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Abstract—Compressive Sensing (CS) is a new sampling
theory which allows signals to be sampled at sub-Nyquist
rate without loss of information. Fundamentally, its proce-
dure can be modeled as a linear projection on one specific
sensing matrix, which, in order to guarantee the information
conservation, satisfies Restricted Isometry Property (RIP).
Ordinarily, this matrix is constructed by the Gaussian
random matrix or Bernoulli random matrix. In previous
work, we have proved that the typical chaotic sequence -
logistic map can be adopted to generate the sensing matrix
for CS. In this paper, we show that Toeplitz-structured
matrix constructed by chaotic sequence is sufficient to satisfy
RIP with high probability. With the Toeplitz-structured
Chaotic Sensing Matrix (TsCSM), we can easily build a
filter with small number of taps. Meanwhile, we implement
the TsCSM in compressive sensing of images.

I. INTRODUCTION

In information field, traditional information capturing
paradigm always follows the famous Shannon-Nyquist
sampling theory, which says that signals must be sam-
pled larger than Nyquist rate (2 times of the frequency
bandwidth of the signal) to guarantee the exact recovery
[16]. This leads that, even for a 2 minutes audio record,
5MB data are needed to retain the voice undistorted. Con-
sequently, in order to reduce the storage consumption and
the transmission bandwidth, conventionally, an immediate
data compression takes place after the sensing procedure.
The principle of this kind of sensing-then-compression
scheme, such as JPEG or JPEG 2000, is to discard the
small coefficients and retain the significant ones under
some fixed transformation. In reality, the data stored and
transmitted is only a very small part of the original ones,
while we still have to sense the whole of the samples and
then discard most of them. It is extremely wasteful of
power consumption and memory storage. Moreover, this
sensing-then-compression scheme is not practicable if the
signal is presented at a high rate or if the measurement
device has limited computational resources (such as in a
sensor network).
Recently, a new theory called Compressive Sensing

(CS) was proposed by Candès et. al. [7] and Donoho
[9]. Unlike the traditional sampling methods, CS provides
an information capturing paradigm with both sampling
and compression. It permits signals being sampled below
the conventional Nyquist rate, meanwhile still allowing
optimal reconstruction of the signal. If signals are sparse

or compressible, the required measurements are far less
than those of traditional methods, and even more, the mea-
sure process is non-adaptive which makes the sampling
process much more universal and faster.

A. Preliminary of Compressive Sensing
Mathematically, the procedure of CS can be expressed

as a linear projection

y = Φv (1)

where v ∈ R
n is the original signal, Φ ∈ R

m×n is the
sensing matrix and y ∈ R

m is the measurement.
Remark 1.1: Particularly, the traditional sampling

paradigm following Nyquist theory, is one special case
of CS with sensing matrix Φ being identity matrix with
m = n. From this point, CS improves the way of
capturing signal information, typically by using random
sensing matrix with m � n. Consequently, we say CS
samples and compresses signals simultaneously.
Since m � n, CS highly reduces the length of the

signal. However, it also leads equation (1) be highly
underdetermined. With an additional assumption on orig-
inal signal, supposing that sparsity is always fulfilled for
natural signals (itself or in some basis), the solution of v
for (1) can then be possibly uniquely determined.
Definition 1.2: (Sparsity) Given a vector v ∈ R

n,
and denote Card(v) = Card{vi �= 0, i ∈ [1, n]} the
cardinality of non zero entries of v, then v is called to
be an s-sparsity vector, if Card(v) ≤ s� n.
Based on Definition 1.2, we can then define the set of

sparse vector of s-sparsity Σs as follows:

Σs = {v ∈ R
n | Card(v) ≤ s} (2)

Intuitively, equation (1) can be solved by searching the
sparsest one of vectors lied on the null surface of Φ [7],
i.e.

v
∗ = arg min

Φv=y
‖v‖0 (3)

where ‖v‖0 is �0 norm and denotes the counter of nonzero
entries of v.
However, it was shown to be a NP-Hard problem in

[7], and thus practically, it was relaxed in [7] to solve the
following problem.

v
∗ = arg min

Φv=y
‖v‖1 (4)



where ‖v‖1 is �1 norm and denotes the absolute sum of
all entries of v.
Definition 1.3 (Restricted Isometry Property [4]):

For matrix Φ ∈ R
m×n, define δs > 0 be the smallest

constant satisfying following inequality,

(1− δs)‖v‖22 ≤ ‖Φv‖22 ≤ (1 + δs)‖v‖22 (5)

for all vectors v ∈ Σs.
Then matrix Φ is said to satisfy the RIP of order s with
constant δs.

Theorem 1.4 (Exact Recovery Theorem [4] ):
• If RIP of order 2s for matrix Φ satisfies δ2s < 1,
then for any vector v ∈ Σs, there exists a unique
solution for (3).

• If δ2s <
√
2 − 1, then for any vector v ∈ Σs,

solutions for (3) and (4) are equivalent.

B. Motivation
Consequently, finding a proper sensing matrix Φ sat-

isfying RIP with conditions in Theorem 1.4 is one of
the most important problem in CS. Candès and Tao have
proposed that matrix with elements drawn by Gaussian
distribution or Bernoulli distribution satisfies RIP with
overwhelming probability, providing that sparsity s ≤
O(m/ logn) [6]. And the randomly selected Fourier basis
also retains RIP with overwhelming probability if sparsity
s ≤ O(m/(logn)6) [6]. Even though there exist some
deterministic sensing matrices, such as Chirp Sensing
Codes by L. Applebaum, et al. [2], deterministic sensing
matrix using finite fields by R. A. Devore [8] and using
second order Reed-Muller codes by S. Howard et al.
[11], their RIP properties are not either fulfilled certainly.
Until now, the widely used sensing matrix in practice is
generated randomly.
In previous work [19], we have proposed the chaotic se-

quence to construct such a sensing matrix, called chaotic
matrix. Based on Egodicity and statistical property of
chaotic sequence, we have proved that chaotic matrix also
has RIP with overwhelming probability, providing that
s ≤ O(m/ log (n/s)). Meanwhile, the proof shows that
the probability of satisfying RIP for the proposed chaotic
matrix is larger than that for Gaussian random matrix and
Bernoulli random matrix [6].
In this paper, we aim to construct a Toeplitz matrix

with chaotic sequence and prove that the Toeplitz chaotic
matrix also retains the RIP property with overwhelming
probability. The use of Toeplitz matrix in CS application
takes the following advantages:
1) Only O(n) independent chaotic variables are
needed;

2) The multiplication can be efficiently implemented
using FFT;

3) Toeplitz-structured matrix arises naturally in certain
applications such as filter design.

C. Paper Organization
In section II, the Toeplitz-structured Chaotic Sensing

Matrix (TsCSM) is proposed for CS and its RIP property

is proved. In section III, Iterative Threshold (IT) algorithm
to reconstruct the original signals is introduced. In section
IV, we compare the TsCSM with Chaotic Sensing Matrix
(CSM) and Gaussian Sensing Matrix (GSM), meanwhile,
some experiments on images are illustrated.

II. TOEPLITZ-STRUCTURED CHAOTIC SENSING
MATRIX

A. Chaotic Sensing Matrix and its Johnson-Lindenstrauss
(J-L) Embedding [13] Property
Considering one popular discrete chaotic system, lo-

gistic map, whose difference equation can be written as
below.

z+ = rz(1− z), with r ∈]0, 4] (6)

where z ∈]0, 1[⊂ R is the discrete state.
It is well known that for logistic map (6) with parameter

r = 4, the state sequence z(t) satisfies Beta distribution
with parameter α = 0.5 and β = 0.5 [18], with the
following probability density function.

f(x; 0.5, 0.5) =
1

π
(x− x2)−1/2 (7)

Set zi(t) as the output sequence generated by logistic
map (6) with initial condition zi(0), and let xi(t) denote
the regularization of zi(t) as below

xi(t) = zi(t)− 0.5 (8)
Approximately, xi(t) can be considered as a random

variable and it satisfies the following distribution.

f(x) =
1

π
(0.25− x2)−1/2 (9)

which is called here Beta-like distribution.
Then, by selecting m different initial conditions z(0) ∈

]0, 1[m⊂ R
m, one can obtain m vectors with dimension

n, which enables us to construct the following matrix Φ
scaled by

√
8/m

Φ =

√
8

m

⎛
⎜⎝

x0(0) . . . x0(n− 1)
...

. . .
...

xm−1(0) . . . xm−1(n− 1)

⎞
⎟⎠

which is called here the Beta-like matrix.
In the previous work [19], it has the following theorem:
Theorem 2.1 (J-L Embedding with Beta-like Matrix):

Given a Beta-like matrix Φ ∈ R
m×s, there exists a

constant δs > 0, such that, for any vector u ∈ R
s, the

following inequality

(1− δs)‖u‖22 ≤ ‖Φu‖22 ≤ (1 + δs)‖u‖22 (10)

is satisfied with overwhelming probability.

Pr
[∣∣∣‖Φu‖2 − 1

∣∣∣ ≥ δs

]
≤ 2 exp(−c(δs)m) (11)

where c(δs) is a constant related to δs.
Remark 2.2: Note that we do not refer the final the-

orem in [19], and the formation of Φ is not exactly the
same. Even though, the theorem is also verified because
of, statistically, the Egodicity property of the chaotic
system.
Remark 2.3: This theorem is also retained for matrix

constructed with Gaussian or Bernoulli matrix, but with
different constant c(δs) [1].



B. Toeplitz-structured Chaotic Sensing Matrix
For chaotic system (6), let us set one initial condition

z(0) ∈ R, then generate a sequence x ∈ R
n according to

(8). Then we can construct a Toeplitz-structured matrix
Φ ∈ R

m×n of the following form

Φ =

√
8

m

⎛
⎜⎜⎜⎝

x(n− 1) x(n− 2) . . . x(0)
x(0) x(n− 1) . . . x(1)
...

...
...

...
x(m− 2) x(m− 3) . . . x(m− 1)

⎞
⎟⎟⎟⎠

where
√

8/m is for normalization.
In [3], the authors proposed to construct the Toeplitz-

structured matrix with Gaussian or Bernoulli random se-
quences and according to the structure of Toeplitz matrix,
it can be concluded that for Gaussian (or Bernoulli)
Toeplitz-structured matrix, if m ≥ c1s

3 ln(n/s), its RIP
of order s with constant δs is verified with probability at
least

1− e−c2k/m
2

where c1 and c2 are dependant only on δs.
According to Theorem 2.1, both the TsCSM and

Toeplitz-structured Gaussian or Bernoulli matrix retains
the J-L embedding property with overwhelming probabil-
ity. Similarly, for TsCSM, if m ≥ c′1s

3 ln(n/s), the RIP
of order s with constant δs is verified with probability at
least

1− e−c′
2
k/m2

where c′1 and c′2 are dependant only on δs.

III. SIGNAL RECONSTRUCTION
From now on, there exist many reconstruction methods

for signal reconstruction in CS framework, such as Basis
Pursuit (BP) [5], Orthogonal Matching Pursuit (OMP)
[17], CoSaMP [15], et. al. Since this paper does not focus
on the reconstruction algorithms, we just briefly introduce
one iterative algorithm - Iterative Thresholding (IT) [12],
to reconstruct the original signal.
In reality, the nature signals are compressible, i. e. the

signals can be sparsely represented by an specific basis,
such as Fourier basis, Wavelet basis. Denote the nature
signals as f ∈ R

n and a basis B ∈ R
n×n, then

f = Bv (12)

where v ∈ Σs is s-sparse. And the CS procedure is
expressed as the following linear projection

y = Φf = ΦBv (13)

IT algorithm is to solve the following problem

f∗ = arg min
f∈Rn

‖y − Φf‖22 + λ‖B∗f‖1
which is a relaxion of optimization (4). And IT algorithm
proceeds as follows to find the optimal solution for (13),
let f (0) = 0 and use the iteration

f (i+1) = BSλ(B
∗f (i) +B∗Φ∗(y − Φf (i))) (14)

where i represents the ith iteration, B is a basis such as
discrete wavelet basis, B∗ is the inverse of B and Sλ(∗)

is a non-linear shrinkage operator that keeps the larger
coefficients, i.e.

Sλ(x) =

⎧⎪⎨
⎪⎩
x− λ

2 if x ≥ λ
2

0 if |x| < λ
2

x+ λ
2 if x ≤ −λ

2

(15)

where λ is the median of all coefficients, i.e. λ =
median(x). The IT algorithm is illustrated as Algorithm
1.

Algorithm 1 Iterative Thresholding Algorithm (IT)
Input: measurements y ∈ R

m and measurement matrix
Φ ∈ R

m×n, m� n;
Output: The recovery image f∗ = f (tmax)

Initial: f (0) = 0, maximum iteration tmax
for i = 0 to tmax do
Update: f (i) = f (i) +Φ∗(y − Φf (i));
Transform: Compute the coefficients over basis B,
v = B∗f (i);
Sparse promote: v = Sλ(v);
Inverse transform: f (i+1) = Bv.

end for

IV. NUMERICAL SIMULATIONS
A. TsCSM, Chaos Sensing Matrix (CSM) and Gaussian
Sensing Matrix (GSM)
In section II, it has been proved that the TsCSM also

has the RIP property with overwhelming probability, i.e. it
guarantees the exact recovery for any sparse signals. To
verify the property, a comparison between TsCSM and
CSM (or GSM) is carried out by considering their exact
recovery rates. Let us describe the experiment setup: we
build a TsCSM (or CSM, GSM) with dimension 50×100,
which means that there are 50 measurements, then, for
each sparsity level s ∈ {1, ..., 50}, we arbitrarily generate
1000 s-sparse signals with dimension 100, we compress
them following the CS procedure (1) and we use the
Algorithm 1 (here the basis B is identity matrix) to
recover the sparse signals. For each trial, we denote it
successful if its recovery error is less than a level (here
set it as 0.001) and we can finally obtain a successful rate,
i.e. recovery rate, see Fig. 1.
In Fig. 1, the recovery rate for TsCSM is similar with

CSM but little larger than GSM, and the reason is that
the probability of J-L embedding property for GSM is
smaller than that for CSM which has been demonstrated
in [19].

B. TsCSM for Images
Recently, the application of CS on imaging is attracted

a lot researchers [10], [14]. In this simulation, we only
analyze the performance of the TsCSM fundamentally on
imaging rather than the physical implementation. Suppose
TsCSM is used in the single imaging system introduced
in [10], [14], we will give two experiments to illustrate
the performance of TsCSM.
First, let’s fix the sample rate at 0.5, i.e. for image

with size 256 × 256, we only measure 32, 768 samples
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Fig. 1. Recovery rate for TsCSM, CSM and GSM (over 1 000 trials),
with dimension 50× 100.

by projection with TsCSM following CS procedure (1);
then, we use Algorithm 1 (with B as wavelet basis) to
reconstruct the original images from the compressed data.
The result are listed in Fig. 2, where Peak Signal to Noise
Ratio (PSNR) is defined as

PSNR = 20 log
‖f‖2

‖f − f∗‖2 (16)

Second, let’s verify the efficiency of compression. For
one image with dimension 256 × 256, we measure this
image with sample rate at 0.3, 0.5, 0.7 and 0.9 separately,
then use Algorithm 1 (with B as wavelet basis) to
reconstruct the original images, see Fig. 3. The error is
the direct difference between the recovery and the original
image.

V. CONCLUSION
This paper briefly introduced a new sampling theory

- Compressive Sensing (CS) and proposed a method to
construct a Toeplitz-structured Matrix for CS with chaotic
sequence. We prove that Toeplitz-structured Chaotic Sens-
ing Matrix (TsCSM) retains the Restricted Isometry Prop-
erty (RIP) with overwhelming probability, which guar-
antees the exact recovery. Then Iterative Thresholding
(IT) algorithm is introduced to reconstruct the original
signal. After that, a simulation on 1-dimensional signal
CS is implemented and the comparison between TsCSM
and CSM (or GSM) shows that TsCSM has the similar
(or better) performance. Meanwhile, we also simulate
imaging system with TsCSM, and the results show a good
perspective for TsCSM.
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