performance through main memory
compression. In ICPADS ’08: Proceedings of the 14th

International Conference on Parallel and Distributed

Systems, pages 303–310, Melbourne, VIC, Australia,
Dec. 2008. IEEE Computer Society.

[5] G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin,
B. Mathiske, and M. Wolczko. Heap compression for
memory-constrained java environments. In OOPSLA

’03: Proceedings of the 18th annual conference on

Object-Oriented Programing, Systems, Languages, and

Applications, pages 282–301, Anaheim, CA, United
States, Oct. 2003. ACM.

[6] R. S. de Castro, A. P. do Lago, and D. Da Silva.
Adaptive compressed caching: Design and
implementation. In SBAC-PAD ’03: Proceedings of

the 15th Symposium on Computer Architecture and

High Performance Computing, pages 10–18, São
Paulo, SP, Brazil, Nov. 2003. IEEE Computer Society.

[7] F. Douglis. The compression cache: Using on-line
compression to extend physical memory. In USENIX

Winter: Proceedings of 1993 Winter USENIX

Conference, pages 519–529, San Diego, CA, United
States, Jan. 1993. USENIX Association.

[8] J. Dusser, T. Piquet, and A. Seznec. Zero-content
augmented caches. In ICS ’09: Proceedings of the 23rd

annual International Conference on Supercomputing,
pages 46–55, Yorktown Heights, NY, United States,
June 2009. ACM.

[9] M. Ekman and P. Stenström. A robust main-memory
compression scheme. In ISCA ’05: Proceedings of the

32nd annual International Symposium on Computer

Architecture, pages 74–85, Madison, WI, United
States, June 2005. IEEE Computer Society.

[10] P. A. Franaszek, P. Heidelberger, D. E. Poff, and J. T.
Robinson. Algorithms and data structures for
compressed-memory machines. IBM Journal of

Research and Development, 45(2):245–258, Mar. 2001.

[11] P. A. Franaszek and J. T. Robinson. Design and
analysis of internal organizations for compressed
random access memories. Technical Report RC 21146,

IBM T. J. Watson Research Center, Oct. 1998.

[12] P. A. Franaszek and J. T. Robinson. On internal
organization in compressed random-access memories.
IBM Journal of Research and Development,
45(2):259–270, Mar. 2001.

[13] P. A. Franaszek, J. T. Robinson, and J. Thomas.
Parallel compression with cooperative dictionary
construction. In DCC ’96: Proceedings of the 6th

annual Data Compression Conference, pages 200–209,
Snowbird, UT, United States, Mar. 1996. IEEE
Computer Society.

[14] E. G. Hallnor and S. K. Reinhardt. A unified
compressed memory hierarchy. In HPCA ’05:

Proceedings of the 11th annual international

symposium on High-Performance Computer

Architecture, pages 201–212, San Francisco, CA,
United States, Feb. 2005. IEEE Computer Society.

[15] J.-S. Lee, W.-K. Hong, and S.-D. Kim. A selective
compressed memory system by on-line data
decompressing. In Euromicro ’99: Proceedings of the

25th annual Euromicro Conference, volume 1, pages
224–227, Milan, Italy, Sept. 1999. IEEE Computer
Society.

[16] A. Moshovos and A. Kostopoulos. Memory state
compressors for giga-scale checkpoint/restore. In
PACT ’05: Proceedings of the 14th annual

international conference on Parallel Architectures and

Compilation Techniques, pages 303–314, St. Louis,
MO, United States, Sept. 2005.

[17] S. Roy, R. Kumar, and M. Prvulovic. Improving
system performance with compressed memory. In
IPDPS ’01: Proceedings of the 15th International

Parallel and Distributed Processing Symposium, pages
66–71, San Francisco, CA, United States, Apr. 2001.
IEEE Computer Society.

[18] J. B. Sartor, S. M. Blackburn, D. Frampton,
M. Hirzel, and K. S. McKinley. Z-rays: Divide arrays
and conquer speed and flexibility. In PLDI ’10:

Proceedings of the 2010 international conference on

Programming Language Design and Implementation,
pages 471–482, Toronto, ON, Canada, June 2010.
ACM.

[19] J. B. Sartor, M. Hirzel, and K. S. McKinley. No bit
left behind: the limits of heap data compression. In
ISMM ’08: Proceedings of the 7th annual International

Symposium on Memory Management, pages 111–120,
Tucson, AZ, United States, June 2008. ACM.

[20] A. Seznec. Decoupled sectored caches: conciliating low
tag implementation cost. In ISCA ’94: Proceedings of

the 21st annual International Symposium on

Computer Architecture, pages 384–393, Chicago, IL,
United States, Apr. 1994. IEEE Computer Society.

[21] R. B. Tremaine, P. A. Franaszek, J. T. Robinson,
C. O. Schulz, T. B. Smith, M. E. Wazlowski, and
P. M. Bland. IBM memory eXpansion technology
(MXT). IBM Journal of Research and Development,
45(2):271–285, Mar. 2001.

[22] P. R. Wilson, S. F. Kaplan, and Y. Smaragdakis. The
case for compressed caching in virtual memory
systems. In ATEC ’99: Proceedings of the annual

conference on USENIX Annual Technical Conference,
pages 101–116, Monterey, CA, United States, June
1999. USENIX Association.

[23] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEE Transactions on

Information Theory, 23(3):337–343, May 1977.

	Introduction
	Related Work and Issues
	Software Compression
	Hardware Compressed Memories
	IBM Memory eXpansion Technology (MXT)
	Ekman and Stenström

	General Architecture of Hardware Compressed Memory System

	Null Blocks in Memory
	Decoupled Zero-Compressed Memory
	Improving Null Blocks Distribution
	Benefits
	Control Structure Overhead
	Memory Compression Controller: Bypassing Memory Reads on Null Blocks

	Performance Evaluation
	The Two Objectives
	Page faults and page moves
	Average memory access time

	Experimental Methodology
	Simulated Page Replacement Policy
	Moving Pages on Write-backs

	Page Faults and Page Moves
	Page Faults on the DZC Memory
	Page Moves on the DZC Memory

	Main memory average access time

	Conclusion
	Acknowledgements
	References

