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Abstract. Lint-like program checkers are popular tools that ensure
code quality by verifying compliance with best practices for a particu-
lar programming language. The proliferation of internal domain-specific
languages and models, however, poses new challenges for such tools.
Traditional program checkers produce many false positives and fail to
accurately check constraints, best practices, common errors, possible op-
timizations and portability issues particular to domain-specific languages.
We advocate the use of dedicated rules to check domain-specific practices.
We demonstrate the implementation of domain-specific rules, the auto-
matic repair of violations, and their application to two case-studies: (1)
Seaside defines several internal DSLs through a creative use of the syntax
of the host language; and (2) Magritte adds meta-descriptions to existing
code by means of special methods. Our empirical validation demonstrates
that domain-specific program checking significantly improves code quality
when compared with general purpose program checking.

1 Introduction

The use of automatic program checkers to statically locate possible bugs and
other problems in source code has a long history. While the first program checkers
were part of the compiler, later on separate tools were written that performed
more sophisticated analyses of code to detect possible problem patterns [Joh78].
The refactoring book [Fow99] made code smell detection popular, as an indicator
to decide when and what to refactor.

Most modern development environments (IDEs) directly provide lint-like
tools as part of their editors to warn developers about emerging problems in their
source code. These checkers usually highlight offending code snippets on-the-fly
and greatly enhance the quality of the written code. Contrary to a separate tool,
IDEs with integrated program checkers encourage developers to write good code
right from the beginning. Today’s program checkers [HP04] reliably detect issues
like possible bugs, portability issues, violations of coding conventions, duplicated,
dead, or suboptimal code, etc.
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Many software projects today use domain-specific languages (DSLs) to raise
the expressiveness of the host language in a particular problem domain. A common
approach is to derive a new pseudo-language from an existing API. This technique
is known as a Fluent Interface, a form of an internal domain-specific language or
embedded language [Fow08]. Such languages are syntactically compatible with the
host language, and use the same compiler and the same runtime infrastructure.

As such DSLs often make creative use of host language features with atypical
use of its syntax. This confuses traditional program checkers and results in many
false positives. For example, chains of method invocations are normally considered
bad practice as they expose internal implementation details and violate the Law
of Demeter [Lie89]. However in internal DSLs, method chaining is a commonly
applied technique to invoke a sequence of calls on the same object where each call
returns the receiver object for further calls. In other words, the DSL abstracts
from the traditional use of the host language and introduces new idioms that are
meaningful in the particular problem domain.

Traditional program checkers work at the level of source code. Tools like
intensional views [MKPW06] and reflexion models [MNS95,KS03] check for
structural irregularities and for conformance at an architectural level. Furthermore
tools like PathFinder [HP00] have been used to transform source code into a
model and apply model checking algorithms.

Language Abstraction
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Fig. 1. Dimensions of program checking.

Figure 1 depicts the dimensions of program checking. Traditional program
checkers tackle the axis of domain abstraction at different levels. We argue that
a different set of rules is necessary as developers abstract from the host language.
Our thesis is that standard program checking tools are not effective when it
comes to detecting problems in domain-specific code. In this paper we advocate
the use of dedicated program checking rules for program that know about and
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check for the specific use-cases of internal domain-specific languages. As with
traditional rules this can happen at the level of the source code or at a higher
architectural or modeling level.

We will demonstrate two different rule-sets that each work at a different level
of domain abstraction:

1. Seaside is an open-source web application framework written in Smalltalk
[DLR07]. Seaside defines various internal DSLs to configure application
settings, nest components, define the flow of pages, and generate XHTML. As
part of his work as Seaside maintainer and as software consultants on various
industrial Seaside projects, the first author developed Slime, a Seaside-specific
program checker consisting of a set of 30 rules working at the level of the
abstract syntax tree (AST). We analyze the impact of these rules on a long
term evolution of Seaside itself and of applications built on top of it.

2. Magritte is a recursive metamodel integrated into the reflective metamodel
of Smalltalk [RDK07]. The metamodel of an application is specified by
implementing annotated methods that are automatically called by Magritte
to build a representative metamodel of the system. This metamodel is then
used to automate various tasks such as editor construction, data validation,
and persistency. As the metamodel is part of the application source code it
cannot be automatically verified. We have implemented a set of 5 rules that
validate such a Magritte metamodel against its meta-metamodel.

Our approach to program checking is based on AST pattern matching. This
technical aspect is not new. However, our approach builds on that and offers
a way to specify declaratively domain specific rules with possible automatic
transformations. Our approach uses pattern matching on the AST as supported
by the refactoring engine of Smalltalk [BFJR98]. Furthermore we use Helvetia
[RGN10], a framework to cleanly extend development tools of the standard
Smalltalk IDE. It reuses the existing toolchain of editor, parser, compiler and
debugger by leveraging the AST of the host environment. While Helvetia is
applicable in a much broader context to implement and transparently embed new
languages into a host language, in this paper we focus on the program analysis
and transformation part of it.

The contributions of this paper are: (1) the identification of the need for
DSL specific rule checking, (2) the empirical validation over a long period that
such DSL specific rules offer advantages over non domain-specific ones, and (3)
an infrastructure to declaratively specify domain specific rules and the optional
automatic transformations of violations.

The paper is structured as follows: Section 2 introduces the different rule-
sets we have implemented. We present the internal domain-specific languages
addressed by our rules, and we discuss how we implemented and integrated the
rules. In Section 3 we report on our experience of applying these rules on various
open-source and commercial systems. Furthermore we present a user survey
where we asked developers to compare domain-specific rules with traditional ones.
Section 4 discusses related work and Section 5 concludes.
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2 Examples of Domain-Specific Rules

In this section we demonstrate two sets of rules at different levels of abstraction:
while the first set of rules (Section 2.1) works directly on the source code of web
applications, the second set of rules (Section 2.2) uses a metamodel and validates
it against the system. While in both cases the source code is normal Smalltalk,
we focus on the domain-specific use of the language in these two contexts.

2.1 Syntactic rules for Seaside

The most prominent use of an internal DSL in Seaside is the generation of HTML.
This DSL is built around a stream-like object that understands messages to create
different XHTML tags. Furthermore the tag objects understand messages to add
the HTML attributes to the generated markup. These attributes are specified
using a chain of message sends, known in the Smalltalk jargon as a cascade4:

1 html div

2 class: 'large';
3 with: count.

4 html anchor

5 callback: [ count := count + 1 ];

6 with: 'increment'.

The above code creates the following HTML markup:

<div class="large">0</div>

<a src="/?_s=28hVYPUhdMM7mU&1">increment</a>

Lines 1–3 are responsible for the generation of the div tag with the CSS
class large and the value of the current count as the contents of the tag. Lines
4–6 generate the link with the label increment. The src attribute is provided
by Seaside. Clicking the link automatically evaluates the code on line 5 and
redisplays the component.

This little language [DK97] for HTML generation is the most prominent use
of a DSL in Seaside. It lets developers abstract common HTML patterns into
convenient methods rather than pasting the same sequence of tags into templates
every time.

As developers and users of Seaside we have observed that while the HTML
generation is simple, there are a few common problems that repeatedly appear in
the source code of contributors. We have collected these problems and categorized

4 Readers unfamiliar with the syntax of Smalltalk might want to read the code examples
aloud and interpret them as normal sentences: An invocation to a method named
method:with:, using two arguments looks like: receiver method: arg1 with: arg2.
The semicolon separates cascaded messages that are sent to the same receiver. For
example, receiver method1: arg1; method2: arg2 sends the messages method1:

and method2: to receiver. Other syntactic elements of Smalltalk are: the dot
to separate statements: statement1. statement2; square brackets to denote code
blocks or anonymous functions: [ statements ]; and single quotes to delimit strings:
'a string'. The caret ^ returns the result of the following expression.
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them into 4 groups: possible bugs, non-portable code between different Smalltalk
platforms/versions, bad style, and suboptimal code. Spotting such problems early
in the development cycle can significantly improve the code quality, maintainabil-
ity and might avoid hard to detect bugs. We offer details for a case from each
group.

Possible Bugs. This group of rules detects severe problems that are most
certainly serious bugs in the source code:

– The message with: is not last in the cascade,
– Instantiates new component while generating HTML,
– Manually invokes renderContentOn:,
– Uses the wrong output stream,
– Misses call to super implementation,
– Calls functionality not available while generating output, and
– Calls functionality not available within a framework callback.

As an example of such a rule we take a closer look at “The message with: is
not last in the cascade”. While in most cases it does not matter in which order
the attributes of a HTML tag are specified, Seaside requires the contents of a tag
be specified last. This allows Seaside to directly stream the tags to the socket,
without having to build an intermediate tree of DOM nodes. In the erroneous
code below the order is mixed up:

html div

:::::
with:

:::::
count;

class: 'large'.

One might argue that the design of the DSL could avoid this ordering problem
in the first place. However, in the case of Seaside we reuse the existing syntax of
the host language and we cannot change and add additional validation into the
compiler, otherwise this would not be an internal DSL anymore.

Slime uses a declarative internal DSL to specify its rules. Every rule is im-
plemented as a method in the class SlimeRuleDatabase. Helvetia automatically
collects the result of evaluating these methods to assemble a set of Slime rules. The
following code snippet demonstrates the complete code necessary to implement
the rule to check whether with: is the last message in the cascade:

1 SlimeRuleDatabase>>withHasToBeLastInCascade

2 ^ SlimeRule new

3 label: 'The message with: has to be last in the cascade';
4 search: (ConditionRule new

5 if: [ :context | context isHtmlGeneratingMethod ];

6 then: (TreeRule new

7 search: '`html `message with: ``@arguments';
8 condition: [ :node |

9 node parent isCascade and: [ node isLastMessage not ] ]));

Line 2 instantiates the rule object, line 3 assigns a label that appears in the
user interface and lines 4–9 define the actual search pattern.
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The precondition on line 5 asserts statically that the code artifact under test
is used by Seaside to generate HTML. The ConditionRule object lets developers
scope rules to relevant parts of the software using the reflective API of the host
language. This precondition reduces the number of false positives and greatly
improves the performance of the rule.

Line 6 instantiates a TreeRule that performs a search on the AST for occur-
rences of statements that follow the pattern `html `message with: ``@arguments.
Search patterns are specified using a string with normal Smalltalk expressions
annotated with additional meta-characters. The back-tick ` marks meta-nodes
that are not required to match literally but that are variable. Table 1 gives a
description of the characters following the initial back-tick.

Char Type Description

# literal Match a literal node like a number, boolean, string, etc.
. statement Match a statement in a sequence node.
@ list When applied to a variable, match any expression. When applied

to a statement, match a list of statements. When applied to a
message, match a list of arguments.

` recurse When a match is found recurse into the matched node.

Table 1. Meta-characters for parse-tree pattern matching.

In our example it does not matter how the variable `html, the message
`message: and the arguments ``@arguments are exactly named. Furthermore,
``@arguments is an arbitrary expression that is recursively searched. If a match
is found, the AST node is passed into the closure on lines 8 and 9 to verify that
the matched node is not the last one of the cascade.

When the Slime rules are evaluated by Helvetia the matching AST nodes
are automatically collected. Interested tools can query for these matches and
reflect on their type and location in the code. The “Code Browser” depicted in
Figure 2 highlights occurrences while editing code. Reporting tools can count,
group and sort the issues according to severity. A more detailed description of
the Helvetia rule engine can be found in our related work [RGN10].

Many of the detected problems can be automatically fixed. Providing an
automatic refactoring for the above rule is a matter of adding a transformation
specification:

10 replace: [ :node |

11 node cascade

12 remove: node;

13 addLast: node ].

Lines 12 and 13 remove the matched node from the cascade and add it
back to the end of the sequence. After applying the transformation Helvetia
automatically re-runs the search, to ensure that the transformation actually
resolves the problem.
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Fig. 2. Integration of domain-specific rules into the “Code Browser”.

Again the tools from the IDE automatically offer the possibility to trigger
such an automatic transformation. For example, when a developer right-clicks
on a Slime issue in the “Code Browser” a confirmation dialog with a preview
is presented before the transformation is applied. Furthermore it is possible to
ignore and mark false positives, so that they do not show up again.

Bad style. These rules detect some less severe problems that might pose
maintainability problems in the future but that do not cause immediate bugs.
An example of such a rule is “Extract callback code to separate method”. In the
example below the rule proposes to extract the code within the callback into a
separate method. This ensures that code related to controller functionality is
kept separate from the view.

html anchor

callback: [

:
(

:::
self

:::::::::
confirm:

::
'
:::::
Really

::::::::::
increment

:::
?')

::::::
ifTrue:

::
[
::::::
count

::
:

:
=

:::::
count

::
+
::
1
::
] ];

with: 'increment'.

Other rules in this category include:

– Use of deprecated API, and
– Non-standard object initialization.

The implementation of these rules is similar to the one demonstrated in the
previous section on “possible bugs”.

Suboptimal Code. This set of rules suggests optimizations that can be applied
to code without changing its behavior. For example, the following code triggers
the rule “Unnecessary block passed to brush”:
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html div with:
:
[
:::::
html

::::::
text:

:::::
count

::
]

The code could be rewritten as follows, but this triggers the rule “Unnecessary
#with: sent to brush”:

html div
::::
with:

::::::
count

This in turn can be rewritten to the following code which is equivalent to the
first version, but much shorter and more efficient as no block closure is activated:

html div: count

Non-Portable Code. While this set of rules is less important for application
code, it is essential for the Seaside code base itself. The framework runs without
modification on 7 different platforms (Pharo Smalltalk, Squeak Smalltalk, Cincom
Smalltalk, GemStone Smalltalk, VA Smalltalk, GNU Smalltalk and Dolphin
Smalltalk), which slightly differ in both the syntax and the libraries they support.
To avoid that contributors using a specific platform accidentally submit code
that only works on their platform we have added a number of rules that check
for compatibility:

– Invalid object initialization,
– Uses curly brace arrays,
– Uses literal byte arrays,
– Uses method annotations,
– Uses non-portable class,
– Uses non-portable message,
– ANSI booleans,
– ANSI collections,
– ANSI conditionals,
– ANSI convertor,
– ANSI exceptions, and
– ANSI streams.

Code like count asString might not run on all platforms identically, as the
convertor method asString is not part of the common protocol. Thus, if the code
is run on a platform that does not implement asString the code might break or
produce unexpected results.

The implementation and the automatic refactoring for this issue is particularly
simple:

1 SlimeRuleDatabase>>nonPortableMessage

2 ^ SlimeRule new

3 label: 'Uses non-portable message';
4 search: '``@obj asString' replace: '``@obj seasideString';
5 search: '``@obj asInteger' replace: '``@obj seasideInteger'

Again the rule is defined in the class SlimeRuleDatabase. It consists of two
matching patterns (line 4 and 5 respectively) and their associated transformation,
so code like count asString will be transformed to count seasideString.



Domain-Specific Program Checking 9

2.2 Magritte — code checking with a metamodel

Constraint checking is not a new domain. Classic approaches rely on constraints
that are specified by the analyst [MKPW06,MNS95,KS03] and that are checked
against the actual application code. In this case these rules are external to the
execution of the program. Model-driven designs often rely on a metamodel to
add more semantics to the code by providing transformations that are either
statically (via code generation) or dynamically interpreted. These metamodels
come with a set of constraints that can also be used for checking the program.

Magritte is a metamodel that is used to automate various tasks such as editor
building, data validation and persistency [RDK07]. In this section we detail its
use and the rules that can be derived from the constraints it imposes.

Person
username
birthday

Description

accessor
label
required
priority

*

description

* description

Fig. 3. The domain object Person with its Magritte meta-description.

On the left side of Figure 3 we see a simple domain class called Person with
two attributes. To meta-describe a class with Magritte we need corresponding
description instances. These description instances are either defined in the source-
code or dynamically at run-time. The following code shows an example of how
we could describe the attribute username in the class Person:

1 Person class>>usernameDescription

2 <description>

3 ^ StringDescription new

4 accessor: #username;

5 label: 'Username';
6 beRequired;

7 yourself

The method returns an attribute description of the type string (line 3), that
can be accessed through the method #username (line 4), that has the label '
Username' (line 5), and that is a required property (line 6). The annotation (line
2) lets Magritte know that calling the method returns a description of the receiver.
Several such description methods build the metamodel of the Person class as
visualized with the association from Person to Description in Figure 3.

Descriptions are interpreted by different services, such as form builders or
persistency mappers. For example, a simple renderer that prints the label and
the current values would look like this:
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1 aPerson description do: [ :desc |

2 aStream

3 nextPutAll: (desc label);

4 nextPutAll: ': ';
5 nextPutAll: (desc toString: (desc accessor readFrom: aPerson));

6 cr ]

First, given an aPerson instance, we ask it for its description and we iterate
over its individual attribute descriptions (line 1). Within the loop, we print the
label (line 3), we ask the accessor of the description to return the associated
attributes from aPerson and we transform this value to a string (line 5), so that
it can be appended to the output.

We have defined five rules that check for conformance of the source code with
the Magritte metamodel. The first two are defined and implemented externally
to the Magritte engine:

1. Description Naming. The definitions of the attribute descriptions should
relate to the accessor they describe. In our example the accessor is username and
the method that defines the description is called usernameDescription. While this
is not a strict requirement, it is considered good style and makes the code easier
to read. The implementation points out places where this practice is neglected.

2. Missing Description. Sometimes developers fail to completely describe
their classes. This rule checks all described classes of the system and compares
them with the metamodel. Instance variables and accessor methods that miss a
corresponding description method are reported.

The remaining three rules rely completely on the constraints already imposed
by the runtime of Magritte:

3. Description Priorities. In Magritte attribute descriptions can have priori-
ties. This is useful to have a deterministic order when elements are displayed in a
user interface. This rule verifies that if a description is used to build user-interfaces
then it should have valid priorities assigned to all its attribute descriptions. This
rule makes use of the metamodel as well as the reflective system to detect the
places where the descriptions are used.

4. Accessor Definition. The Magritte metamodel uses accessor objects to
specify how the data in the model can be read and written. This rule iterates
over the complete metamodel and checks the accessor object of every description
against the code it is supposed to work on. The implementation of the rule is
straight forward as it merely delegates to aDescription instance the aClass under
scrutiny:

aDescription accessor canReadFromInstancesOf: aClass.

aDescription accessor canWriteToInstancesOf: aClass.
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5. Description Definition. This rule checks if the specified metamodel can
be properly instantiated and, if so, it validates the metamodel against its meta-
metamodel. Magritte allows one to check any model against its metamodel, so
we can validate aPerson against its metamodel:

aPerson description validate: aPerson

Magritte is described in itself, as depicted in Figure 3. Therefore we can use
the meta-metamodel to validate the metamodel in the same way:

aDescription description validate: aDescription

The above code validates aDescription against the description of itself. In
case of problems they are recorded by the program checker. In fact this rule
is the most powerful of all rules presented here, because it can detect various
kinds of different problems in the metamodel, yet it is extremely simple in the
implementation as all the functionality is already present in Magritte.

We have developed a similar set of rules for FAME [KV08], a metamodeling
library that is independent of the host language and that keeps the metamodels
accessible and adaptable at runtime.

3 Case Studies

In this section we present three case studies: In the first two we apply Slime
rules to control the code quality. The first one is Seaside itself (Section 3.1).
The second one is a commercial application based on Seaside (Section 3.2). We
analyze several versions of these systems and we compare the results with the
number of issues detected by traditional lint rules. Then we present a survey
we ran with Seaside developers concerning their experience with using Slime
(Section 3.3). In the third case study we apply the Magritte rules on a large
collection of open-source code (Section 3.4) and demonstrate some common issues
that remained unnoticed in the code.

3.1 Seaside

Figure 4 depicts the average number of issues over various versions of Seaside.
The blue line shows the number of standard smells per class (Lint), while the
orange line shows the number of domain-specific smells per class (Slime). To
give a feeling how the size of the code base changes in time, we also display the
number of lines of code (LOC) below.

In both cases we observe a significant improvement in code quality between
versions 2.7 and 2.8. At the time major parts of Seaside were refactored or
rewritten to increase portability and extensibility of the code base. No changes
are visible for the various 2.8 releases. Code quality as measured by the program
checkers and lines of code remained constant over time.

Starting with Seaside 2.9a1 Slime was introduced in the development process.
While the quality as measured by the traditional lint rules remained constant,
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Fig. 4. Average number of Lint and Slime issues per class (above) and lines of
code (below) in released Seaside versions.

guiding development by the Slime rules significantly improved the quality of the
domain-specific code. This particular period shows the value in domain-specific
program checking. While the Seaside code base grew significantly, the number of
Slime rules could be reduced to almost zero.

Feedback we got from early adopters of Seaside 2.9 confirms that the quality of
the code is notably better. Especially the portability between different Smalltalk
dialects has improved. The code typically compiles and passes the tests on all
platforms even-though it comes from the shared code repository.

An interesting observation is that even if the Slime smells are reduced and
the quality of the code improves, the standard Lint rules continue to report a
rather constant proportion of problems. This is due to the fact that the generic
Lint rules address the wrong level and produce too many false positives.

We further evaluated the number of false positives of the remaining open
issues in the last analyzed version of Seaside by manually verifying the reported
issues: this is 67% (940 false positives out of 1403 issues reported) in the case of
Lint, and 24% (12 false positives out of 51 issues reported) in the case of Slime.
This demonstrates, that applying dedicated rules provides a better report on the
quality of the software than when using the generic rules.

Due to the dynamic nature of Smalltalk and its lack of static type information
it seems to be hard to further improve the quality of Slime rules. We however
do see potential in future work to reduce the number of false positives by using
static [PMW09] and dynamic [DGN07] type analysis.
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3.2 Cmsbox

(a) (b)

1

2

3

4

5

Lint

Slime

LOC

Fig. 5. Average number of Lint and Slime issues per class (above) and lines of
code (below) in 220 subsequent development versions of the Cmsbox.

The Cmsbox5 is a commercial web content management system written in
Seaside. Figure 5 depicts the development of the system over three years. We are
external to the development. The company gave us access to their code, but we
could not correlate with their internal quality model and bug reports. Still we
could deduce some interesting points: We ran the same set of Lint and Slime tests
on every fifth version committed, for a total of 220 distinct versions analyzed.
The number of lines of code are displayed below, though the absolute numbers
have been removed to anonymize the data.

In the beginning we observe a rapid increase of detected issues. This is during
the initial development phase of the project where a lot of code was added in
a relatively short time. Presumably the violation of standard rules was not a
concern for the developers. By contrast the number of Slime issues remained
low and showed only gradual increase by comparison. This is a really interesting
difference. Since the Slime rules tackle the development of the web interface
which was the key part of the development effort, the result shows the benefit of
using domain-specific code checking: developers focus more on domain-specific
issues, rather than the general issues that can typically be resolved much more
easily.

5 http://www.cmsbox.com/

http://www.cmsbox.com/
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The abrupt drop of lint (and to some smaller extent also Slime) issues at
point (a) can be explained by the removal of a big chunk of experimental or
prototypical code no longer in use. Between versions (a) and (b) the code size
grew more slowly, and the code quality remained relatively stable. It is worth
noting that the size of the code base grew gradually, but at the same time the
proportion of Slime issues stayed constant.

During the complete development of the Cmsbox the standard Lint rules were
run as part of the daily builds. This explains why the average number of issues
per class is lower than in the case of Seaside. At point (b) Slime rules were added
and run with every build process. This accounts for the drop of Slime issues.
A new development effort after (b) caused an increasing number of Lint issues.
Again it is interesting to see that the better targeted Slime rules remained stable
compared to the traditional ones.

Contrary to the case study with Seaside, the Slime issues do not disappear
completely. On the one hand this has to do with the fact that the software is not
supposed to run on different platforms, thus the rules that check for conformity
on that level were not considered by the development team. On the other hand,
as this is typical in an industrial setup, the developers were not able to spend a
significant amount of time on the issues that were harder to fix and that did not
cause immediate problems.

3.3 User Survey

We performed a user study where we asked Seaside developers to complete a survey
on their Lint and Slime usage. 23 experienced Seaside developers independent
from us answered our questionnaire. First, we asked them to state their use of
program checkers:

1. How often do you use Slime on your Seaside code? 4 daily, 4 weekly, 8
monthly, and 7 never.

2. How often do you use standard code critics on your Seaside code? 3 daily, 5
weekly, 7 monthly, and 8 never.

On all answers, 16 developers (70%) are using Slime on a regular basis. We
asked these developers to give their level of agreement or disagreement on the
five-point Likert scale to the following statements:

3. Slime helps me to write better Seaside code: 11 agree, and 5 strongly agree.
4. Slime is more useful than standard code critics to find problems in Seaside

code: 5 neither agree nor disagree, 8 agree, and 3 strongly agree.
5. Slime does not produce useful results, it mostly points out code that I

don’t consider bad: 3 strongly disagree, 10 disagree, and 3 neither agree nor
disagree.

To summarize, all developers that use Slime on a regular basis found it useful.
69% of the developers stated that Slime produces more useful results than the
standard program checkers, the other 31% could not see a difference. 81% of the
developers stated that Slime produces relevant results that help them to detect
critical problems in their application.



Domain-Specific Program Checking 15

We see our thesis confirmed in the two case studies and the user survey: While
the general purpose Lint rules are definitely useful to be applied to any code
base, they are not effective enough when used on domain-specific code. Using
dedicated rules decreases the number of false positives and gives more relevant
information on how to avoid bugs and improve the source code.

3.4 Magritte

In our third case study we ran the Magritte rules on a large collection of
open-source code. This includes Pier6, an application and content management
system; SqueakSource, a source code management system; Conrad, a conference
management system; CiteZen, a bibliography toolkit; CouchDB, a database
implementation, and a large number of smaller projects that are publicly available.

In total we analyzed 70 768 lines of code in 12 305 methods belonging to 1 198
classes. 307 of these classes had Magritte meta-descriptions attached, where we
found a total number of 516 Magritte related issues as listed in Table 2.

Magritte Rule Issues

Description Naming 37
Description Definition 78
Description Priorities 113
Accessor Definition 120
Missing Description 168

Table 2. Number of issues in meta-described open-source code.

The most commonly observed problem is missing descriptions. While this is
not necessarily a bug, it shows that some authors did not completely describe
their domain objects. That can either happen intentionally, because they wanted
to avoid the use of Magritte in certain parts of their application, or it can happen
unintentionally when they forgot to update the metamodel as they added new
functionality. This rule is thus helpful when reviewing code, as it identifies code
that is not properly integrated with the meta-framework.

We observed also a significant number of errors in the description definitions.
This happens when the defined metamodel does not validate against the meta-
metamodel, which can be considered a serious bug. For example, we found the
following description with two problems in the Pier Blog plugin:

6 http://www.piercms.com/

http://www.piercms.com/
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1 Blog>>descriptionItemCount

2 ^ IntegerDescription new

3 label: 'Item Count';
4 accessor: #itemCount;

5
:::::::
default:

::
0;

6 bePositive;

7 yourself

The first problem is that the description has no label, a required value in the
meta-metamodel. The rule automatically suggests a refactoring (line 3) to add
the missing label based on the name of the accessor. The second problem is the
default value 0 (line 5), which does not satisfy the condition bePositive of the
description itself (line 6).

From our positive experience with the Slime rules on the Seaside code-base,
we expect a significant improvement of code quality in the realm of Magritte as
these rules get adopted by the community. It is important to always keep the
model and metamodel in a consistent state, which considerably improves the
quality and stability of the code. With a few simple rules we can detect and fix
numerous problems in the metamodel definition.

4 Related Work

There is a wide variety of tools available to find bugs and check for style issues.
Rutar et al. give a good comparison of five bug finding tools for Java [RAF04].

PMD is a program checker that comes with a large collection of different rule-
sets. Recent releases also included special rules to check for portability with the
Android platform and common Java technologies such as J2EE, JSP, JUnit, etc.
As such, PMD provides some domain-specific rule-sets and encourages developers
to create new ones. In PMD, rules are expressed either as XPath queries or using
Java code. In either case PMD provides a proprietary AST that is problematic
to keep in sync with the latest Java releases. Furthermore reflective information
that goes beyond a single file is not available. This is important when rules
require more information on the context, such as the code defined in sub- and
superclasses.

JavaCOP [ANMM06] is a pluggable type system for Java. JavaCop imple-
ments a declarative, rule-based language that works on the typed AST of the
standard Sun Java compiler. As the rules are performed as part of the compila-
tion process, JavaCOP can only reflect within the active compilation unit, this
being a limitation of the Java compiler. While the framework is targeted towards
customizable type systems, the authors present various examples where JavaCOP
is used for domain-specific program checking. There is currently no integration
with Java IDEs and no possibility to automatically refactor code.

Other tools such as FindBugs [HP04] perform their analysis on bytecode.
This has the advantage of being fast, but it requires that the code compile and
it completely fails to take into account the abstractions of the host language.
Writing new rules is consequently very difficult (the developer needs to know how
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language constructs are represented as bytecode), and targeting internal DLSs is
hardly possible.

The Smalltalk Refactoring Browser [RBJ97] comes with over a hundred lint
rules targeting common bugs and code smells in Smalltalk. While these rules
perform well on traditional Smalltalk code, there is an increasing number of
false positives when applied to domain-specific code. Helvetia and the domain-
specific rules we presented in this paper are built on top of the same infrastructure.
This provides us with excellent tools for introspection and intercession of the
AST in the host system, and keeps us from needing to build our own proprietary
tools to parse, query and transform source code. Helvetia adds a high-level rule
system to declaratively compose the rules, and to scope and integrate them into
the existing development tools.

High-level abstractions can be recovered from the structural model of the
code. Intensional Views document structural regularities in source code and check
for conformance against various versions of the system [MKPW06]. Software
reflexion models [MNS95,KS03] extract high-level models from the source code
and compare them with models the developer has specified. ArchJava [ACN02]
is a language extension to Java that allows developers to encode architectural
constraints directly into the source code. The constraints are checked at compile-
time. Our approach does not use a special code model or architecture language to
define the constraints. Instead our program checkers work with the standard code
representation of the host language and make use of existing meta-frameworks
such as Magritte or FAME. Furthermore our program checker is directly integrated
with the development tools.

5 Conclusion

Our case studies revealed that rules that are targeted at a particular problem
domain usually performed better and caused fewer false positives than general
purpose lint rules. While more evidence is needed, these initial case studies do
point out the benefits of using rules dedicated to domain-specific code over using
generic ones.

As we need to accommodate new domain-specific code, the ability to add new
dedicated rules is crucial. While we have demonstrated various program checking
rules in the context of Seaside and Magritte, we argue that any library that uses
domain-specific abstractions should come with a set of dedicated rules. Adding
domain-specific rules is straightforward. Using the Helvetia framework it is
possible to declaratively specify new rules and closely integrate them with the host
environment. Rules are scoped to certain parts of the system using the reflective
API of the host language. The existing infrastructure of the refactoring tools
helped us to efficiently perform searches and transformations on the AST nodes
of host system. This is the same low-level infrastructure used by the standard
lint rules.

Furthermore we have shown that domain-specific rules need to be applied at
different levels of abstraction. This can happen at the level of source code, as
in the example of Slime; or it can focus more on model checking, where generic
rules use a metamodel and the system to validate conformance, as we have shown
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with Magritte. In both cases the rules were targeted at the particular domain of
the respective frameworks only.

We applied the presented techniques only to internal DSLs, that by definition
share the same syntax as the host language. As a generalization we envision
to extend this approach to any embedded language that does not necessarily
share the same syntax as the host language. Helvetia uses the AST of the
host environment as the common representation of all executable code, thus it
is always possible to run the rules at that level. Since Helvetia automatically
keeps track of the source location it is possible to provide highlighting of lint
issues in other languages. The challenge however will be to express the rules in
terms of the embedded language. This is not only necessary to be able to offer
automatic transformations, but also more convenient for rule developers as they
do not need to work on two different abstraction levels.
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